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Abstract

Iron and copper chelation restricts Plasmodium growth in vitro and in mammalian hosts. The

parasite alters metal homeostasis in red blood cells to its favor, for example metabolizing

hemoglobin to hemozoin. Metal interactions with the mosquito have not, however, been

studied. Here, we describe the metallomes of Anopheles albimanus and Aedes aegypti

throughout their life cycle and following a blood meal. Consistent with previous reports, we

found evidence of maternal iron deposition in embryos of Ae. aegypti, but less so in An. albi-

manus. Sodium, potassium, iron, and copper are present at higher concentrations during

larval developmental stages. Two An. albimanus phenotypes that differ in their susceptibility

to Plasmodium berghei infection were studied. The susceptible white stripe (ws) phenotype

was named after a dorsal white stripe apparent during larval stages 3, 4, and pupae. During

larval stage 3, ws larvae accumulate more iron and copper than the resistant brown stripe

(bs) phenotype counterparts. A similar increase in copper and iron accumulation was also

observed in the susceptible ws, but not in the resistant bs phenotype following P. berghei

infection. Feeding ws mosquitoes with extracellular iron and copper chelators before and

after receiving Plasmodium-infected blood protected from infection and simultaneously

affected follicular development in the case of iron chelation. Unexpectedly, the application of

the iron chelator to the bs strain reverted resistance to infection. Besides a drop in iron, iron-

chelated bs mosquitoes experienced a concomitant loss of copper. Thus, the effect of metal

chelation on P. berghei infectivity was strain-specific.
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Author summary

To establish a life cycle between insect and mammalian hosts, the malaria parasite has

evolved mechanisms to manage metal ions from the distinct microenvironments it

encounters. Previous work has addressed how interference using metal chelation affects

parasite development in human, primate, and rodent hosts. Similar studies in mosquito

species that harbor Plasmodium have not been performed. Here, we address such micro-

nutrient relationships in three steps. First, we characterized how the metallome fluctuates

during development in two species of mosquito. Second, we asked whether susceptibility

to Plasmodium infection correlated with a differential response in mosquito metal homeo-

stasis. Third, we tested the effects of iron and copper chelation treatment of adult mosqui-

toes concerning propensity of infection and mosquito reproduction. Metal ions offer a

promising target in the ongoing efforts to control the mosquito-borne disease.

Introduction

The role of mosquitoes as vectors of different diseases has long been recognized [1]. Many

strategies have been applied for vector control [2], with recent additions including genetic

strategies [3,4], manipulation of the Wolbachia endosymbiont [5], and proposals to influence

mosquito behavior [6]. A thorough characterization of the physiological interactions between

viruses or parasites and their insect hosts could further inform the design of interventions to

interrupt infections in affected areas [7,8]. One such relatively unexplored area of insect physi-

ology–with the possible exception of studies in the model organism Drosophila melanogaster
[9–13]–is metal metabolism. Several studies exist for iron metabolism in mosquitoes (reviewed

in [14]), including characterizations of the iron storage ferritin complex [15], the iron traffick-

ing transferrin protein [16], and iron regulatory proteins [17] in Aedes aegypti. Αn iron regula-

tory protein has also been characterized in Culex pipiens [18]. A divalent metal transporter has

been identified in Anopheles albimanus [19], but appears to be lacking in Ae. aegypti, where

instead homologues of the Zip/ZnT families of transporters may have taken over cellular iron

import [20,21]. Heme oxygenase was described in Anopheles gambiae [22] and Ae. aegypti
[23].

In Ae. aegypti, the fate of blood meal iron was traced showing iron accumulation in female

ovaries [24,25]. It is also worth noting that Wolbachia interferes with insect iron metabolism

[26,27]. The kynurenine pathway metabolite, xanthurenic acid, has been proposed to function

as an iron chelator [28]. It is also a critical inducer of Plasmodium gametogenesis in the intesti-

nal lumen of Anopheles stephensi mosquitoes [29]. Amongst the many unknowns in insect

iron metabolism [30], recent efforts to identify a heme transporter [31] and unravel the func-

tion of multicopper oxidases [32,33] in iron trafficking have been unsuccessful (for related

studies in D. melanogaster see [34–36]). Beyond iron, there has been little attention to other

essential metals, such as copper, zinc, manganese, and molybdenum in mosquito biology.

Metallothionein gene expression has been studied in Culex quinquefasciatus [37], An. gambiae
[38] and Ae. aegypti [39], whereas several studies have used copper at concentrations where

the metal becomes toxic to Ae. aegypti and Aedes albopictus mosquitoes [40–44]. Lower con-

centrations of copper– 0.15 ppm, 0.30 ppm, and 0.60 ppm for Ae. albopictus, An. stephensi,
and C. pipiens, respectively–resulted in developmental delays [45]. Considering that the studies

mentioned above have not measured metal content in the mosquitoes, we have determined
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the metallomes of Ae. aegypti and An. albimanus throughout the different stages of their life

cycle.

We opted to work with two laboratory-maintained Ae. aegypti strains, one originally col-

lected in the Carribean in the 1930s known as the Rockefeller (Rock) strain [46,47] and another

originally collected in New Orleans in the 1980s known as the New Orleans (NO) strain [48].

The Rock strain is susceptible to dengue virus infection [49]. Recently, host serum iron was

shown to modulate dengue virus acquisition [50]. Differences between susceptible and refrac-

tory strains have been attributed to a host of immune-related genes. Transferrin is upregulated

in the refractory strain [49] and following in vitro arboviral infection [51], consistent with a

function of this circulating high-affinity iron binding protein [52,53] playing a role in the

defense against bacterial infections [16,54,55]. We also chose to work with two An. albimanus
phenotypes, both isolated through inbreeding from a parental strain collected on human bait in

the coastal plains of Southern México [56]. The two phenotypes differ with respect to a stripe of

white pigment prominent during larval stages 3–4 and pupae, a variable character first noted

for this species in 1967 [57] and thought to be composed of uric acid crystals [58]. The pheno-

types also differ in their susceptibility to both P. vivax [56] and P. berghei [59]. We refer to the

susceptible phenotype as white stripe (ws) due to the stripe’s presence, whereas the refractory

(resistant) phenotype has been called brown stripe (bs). Field studies suggest that An. albimanus
is only second to Anopheles pseudopunctipennis in Anopheles species population density in

México, the two species together accounting for 92% of all individuals sampled [60].

In malaria, the role for iron has long been studied and discussed, although the emphasis has

been placed on the parasite and its interaction with the human host (for reviews see [61,62]).

The iron chelator desferrioxamine was shown to restrict malaria growth in vitro [63,64], in

rodent [65,66], and non-human primate [67] hosts. The utility of iron chelators for human treat-

ment is more controversial [61,62,68,69]. A recent population genetics association study sug-

gested that Plasmodium may itself cause iron deficiency to the human host [70]. On the other

hand, Rasoloson et al. studied P. falciparum in human erythrocytes, assessing copper’s role dur-

ing the trophozoite stage of the parasite [71]. These authors described that infected erythrocytes

had 6.6 ± 2.4 μM copper compared to 10.0 ± 2.3 μM in their uninfected controls. Application of

150 μM bathophenanthroline sulphate (BCS), an extracellular copper chelator, had no effect to

copper accumulation in the infected erythrocytes nor to parasite growth. In contrast, 10 μM neo-

cuprine, an intracellular copper chelator, applied to synchronized cultures of early rings, blocked

the ring-to-trophozoite transition. More recently, Kenthirapalan et al. demonstrated that neo-

cuprine blocked sexual differentiation of P. berghei and, hence, transmission to the mosquito

vector [72]. Study of a P. berghei mutant for a copper P-type ATPase transporter offered addi-

tional evidence in support of the conclusion that parasite copper homeostasis is critical to the

parasite in the mosquito vector and to a smaller extent in a rodent host [73]. Thus, an apprecia-

tion exists that Plasmodium protists require iron and copper to grow and differentiate; however,

metal interactions have not been studied in the mosquito host. Here, we have assessed how the

An. albimanus metallome is affected by P. berghei, using the susceptible ws and refractory bs phe-

notypes of the An. albimanus Tapachula strain [59], and applied extracellular iron and copper

chelators to the mosquitoes’ diet, before and after an infected blood meal, to test the impact of

metal chelation on the ability of P. berghei for intestinal colonization.

Results

Phenotypic description of the An. albimanus mosquito strains

The mosquito life cycle is divided into different stages of development (Fig 1). Adult females

lay their eggs on water, where embryonic development proceeds without nutrient acquisition.
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Four larval stages, during which the insect feeds and grows, are all aquatic. Metamorphosis

takes place at the pupa stage. Adult mosquitoes live and reproduce on the land and in the air.

Females require a blood meal from a warm-blooded animal for oogenesis.

The An. albimanus mosquitoes used in this study originate from the Tapachula strain,

which shows phenotypic variability to dorsal cuticle pigmentation (S1 Fig). The ws and bs phe-

notypes have been isolated previously through successive generations of inbreeding, resulting

in stable colonies. Adult mosquitoes, eggs, and the first two larval stages are visually indistin-

guishable between ws and bs. In contrast, a prominent white stripe is readily recognizable start-

ing at larval stage 3 and present during stage 4 and in pupae of ws mosquitoes; this stripe is

brown in the bs phenotype (Fig 1).

Metallomics of Ae. aegypti and An. albimanus throughout their life cycle

We determined the metallomes (nine elements: iron, copper, zinc, calcium, magnesium, man-

ganese, sodium, potassium, and phosphorus, in whole-body samples) in the ws and bs pheno-

types from An. albimanus and in the Rock and NO strains from Ae. aegypti throughout their

life cycle (Fig 2). The data allow multiple comparisons: between metals, between species,

between strains/phenotypes of the same species, between developmental stages within a given

species or strain, and for any given metal. We provide the raw data and several statistical analy-

ses supporting statements made below (S1 Table).

Fig 1. An. albimanus ontogeny of ws and bs striped phenotypes. The phenotypic differences (white or brown stripe along the dorsal thorax and abdomen) are only

visible from the 3rd instar larval stage until the pupa stage. Adult photographs were obtained from female mosquitoes three days post-emergence. Pupae are from the first

12 hours. Scale bar = 500 μm.

https://doi.org/10.1371/journal.pntd.0009509.g001
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Larval stages for both species of mosquitoes concentrate significantly more sodium, potas-

sium, copper, and iron than adult stages. For Ae. aegypti, the average increase (mean value of

all larval stages compared to mean value of adult males and females combined) was five-fold

for sodium; three-fold for copper, and two-fold for iron and potassium; in this species, calcium

also showed a two-fold increase. For An. albimanus, the average increase was four-fold for

sodium and 1.5-fold for iron, potassium, and copper. Little difference was observed between

larvae and adult mosquitoes, adapted to different environments and physiologies, for the rest

of the elements (Fig 2).

A notable difference in the metallomes of the two species was observed in maternal-to-egg

iron provision. Ae. aegypti embryos show, as expected [24,25], substantive accumulation of

iron, averaging at 0.38 mg per g dry weight, however An. albimanus embryos only accumu-

lated 0.05 mg per g dry weight (Fig 2A). Notably, copper is deposited in a reverse manner, at

Fig 2. Metallomics during the life cycle of An. albimanus and Ae. aegypti. Metal concentrations were determined by ICP-OES in ws (blue circles) and bs
(green circles) phenotypes from An. albimanus, Rock (grey triangles) and NO (red triangles) strains from Ae. aegypti, and throughout their life cycle. Panels

show different metal ions measured simultaneously in the same samples. A) Iron. B) Copper. C) Zinc. D) Calcium. E) Magnesium. F) Manganese. G) Sodium.

H) Potassium. I) Phosphorus. Letters on the X-axis represent instar/stage as follows: E = eggs, L1-L4 = instar 1–4 larvae, P = Pupae, M = Adult male, F = Adult

female. Data are expressed as mean ± standard deviation (SD) from several independent measurements taken from two to four biological replicates. Data were

tested for normality by the Shapiro-Wilk test and statistical analisys was performed by two-way ANOVA followed by post-hoc Bonferroni-corrected test

comparing the ws to bs phenotypes and the Rock to NO strains at each stage. For further comparisons see S1 Table.

https://doi.org/10.1371/journal.pntd.0009509.g002
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0.008 mg per g dry weight in Ae. aegypti embryos versus 0.021 mg per g dry weight in An. albi-
manus embryos (Fig 2B). Otherwise, the developmental patterns observed in the metallomes

are well conserved between the two species (Fig 2).

With regards to differences within each species, we observed that in An. albimanus third

instar larvae, a stage during which the ws phenotype first appears (Fig 1), larvae of the ws phe-

notype accumulate 72% more iron, 63% more manganese, 61% more copper, and 19% more

sodium and magnesium, compared to their bs phenotype counterparts (Fig 2). In the adult

stages, manganese remained 52% higher, and zinc now showed a moderate 28% increase. Cal-

cium increased throughout the life cycle in both colonies from An. albimanus and in the Ae.
aegypti Rock strain, whereas, in contrast, it accumulated dramatically during the larval stages

in the NO strain (Fig 2D). This change in the developmental pattern of calcium accumulation

was one of the differences observed between the Rock and NO strains, another being a three-

fold increase in manganese accumulation in the NO strain (compared to Rock) observed dur-

ing the larval stages and in adult female mosquitoes (Fig 2F). Female NO mosquitoes accumu-

lated four times more manganese than males, but the sex-specific difference was particular to

the NO strain. Conserved sex-specific differences (observed in all populations studied here)

included almost two-fold increases of calcium and magnesium in females versus males (Fig 2D

and 2E). A third difference between the Rock and NO strains was observed specifically during

the first larval instar stage where the NO strain accumulates calcium, magnesium, and sodium.

In contrast, the Rock strain accumulates copper and potassium, instead (Fig 2). Some of these

differences between the Rock and NO strains could be attributable to having been raised on

different diets (S2 Table). For example increased magnesium and manganese correlate with

higher presence of these metals in the diet, whereas increased calcium in the NO strain was

despite larvae feeding on a diet with lower calcium concentration. Collectively, the results sug-

gest a fair degree of conservation between species and strains, bar the already mentioned

exceptions.

P. berghei infection affects the An. albimanus metallome

To assess whether infection with P. berghei alters the metallome of the ws and bs pheno-

types from An. albimanus, metal measurements in female mosquitoes fed with P. berghei-
infected blood, uninfected blood, and sugar solution were performed seven days post-

blood (±infection) feeding and same age mosquitoes for the sugar-fed group (Fig 3). At this

time point, blood digestion and excretion had been completed. Previously observed differ-

ences in infection susceptibility between the ws and bs phenotypes [56,59] were re-exam-

ined and confirmed (S2 Fig). Median infection, represented as the number of P. berghei
oocysts per midgut, was of six in the susceptible ws phenotype, compared to four and a half

for the resistant bs phenotype. We reasoned that potential differences in the manner metal

ions accumulate in response to infection might be associated with the two phenotypes’ dif-

ferential resistance to P. berghei. We therefore performed elemental analysis on all groups

of mosquitoes (Fig 3).

Twelve-day-old female mosquitoes of the two phenotypes raised on sugar medium showed

no significant difference between ws and bs for any of the elements assessed (Fig 3). The mean

value for zinc was 16% higher for ws versus bs when feeding on blood and after allowing for

sufficient time to digest and excrete the meal (Fig 3C). Except for zinc, the concentration of

other metal ions was affected similarly between the two phenotypes after the blood meal (S3

Table). Specifically, considering pooled data from both An. albimanus phenotypes, blood-feed-

ing led to a decrease in the concentration of calcium (-18%), magnesium (-19%), and manga-

nese (-25%), and to an increase of potassium (+36%). Phosphorus was the only measured
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element that showed no change upon blood feeding (Fig 3I). Less robust changes in zinc

(-12%), copper (-13%), iron (+24%) and sodium (+12%) were driven largely from one of the

two phenotypes as can be assessed from the detailed statistical analysis (S3 Table).

Next, we compared the metallomes of ws and bs mosquitoes between blood-fed and

infected groups (Fig 3 and S3 Table). In the resistant bs phenotype, no differences were

observed for any metal ion associated with the presence of infection. Intriguingly, in the sus-

ceptible ws phenotype, iron increased further upon infection by 32% (Fig 3A), and copper

increased by 14% (Fig 3B). Iron and copper were the only metal ions that showed a different

response between the two phenotypes.

Fig 3. Metallomics following P. berghei infection of An. albimanus ws and bs phenotypes. Elemental concentrations of A) iron, B) copper, C) zinc, D)

calcium, E) magnesium, F) manganese, G) sodium, H) potassium, and I) phosphorus, were determined in ws (grey circles) and bs (brown diamonds)

phenotypes from An. albimanus seven days post P. berghei infection (Blood + P. berghei), post feeding with uninfected blood (Blood) or continued feeding with

sugar only (Sugar). The data are expressed in mg element per g dry weight, showing the mean ± SE from independent measurements taken in three

experimental repeats. Numerical values can be found in S3 Table. Two-way ANOVA followed by Bonferroni’s multiple comparisons test was used to determine

differences between phenotypes in each treatment; indicated with two asterisks. Specifically, �� for Fe p = 0.006, �� for Cu p = 0.003, � for Zn (Blood) p = 0.01, �

for Zn (Blood + P. berghei) p = 0.03.

https://doi.org/10.1371/journal.pntd.0009509.g003
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The effects of iron and copper chelation on the outcome of P. berghei
infections and follicular development

We decided to explore the role of iron and copper during P. berghei infection in both pheno-

types. This was approached by adding to the sugar solution 200 μM bathophenanthroline sul-

fate (BPS) or 200 μM bathocuproine sulfate (BCS) from the emergence of the mosquitoes until

the day of oocyst counting (same timeline as above) to chelate iron and copper, respectively.

Mosquitoes were fed on P. berghei infected blood on day five of adulthood as in the previous

experiments. These metal chelators have been used before in D. melanogaster at dietary con-

centrations between 100 and 300 μM, acting with proven metal specificities [74,75]. As previ-

ously shown for some Anopheles species [76–78], P. berghei infection affected follicular

development in 51% (n = 47) of the susceptible ws female mosquitoes and 22% (n = 41) of the

resistant bs counterparts (Fig 4). Application of BPS enhanced the inhibitory effect on follicu-

lar development in both phenotypes taking the percentages to 84% (n = 62; X2 = 13.6, p =
0.0002) and 54% (n = 46; X2 = 9.6; p = 0.002), respectively. This result is consistent with the

previously shown requirement of iron for oogenesis in Ae. aegypti [24,25]. Each individual

female either had fully-developed or immature ovaries, meaning that the response was of an

"all-or-none" type (S3 Fig). In contrast to iron, copper availability did not alter follicular devel-

opment in response to infection, as judged from the application of BCS to either phenotype

(Fig 4A; p = 0.287 for ws and p = 0.076 for bs comparisons, respectively).

Previous studies have suggested trade-offs between reproductive fitness and immune

defense in An. gambiae [76], reproduction and survival in C. pipiens [77], parasite elimination

and egg production in An. albimanus [78]. We wondered whether there was an association

between the number of P. berghei oocysts colonizing the An. albimanus midgut and the inhibi-

tion of FD. Therefore, we compared infection intensity considering the presence or absence of

FD in each mosquito group (Fig 4B). No significant differences were found between infection

Fig 4. Effect of iron and copper chelation on follicular development and P. berghei infection in ws and bs An. albimanus. Mosquitoes were fed with sugar solution

(Ctrl) or sugar solution supplemented with BPS or BCS throughout their adult life. Four days-old mosquitoes were fed with P. berghei-infected blood. A) Percentage of

mosquitoes with follicular development (FD) (in black bars), and without follicular development (No-FD) (in grey bars) was determined in each treatment group. BPS

treatment further suppressed oogenesis in both ws and bs mosquitoes. Data were analyzed using chi-squared test, statistical differences are indicated by asterisks, �� p =
0.002 (n = 46; X2 = 9.6) and ��� p = 0.0002 (n = 62; X2 = 13.6), ns = non-significant (p>0.05). B) Oocyst number was determined seven days post-infection and plotted

against the presence or absence of FD, within treatment groups. Circles in black represent individuals with FD, circles in grey correspond to individuals with No-FD.

Medians with interquartile range are indicated in blue. No statistical differences (p>0.05) were found using Mann-Whitney U test between FD and No-FD conditions in

each group. C) The same data as in the previous panel was pooled together for statistical analysis with Mann-Whitney U test comparing with control group inside each

phenotype. Statistical differences are indicated by asterisks, � p = 0.0138, ��� p = 0.0004 for ws and � p = 0.0258, ns = p>0.05 for bs comparisons between BPS and BCS,

respectively, and control treatments. Medians with interquartile range are indicated in black. Infection distribution within each phenotype is described in the S4 Table.

https://doi.org/10.1371/journal.pntd.0009509.g004
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in mosquitoes with or without FD within each treatment group. Nevertheless, application of

either BPS or BCS significantly reduced P. berghei infection in the otherwise susceptible ws
phenotype (Fig 4C). Specifically, a median infection of seven oocysts per midgut in the control

group was reduced to four with the iron chelator (p = 0.0004) and five with the copper chelator

(p = 0.01). The bs phenotype under control conditions showed a median infection of three and

no statistically significant difference to the BCS-treated bs mosquitoes (median of five). Sur-

prisingly, BPS-treated bs mosquitoes showed a median value of six (p = 0.03), reversing the

normally resistant bs phenotype into a susceptible condition to infection (Fig 4C and S4

Table).

To assess the metal chelators’ effects in the mosquitoes’ whole-body metallome, we per-

formed the elemental analysis at the experiment’s endpoint (Fig 5). The corresponding effects

of BPS on whole-body iron and of BCS on whole-body copper were negligible in the ws mos-

quitoes (mean values were 11% and 14% lower for iron and copper, respectively, but these

reductions were not statistically significant). BCS had a clear and specific effect lowering cop-

per accumulation by 33% in the bs phenotype. Although iron was not statistically significant

different in bs mosquitoes fed with BPS, this treatment unexpectedly decreased copper by 43%

(Fig 5B). Except for this last finding, which appears to be associated with a particularity of

metal metabolism in the bs phenotype, the metal chelators worked according to their known

metal specificities. In keeping with this conclusion, zinc concentration in the mosquitoes was

unaffected during the various treatments (Fig 5C).

Discussion

Metal profiles differ during the development of mosquitoes

Previous studies of how insect metallomes vary with respect to their evolutionary histories and

specific ecology suggested that transition metal ions accumulate with the enzyme systems that

require them as cofactors; variation amongst species was mostly attributable to changes in stor-

age mechanisms or differing diets [79,80]. Hematophagous insects are of particular interest for

the latter parameter. Additionally, as this study demonstrates, it is essential to consider the dif-

ferent developmental stages (Fig 2). Mosquito larvae grow in an aquatic environment, in con-

trast to the terrestrial life of adults. Higher sodium and potassium concentration may relate to

adaptations required for living in a hypo-osmotic condition [81–83]. A comment is due

regarding the considerable variability reported for the Ae. aegypti NO strain (Fig 2); in contrast

to the other three, this laboratory-reared strain was studied on four separate occasions at dif-

ferent seasons and years. The corresponding data points cluster as per the independent repli-

cates from each sample collection. The variability cannot be attributed to measurement issues

because D. melanogaster standards were run in parallel showing no difference between experi-

ments. It is unclear if the variability could be attributed to different food batches or seasonal

fluctuations (uncontrolled variables) or inherent biological variance between generations

[47,48]. The results serve as a point of caution for future studies as they suggest a range of plas-

ticity in metal concentrations, especially during the larval stages of development. For these rea-

sons, the comparison between the Rock and NO strains presented here should be considered

of preliminary nature. Given the proposed role of iron in dengue infection [49–51], similar

studies as the one we performed here for Plasmodium infection in Anopheles are called for.

Further work with different mosquito species would also contribute to generalizations or iden-

tifying species-specific patterns in mosquito metallomics. Overall, the data reported here sug-

gest similar metallome patterns between An. albimanus and Ae. aegypti with only few

exceptions that were already described in detail above.
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Susceptibility to P. berghei infection in the ws phenotype was associated

with increased iron and copper accumulation in the mosquitoes

The genetic and physiological reasons that underlie the different susceptibility to P. berghei
infection between ws and bs phenotypes are unknown [56–59]. Previous work looking at resis-

tance of An. gambie to P. bergei transmission identified the complement-like protein TEP1

interacting with the leucine-rich protein complex LRIM1 and APL1C for the parasite’s killing,

followed by parasite elimination at a later step with melanization reactions under the control

of NFkB signaling [84–86]. Interestingly, TEP1, LRIM1 and other immune genes were indeed

expressed at higher level in the resistant bs strain, whereas melanization genes, such as PPO1,

showed reduced expression [59]. The latter finding is consistent with a general tendency for

degree of melanization reactions correlating with iron and copper concentrations [87], as

observed here in the comparison between ws and bs phenotypes (discussed in the following

paragraph). Of interest in respect to melanization is a recent discovery of a conserved trans-

porter gene, which turns pupae of Tephritidae flies white when mutated [88].

We noted the following differences between the metallomes of the two phenotypes of An.

albimanus. First, there is a moderate (10–30%) increase in zinc concentration in ws adult mos-

quitoes than similarly grown and aged bs counterparts (Figs 2C, 3C and 5C). Although this dif-

ference in zinc is independent of the presence or absence of P. berghei, it may be related with

increased expression of TEP1 and other immune genes in the bs mosquitoes [59], given the

association of zinc with proteins of the mammalian complement system [89,90]. Second, we

noted that ws third instar larvae accumulate several metal ions during the larval developmental

stage, where the characteristic white stripe first appears. Iron and copper show significant dif-

ferences compared to bs larvae (Fig 2A and 2B). The underlying reason for these differences

has not been explored, however, iron and copper also accumulate specifically in infected adult

females of the ws phenotype (Fig 3A and 3B). We tested whether dietary supplementation with

a metal chelator might render the ws phenotype more resistant to P. berghei infection and

found that it did (Fig 4C). These results are in line with the simple interpretation that, as

shown for its stages of development in the mammalian host [62–73], Plasmodium also requires

access to iron and copper in the mosquito.

The unexpected reversal of resistance to P. berghei infection in the bs
phenotype by iron chelation

Turning to the bs phenotype, which was resistant to P. berghei infection to start with, BCS

treatment had no further effect. This finding is still consistent with the idea that the original

resistance to Plasmodium in the bs phenotype might be associated with robust metal-with-

drawing strategies. However, these interpretations were challenged by the finding that BPS

treatment rendered bs mosquitoes susceptible to infection (Fig 4C). BPS treatment is not

expected to affect copper accumulation (see, for example, BPS treatment of the ws phenotype

here in Fig 5B, or reference [74]). However, it reduced copper by 43% in bs mosquitoes. The

interaction between copper and iron metabolism in insects remains under investigation [32–

Fig 5. Metal concentrations in P. berghei-infected ws and bs mosquitoes treated additionally with metal chelators.

At seven days post-infection with P. berghei elemental analysis was performed on adult female mosquitoes as indicated.

For both ws and bs phenotypes, Ctrl (darker bars) indicates infected group without metal chelator treatment, BPS (grey

bars) indicates the effects of dietary iron chelation, while BCS (white bars) is for copper chelation. Three independent

measurements were done (circles for ws and diamonds for bs) and SD is represented in blue. Data were analyzed with

one-way ANOVA followed by Tukey’s test. Statistical differences between groups are indicated by different letters, and

asterisks denote p values as follows: � p = 0.0370, �� p = 0.0055, ns = p>0.05.

https://doi.org/10.1371/journal.pntd.0009509.g005
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36,87]. Since bs mosquitoes showed a lower concentration of iron and copper, the increase in

susceptibility after the BPS treatment, which further lowered the concentration of these metals,

may be due to a detrimental deficiency of metal ions as prosthetic groups in proteins responsi-

ble for eliminating the parasite. Although we cannot explain the particular response of bs phe-

notype mosquitoes to the iron chelator, the results collectively suggest that both iron and

copper are involved in the mosquito’s interaction with Plasmodium. Further work in this area

is needed to uncover the mechanistic details of both interactions, taking into account the limi-

tations of whole body elemental determinations, which do not provide information on tissue-

specific and subcellular distribution and bioavailability of the metal ions.

Follicular development did not correlate with the severity of P. berghei
infection

The observation that P. berghei infection affected oogenesis is consistent with previous reports

[76–78]. Likewise, iron chelation’s additive inhibitory effect on oogenesis observed in both ws
and bs phenotypes were not unexpected given what is known for the role of iron in oogenesis

in Ae. aegypti [24,25]. Two further findings are presented here. First, copper chelation had no

inhibitory effect on oogenesis (Fig 4A), suggesting different dietary requirements for these two

metals in reproduction. Second, we were surprised to find no relation between female mosqui-

toes that suppressed oogenesis and infection severity (Fig 4B). This result should inform ongo-

ing research over trade-offs between the insect’s reproductive ability and its response to

infection [76–78].

Interference with mosquito metal ion homeostasis is an unexplored area in

vector control programs

Malaria remains a deadly disease, which is best combatted by controlling mosquito popula-

tions [61,62]. A variety of approaches are currently being undertaken with this goal [1–8]. We

propose that metal chelators offer an additional tool that is worth considering in vector-borne

disease control programs and potentially also in the control or monitoring of fruit flies of eco-

nomic impotance [80]. Further work in this area should also study chelator application during

larval development, when more substantial effects may be expected given the requirement of

metal ions for insect growth [9,13].

Methods

Mosquito rearing

The ws and bs colonies of the An. albimanus Tapachula strain were reared at insectary condi-

tions of 28 ± 1˚C, humidity at 80% and 12 hours photoperiod. Larval stages were fed with cat

food (chicken, cereals, and milk mix) for 2–12 months kitten (Whiskas) [91]. The ws and bs
phenotypes have been reared independently for more than sixty generations resulting in stable

colonies (S1 Fig). Adult mosquitoes were fed with 10% sugar solution using soaked cotton

pads. For Anopheles mosquitoes, the sugar solution was supplied with 4-Aminobenzoic acid

(PABA) 0.05% and antibiotic-antimicotic 1X (GIBCO). The An. albimanus colonies and the

Ae. aegypti Rockefeller strain were reared at the insectary of the National Institute of Public

Health (INSP) in Cuernavaca, Morelos, México. The Ae. aegypti New Orleans strain was

reared at the insectary of the Collaborative Unit for Entomological Bioassays (UCBE) of the

Autonomous University of Yucatán (UADY) in Mérida, Yucatán, México. Larval stages were

fed with a meat flour and yeast (8:2) solution. Adult mosquitoes were fed with 10% sugar solu-

tion using a felt strip device. The metal ion content of the two diets was determined (S2 Table).
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Parasite culturing

The clone 2.34 of the Plasmodium berghei ANKA strain, which constitutively expresses the green

fluorescent protein [92], was used in all infection experiments. Ookinete culture was performed

according to a previously published protocol [93]. Briefly, blood-stage parasites were kept in liq-

uid nitrogen and inoculated intraperitoneally (IP) in six to eight weeks-old male BALB/c mice.

Parasitaemia was determined by Giemsa smears, 105 parasites were propagated IP up to the

eighth pass. For ookinete culture, the mice were treated with 200 μl of phenylhydrazine at 6 mg/

ml three days before the inoculation of 5 x 107 parasites. Three days post-inoculation the infected

blood was extracted via cardiac puncture of a CO2 euthanized mice, using a heparinized syringe

(250 IU of heparin / ml of blood). Blood was diluted 1:5 in ookinete medium (RPMI 1640

medium at pH 8.3 supplemented with 23.81 mM sodium bicarbonate, 0.37 mM hypoxanthine,

25 mM HEPES, 5000 U/ml penicillin, 5mg/ml streptomycin, 10 mg/ml neomycin and 20% heat-

inactivated fetal bovine serum) and incubated for 18 h at 20˚C to allow ookinete formation.

Only mice with a parasitaemia between 15 to 25% and with more than 7 exflagellation centers in

a 400X field were used. The exflagellation was evaluated prior to mouse sacrifice by diluting tail-

blood in ookinete medium (1:4), incubated at 20˚C for 15 minutes.

Plasmodium infection

For infection, four days-old mosquitoes were fed with 8 x 105 ookinetes per ml in all experi-

ments. Ookinetes were centrifuged at 1500g and re-suspended using blood of an uninfected

mouse. After feeding, mosquitoes were kept at 21˚C to permit Plasmodium development.

Seven days after feeding, mosquitoes were dissected in phosphate buffered saline; midguts

were collocated on slides over RPMI medium drops to permit oocyst counting using an epi-

fluorescence microscopy (Leica DM 1000). Additionally, during midgut dissections, we

obtained ovaries to determine the presence or absence of follicular development, as was previ-

ously reported in An. albimanus during P. berghei infection [78].

Treatment with chelators

Bathophenanthrolinedisulfonic acid disodium salt hydrate (BPS; Sigma-Aldrich #146617) and

bathocuproinedisulfonic acid disodium salt (BCS; Sigma-Aldrich #B1125) were used as extra-

cellular iron and copper chelators, respectively [73,74]. Chelators were added to 10% sugar

solution at a concentration of 200 μM and were administrated using soaked cotton pads

throughout the adult lifespan of the mosquitoes, i.e. for five days prior to and seven days after

the Plasmodium infected blood meal.

Sample collection

For mosquito development assays, samples from Anopheles and Aedes mosquitoes were col-

lected at different larvae instars. Three days-old male and female mosquitoes feeding exclu-

sively on 10% sugar solution were used for the adult stages. Each sample was collected and

dried in a precipitate vase glass (5 ml) during 72 hours at 50˚C in order to remove water.

Dried samples were collected using a flat spatula, weighed and placed in Eppendorf tubes. For

the Plasmodium infection assays, mosquitoes were collected at day seven post-treatment. Each

sample consisted of 30 females dried in a glass Petri dish and treated as explained above.

Elemental analysis

Inductively coupled plasma optic emission spectrometry (ICP-OES) was used for metal deter-

minations in all samples. Between 10 and 20 mg of dry sample was digested with 1 mL of nitric
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acid at 200˚C for 15 min in a MARS6 microwave digestion system (NC, USA). Samples were

adjusted to 5mL volume with water. Total metal concentrations were measured against a cali-

bration curve in the PerkinElmer Optima 8300 ICP-OES (CT, USA) instrument and presented

as mg metal per g sample dry weight.

Statistical analysis

All data were analyzed in GraphPad Prism version 8. Two-way ANOVA (phenotype/strain

versus instar/stage) was used for analysis of the metallomics results during development (Fig 2

and S1 Table), after first checking normality distributions of the data with the Shapiro-Wilk

test. Bonferroni’s multiple comparisons test was used to determine statistical differences

between phenotypes or strains in the same instar/stage, and Tukey’s test was used to determine

differences between instar/stage within the same phenotype or strain. Two-way ANOVA was

also used when considering phenotype (ws or bs) and treatment (sugar, blood or blood + P.

berghei) as variables for the analysis of the metallomes after blood feeding and infection (Fig 3

and S3 Table). Bonferroni’s multiple comparisons test was used to determine statistical differ-

ences in each treatment between phenotypes (ws versus bs) and Tukey’s test was used to deter-

mine differences between treatments in the same phenotype (sugar versus blood, sugar versus
blood + P. berghei, and blood versus blood + P. berghei). The chi-squared test was used to

determine the probability of follicular development between groups treated with chelators and

control groups (Fig 4A). The Mann-Whitney U test was used to determined statistical differ-

ences between medians in infected groups (Figs 4B, 4C and S2 and S4 Table). One-way

ANOVA followed by Tukey’s test was used to determine differences after chelator treatments

(Fig 5).

Supporting information

S1 Fig. Phenotypes of An. albimanus Tapachula strain. The parental strain contains both ws
and bs phenotypes (top image). Following inbreeding for over sixty generations, the two phe-

notypes have been successfully separated (lower images).

(TIF)

S2 Fig. P. berghei infection in ws and bs mosquitoes An. albimanus. Oocyst number per

midgut of ws (grey circles) and bs (brown diamonds) mosquitoes were determined at seven

days post-feeding with P. berghei-infected blood. Data were analyzed with the Mann-Whitney

U test, statistical difference is indicated by asterisks, ���p = 0.0006. Medians with interquartile

range are indicated in black. Infection distributions for each phenotype are described in the

table.

(TIF)

S3 Fig. Blood feeding triggers follicular development (oogenesis). Dissected ovaries from ws
(left) and bs (right) phenotypes of An. albimanus. After blood-feeding, ovarian development

was observed in both phenotypes. Ovaries from blood-fed (BF) or sugar-fed (SF) mosquitoes

are indicated with arrows. Scale bar = 500 μm.

(TIF)

S1 Table. Elemental analysis of Ae. aegypti and An. albimanus throughout their life cycle.

(XLSX)

S2 Table. Elemental analysis of larval diets used in this study. Results are given in mg ele-

ment per g of diet. The diet used for NO was also used for rearing of An. albimanus larvae.

(DOCX)
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S3 Table. Elemental analysis of adult female mosquitoes at seven days after they were fed

on infected and uninfected blood.

(XLSX)

S4 Table. Infection distribution at seven days post P. berghei infection of ws and bs pheno-

types co-subjected to chelator treatments.

(DOCX)
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7. Rivera-Pérez C, Clifton ME, Noriega FG. How micronutrients influence the physiology of mosquitoes.

Curr Opin Insect Sci. 2017; 23:112–117. https://doi.org/10.1016/j.cois.2017.07.002 PMID: 29129275

8. Samaddar S, Marnin L, Butler LR, Pedra JHF. Immunometabolism in Arthropod Vectors: Redefining

Interspecies Relationships. Trends Parasitol. 2020; 36:807–815. https://doi.org/10.1016/j.pt.2020.07.

010 PMID: 32819827

9. Marelja Z, Leimkühler S, Missirlis F. Iron Sulfur and Molybdenum Cofactor Enzymes Regulate the Dro-

sophila Life Cycle by Controlling Cell Metabolism. Front Physiol. 2018; 9:50. https://doi.org/10.3389/

fphys.2018.00050 PMID: 29491838

10. Navarro JA, Schneuwly S. Copper and Zinc Homeostasis: Lessons from Drosophila melanogaster.

Front Genet. 2017; 8:223. https://doi.org/10.3389/fgene.2017.00223 PMID: 29312444

11. Dow JA. The essential roles of metal ions in insect homeostasis and physiology. Curr Opin Insect Sci.

2017; 23:43–50. https://doi.org/10.1016/j.cois.2017.07.001 PMID: 29129281

12. Calap-Quintana P, González-Fernández J, Sebastiá-Ortega N, Llorens JV, Moltó MD. Drosophila mela-
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