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Characterisation of CD4+ T‑cell 
subtypes using single cell RNA 
sequencing and the impact of cell 
number and sequencing depth
James Ding1, Samantha L. Smith1, Gisela Orozco1, Anne Barton1,3, Steve Eyre1 & 
Paul Martin1,2*

CD4+ T‑cells represent a heterogeneous collection of specialised sub‑types and are a key cell type in 
the pathogenesis of many diseases due to their role in the adaptive immune system. By investigating 
CD4+ T‑cells at the single cell level, using RNA sequencing (scRNA‑seq), there is the potential to 
identify specific cell states driving disease or treatment response. However, the impact of sequencing 
depth and cell numbers, two important factors in scRNA‑seq, has not been determined for a complex 
cell population such as CD4+ T‑cells. We therefore generated a high depth, high cell number dataset to 
determine the effect of reduced sequencing depth and cell number on the ability to accurately identify 
CD4+ T‑cell subtypes. Furthermore, we investigated T‑cell signatures under resting and stimulated 
conditions to assess cluster specific effects of stimulation. We found that firstly, cell number has a 
much more profound effect than sequencing depth on the ability to classify cells; secondly, this effect 
is greater when cells are unstimulated and finally, resting and stimulated samples can be combined 
to leverage additional power whilst still allowing differences between samples to be observed. While 
based on one individual, these results could inform future scRNA‑seq studies to ensure the most 
efficient experimental design.

Whilst genetics studies have been successful in identifying single nucleotide polymorphisms (SNPs) associated 
with common complex disease susceptibility, mortality and  outcome1–3, they have had limited impact for pre-
dicting treatment response and there is currently great interest in discovering biomarkers which can predict if 
a patient will respond to a given  therapy4. Studies to date have focused on bulk assays in serum or whole blood, 
including ELISAs and RNA-seq, and as such cannot fully explore the heterogeneity present in a sample.

CD4+ T-cells are established as an important cell type in the pathogenesis of common, complex autoimmune 
disease, including rheumatoid arthritis (RA), Crohn’s disease, multiple sclerosis and systemic lupus erythema-
tosus (SLE)5. This is mostly due to their involvement in adaptive immunity but more recently genetic evidence, 
pathway analyses and the success of abatacept (CTLA4 antagonist) and infliximab (TNFα antagonist) in the 
treatment of RA and Crohn’s disease, for example, have added further  evidence3,6–8. However, it is clear that within 
CD4+ T-cells, many different, functionally distinct cell types exist such as naïve, helper and regulatory T-cells 
and these cell types can be divided further still. For example, T helper cells can be classified into Th1, Th2, Th17 
or  TFH cells based on their expression of certain transcription factors and  cytokines9.

Single cell genomic approaches, such as mass cytometry by time of flight (CyTOF) and single cell RNA-seq 
(scRNA-seq), have the potential to fully explore this heterogeneity by independently assaying individual cells. 
This can help disentangle the population substructure and identify differences, such as rare populations or 
changes in sub-type frequency, between two conditions. Indeed, using CyTOF, Rao et al. identified a subset 
of T-helper cell, characterised by high PD-1 expression, which were expanded in the synovium of seropositive 
RA patients compared to seronegative RA  patients10. This approach validates the use of single cell genomics in 
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complex disease research but requires the development of a limited panel of 30–40 markers, which only allows 
the testing of specific hypotheses.

By contrast, scRNA-seq employs an unbiased, hypothesis-free approach to measure the RNA species present 
in each cell. As such, it has been widely used to characterise heterogeneous cell types, explore cell differentia-
tion and identify cell sub-types involved in health and disease. Furthermore, the development of droplet-based 
systems, such as Drop-Seq11 or the 10x Genomics Chromium  Controller12, allows researchers to study thousands 
of cells, overcoming the limitation of cell number in lower throughput microfluidic or plate-based techniques. 
This allows the accurate profiling of more complex cell populations in a high throughput, cost-effective manner.

Two key considerations for designing scRNA-seq experiments are read depth and cell number. Although it 
has been shown that for the Fluidigm microfluidics platform 50,000 reads per cell were sufficient to classify broad 
cell types, between 500,000 and one million reads per cell were required to detect a fuller range of expressed 
genes and quantify subtle expression  changes13. Therefore, while increases in both cell number and read depth 
will provide more power to classify cell sub-types and identify rare populations, cost implications result in a 
compromise based on experimental objectives. Current recommendations for droplet-based systems are in the 
region of 20,000–50,000 reads per cell, partly because these methods rely on a 3′ mRNA-seq assay as opposed to 
the full-length assay often employed by other non-droplet based techniques. Despite this recommendation, it is 
still advisable to adjust this depth depending on cell type and experimental requirements, as the coarse characteri-
sation of diverse populations is achievable at lower depths, while the exploration of biological process associated 
with more subtle changes will require deeper sequencing  depth14. When considering cell number, there are no 
accepted recommendations as this is highly dependent on experimental requirements and sample heterogeneity. 
The more heterogeneous the sample is the more cells will be required to capture the true variability over techni-
cal noise. For example, in an analysis of a dataset on approximately 2700 peripheral blood mononuclear cells 
(PMBCs), it was possible to easily identify eight major cell populations, including CD4+ T-cells, CD8+ T-cells, 
B-cells and monocytes. However, by increasing the cell number to approximately 68,000 cells it was possible 
to further resolve the CD4+ T-cells into groups representing naïve, memory and regulatory CD4+ T-cells12. 
Although new modelling approaches for  normalisation15 are able to resolve some subtypes with fewer cells when 
compared to the standard workflow (https ://satij alab.org/seura t/v3.1/sctra nsfor m_vigne tte.html).

Despite the importance of CD4+ T-cells in several diseases, particularly RA, there has been limited research 
into optimising experimental considerations using droplet-based scRNA-seq technologies. It is therefore unclear 
on whether scRNA-seq is able to characterise the heterogeneity of highly similar, but functionally distinct, 
CD4+ T-cells and the best experimental strategy to achieve this. The aim of the current study was to determine 
the optimal future study design for CD4+ T-cells. Specifically we investigated the impact of sequencing read depth 
and cell numbers both in terms of the accuracy and sensitivity to detect CD4+ T-cell sub-types. Furthermore, 
we explored the effect of T-cell receptor (TCR) stimulation to determine the potential of scRNA-seq to identify 
T-cell signatures under resting and stimulated conditions, for example, in order to compare patients with differ-
ent disease activities within the same group in studies of treatment response.

Results
We recovered 5586 unstimulated cells and 4621 stimulated cells, corresponding to a read depth of 260,849 and 
333,333 mean reads per cell for unstimulated and stimulated samples respectively. Both samples reached a 
sequencing saturation rate of 96.5%. However, while this resulted in a similar total number of detected genes, 
albeit at different read depths, the stimulated sample showed > 30% more median genes per cell (1443 vs 1090, 
Table 1), likely due to transcriptional activation upon stimulation. Furthermore, the unstimulated sample showed 
almost double the percentage of poor quality cells or suspected multiplets (8.8% vs 4.8%), compared to the 
stimulated sample. Graph based clustering of cells resulted in six clusters for the unstimulated sample and eleven 
clusters for the stimulated sample (Fig. 1). 

Cell quality is independent of read depth. Subsampling of read depth showed that, as expected, 
sequencing saturation quickly rose to around 90% where it started to plateau (Fig. 2a). This corresponded to a 
read depth of around 70–90 thousand reads per cell. The stimulated sample showed a higher total number of 
genes and displayed between 200 and 350 more median genes per cell and 600–800 more median UMI counts 
per cell, suggesting that, as expected, the stimulated sample is more transcriptionally active (Fig. 2b–d). Interest-
ingly, both pre- and post-QC cell numbers remained fairly stable across all read depths for both unstimulated 
and stimulated samples (Fig. 2e,f), even after quality control, suggesting the ability to identify poor quality cells 
is independent of read depth or number of genes detected.

Unstimulated cell clustering is more affected by sequence read depth. While these metrics show 
that there is more to gain from increased sequencing over 300,000 reads per cell, it is less clear whether these 

Table 1.  Sequencing metrics for the high depth datasets.

Sample Cells recovered Recovery rate
Cells passing 
QC

Sequencing 
saturation

Mean reads 
per cell

Total genes 
detected

Median 
number of 
genes

Unstimulated 5586 53.7% 5092 96.5% 260,849 19,508 1090

Stimulated 4621 44.6% 4400 96.5% 333,333 19,425 1443

https://satijalab.org/seurat/v3.1/sctransform_vignette.html
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gains are biologically meaningful and/or effect the potential to identify T-cell subsets. To investigate this, clusters 
identified by graph based clustering of subsampled datasets were compared to the high depth sequencing data-
sets. Visual inspection of unstimulated and stimulated tSNE plots (Fig. 3) confirmed that the stimulated sample 
produced better cluster separation across a range of read depths. Furthermore, the stimulated sample produced 
more consistent results, identifying all clusters present in the high sequencing depth sample, even at ~ 50,000 
reads per cell.

To formally assess the accuracy of the clustering in respect to cell identity, cluster identity was confirmed at 
the single cell level. As expected from the tSNE plots, accuracy was lower for the unstimulated sample across the 
range of read depths tested (Fig. 4a), demonstrating 82.6% accuracy at a depth of approximately 65,000 reads 
per cell, compared to 91.3% at similar depth for the stimulated sample (Fig. 4b). Furthermore, the unstimulated 
sample achieved only an 89.2% maximum accuracy compared to 94% for the stimulated sample. This is also evi-
dent from the confusion matrices (Fig. 5a,c), where, with some exceptions, relatively few cells were misclassified 
for the stimulated sample and a median sensitivity of 92% and specificity of 99.4% was achieved.

By contrast, the unstimulated sample showed a much higher level of misclassification across all read depths 
compared to the stimulated sample (Fig. 5). Furthermore, there was greater variation between replicates at lower 
read depths compared to higher read depths. At 67,000 reads per cell, misclassification caused cells belonging 
to multiple clusters at high depth to be assigned to cluster 0 (Low active cytokine) and vice versa. Additionally 
cluster 4 (Activated effector) in the high depth sample was almost entirely missing, with the exception of 43 cells 
(sensitivity = 11.4%, specificity = 99.9%). Using an increased read depth of 197,000 reads per cell, a similar pat-
tern of misclassification was observed, although cluster 4 did show improved classification (sensitivity = 89.9%, 
specificity = 97%).

Cell number is more important than read depth. In contrast to the relatively small effect of read depth 
subsampling, cell number had a much more profound effect (Fig. 4c,d) on both unstimulated and stimulated 
samples. For the unstimulated sample sequenced at high depth, accuracy quickly dropped to below 80% for 2500 
cells and less than 60% for 500 cells. Similarly, accuracy also suffered due to lower cell numbers for the stimulated 
sample, reducing to less than 90% for 3500 cells, less than 70% for 1000 cells and less than 60% for 500 cells. Fur-

0 Low active cytokine−
1 Naive

2 E�ector memory

4 Activated effector

5 Cytotoxic

−30

−20

−10

0

10

20

−50 −25 0 25
tSNE 1

tS
N

E
 2

Unstimulateda

0 Low active

1 Th1/Th172 Th2

3 Naive

4 Early TCR response

7 Treg
8 Memory

9 Cytotoxic

10 Contamination

−20

0

20

−40 −20 0 20
tSNE 1

tS
N

E
 2

Stimulatedb

Percentage of cells
0 Low active cytokine−
1 Naive
2 E�ector memory

4 Activated e�ector
5 Cytotoxic
6 Contamination

Percentage of cells
0 Low active
1 Th1/Th17
2 Th2
3 Naive

4 Early TCR response
5 Cytotoxic Th17
7 Treg
8 Memory

9 Cytotoxic
10 Contamination

100%75%50%25%0%100%75%50%25%0%

6 Contamination 5 Cytotoxic Th17

Figure 1.  tSNE and cell frequency plots for (a) unstimulated and (b) stimulated samples. Clusters (top) and 
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thermore between replicate variability was also higher for cell subsampling compared to read depth subsampling 
and this variability, in general, increased at lower cell numbers.

To ensure that the decrease in accuracy was not affected by read depth, further cell number subsampling was 
performed using selected read depths (Fig. 6). This confirmed that the decrease in accuracy was not dependant 
on read depth, but was a result of decreased cell numbers.

Cell type is more pronounced in stimulated cells. Both samples each showed a small cluster, present 
at 0.5% and 1.8%, for unstimulated (cluster 6) and stimulated (cluster 10) samples respectively, which was clearly 
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separate from all others (Fig. 1). These clusters exhibited no expression of CD4 in either sample and no expres-
sion of CD3E and CD3G for unstimulated and stimulated samples respectively. Furthermore, less than 13% 
of these cells showed any expression of CD3D or CD3G and CD3E for unstimulated and stimulated samples 
respectively. Therefore, it is clear that these cells are not CD4+ T-cells and were removed from subsequent analy-
ses. Since both high and low read depths yielded similar results, in terms of sample clustering, for unstimulated 
and stimulated samples, only the lower read depth datasets are presented to ensure future relevancy.

As expected from the limited cluster separation on the tSNE plot (Fig. 1), expression signatures were less well 
defined for the unstimulated sample (Supplementary Fig. 2). However, it was still possible to identify features 
within clusters and infer cell type identity. For example, clusters representing naïve, cytotoxic, memory, low 
activity and activated T-cells were identified (Fig. 1a & Supplementary Fig. 3). In contrast, the improved cluster 
separation for the stimulated sample aided identification as clusters represented more homogenous cell popula-
tions and expression differences between clusters were more pronounced. Using a combination of differentially 
expressed markers and the expression of selected canonical markers for CD4+ T-cell subsets, for example CCR4 
(Th2) and CCR6 (Th17), it was therefore possible to assign T-cell subtypes to each cluster, including naïve, 
memory, early TCR response, regulatory T-cells (Treg), two cytotoxic T-helper subtypes (Th0 & Th17) and vari-
ous effector cell subsets (Th1, Th2 & Th17) (Fig. 1b & Supplementary Figs. 4–7).

CCA alignment allows investigation into the cluster specific effect of stimulation. To assess 
the effect of T-cell receptor (TCR) stimulation and determine the potential of scRNA-seq to identify T-cell sig-
natures under resting and stimulated conditions, it is necessary to merge samples. However, using a standard 
analysis approach would yield confusing results as cells cluster predominately by stimulatory condition rather 
than sub-type (Supplementary Fig. 8a,c). We therefore used Seurat to perform a canonical correlation analysis 
(CCA) to identify shared correlation structures and then align the data into a conserved low-dimensional space.

After alignment, all clusters contained cells originating from both stimulatory conditions and, with the 
exception of clusters 1 and 2, were comprised of a similar proportion of cells from each condition (Supple-
mentary Fig. 8b,d–f). Further investigation revealed these clusters to express markers indicating a low activity 
state and naïve phenotype respectively (Supplementary Fig. 9), although the patterns were largely driven by 
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cells originating from the low active stimulated cluster (80%) and the unstimulated naïve cluster (68%) (Sup-
plementary Fig. 8g,h).

When comparing expression differences directly between stimulated and unstimulated cells, over one thou-
sand markers are upregulated and over five hundred downregulated in response to stimulation (Supplementary 
Fig. 10 and Supplementary Tables 4, 5). These markers included both those traditionally associated with response 
to stimulation, such as IL2, CD69 and CCR7, and less obvious candidates, such as PIM3 and MYO1F. While the 
change in expression of these markers is reasonably consistent across clusters, some cluster specific effects are 
observed. For example, cluster 3, representing a persistently naïve cluster, show reduced expression of CD69, 
TNF, LTA, IRF4 and CD40LG upon stimulation compared to other clusters. Similarly, expression of naïve mark-
ers, such as CCR7, GIMAP1 and GIMAP7 are less downregulated in this cluster and others showing an early or 
less activated cellular state.

Discussion
This is the first study to investigate the effect of read depth and cell number for scRNA-seq in CD4+ T-cells 
under different stimulatory conditions. We found that, first, it was possible to accurately define cell clusters 
in unstimulated cells at read depths of approximately 60–70 thousand reads per cell; second, stimulated cells 
showed a higher classification accuracy and finally, cell number had a much more profound effect, requiring 
a minimum of approximately 2500 cells for accurate classification. These findings are important as they show 
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that significant cost savings can be made by reducing read depth, without affecting the accuracy or relevancy of 
experimental findings.

The effect of sequencing read depth and cell numbers have previously been studied for single cell RNA-seq16,17. 
However, these studies have either been based on different library preparation methods (e.g. Smart-seq) or 
focused on classifying more distinct cell populations. For example, previous work in PBMCs showed that clas-
sification accuracy remained high, even at read depths as low as 2500 reads per  cell17. Our findings show that it 
is not possible to maintain accuracy at such low read depths for CD4+ T-cells, particularly for unstimulated cells. 
While CD4+ T-cells are a heterogeneous population of multiple, functionally distinct sub-types, their overall 
similarity is higher compared to other hematopoietic cell lineages and this similarity is even greater in unstimu-
lated cells. Indeed, much higher misclassification was observed for the unstimulated sample even at read depths 
approaching the full dataset. Reducing cell number also had a greater effect compared to PBMCs illustrating 
that, while all cell types will be affected by a reduction in either read depth or cell number, the magnitude varies 
and must be ascertained in individual cell subtypes to ensure optimal study design.

Misclassification of cells occurred mainly for cells on the peripheries of clusters and therefore these cells may 
represent a transitioning state rather than a distinct cell type. This finding was also observed by Szabo et al. using 
T-cells from lungs, lymph nodes, bone marrow and blood, where the most separation was observed between 
CD4+ and CD8+ lineages and little separation between neighbouring  clusters18. Cluster assignment and clas-
sification accuracy could be improved, therefore, by removing cells which are furthest away from the cluster 
centres. However, care must be taken to avoid biasing sub-type frequencies in comparative studies or removing 
novel, potentially biologically relevant cell states.

Overall, clusters were more distinct in the stimulated sample and it was easier to assign identity to clusters 
at all sampled read depths compared to the unstimulated sample. Some cell sub-types were common between 
stimulatory conditions, prior to alignment. For example, both samples contained clusters exhibiting a naïve 
phenotype  (CCR7+CD62LhighCD40L-) and a cytotoxic phenotype, although present at different frequencies. 
For example, as perhaps expected, naïve cells represented 42% of the unstimulated sample, but only 13% of 
the stimulated sample. The presence of a cluster expressing both cytotoxic markers and Th17-like markers was 
unexpected, although it has been reported that  CRTAM+ cytotoxic T-cells can differentiate into Th1- or Th2-like 
cells and retain their cytotoxic  activity19. This cluster may therefore represent a Th17-like cytotoxic T-cell subset, 
although confirmation in more samples is required.

This suggests that to fully characterise cell sub-types in such a homogenous population, such as CD4+ T-cells, 
some stimulation may be beneficial. While this improves the separation of cell sub-types, it also has a profound 
impact on the cell, leading to expression of several key effector molecules. This has the potential to alter the cell 
phenotype and even invoke cell differentiation, skewing the frequencies of the various sub-types. This is evident 
from the shift of unstimulated naïve cells into other sub-types in the aligned sample and therefore whether to 
stimulate cells requires careful consideration, based on the experimental aim. Further work is needed to confirm 
whether sub-type frequencies remain stable after stimulation. To prevent the need for artificial stimulation, 
and its potential effects, it may be possible to align unstimulated samples to a stimulated reference dataset to 
allow the successful annotation of cell sub-types. However, this would probably limit the identification of novel, 
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Figure 6.  Heat map showing median accuracy as a function of read depth and cell number. (a) Unstimulated 
sample. (b) Stimulated sample. Tiles are shaded according to median accuracy between replicates.
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potentially pathogenic sub-types, not present in the reference dataset. Further work would be required to assess 
the utility of this approach.

An alternative, more robust approach, would be to integrate extensions to scRNA-seq, such as the simultane-
ous measurement of cell surface proteins and transcriptome (CITE-seq20 and REAP-seq21), which may help to 
separate CD4+ T-cells by functional sub-type without the need for stimulation. For example, while candidate 
marker gene expression, such as CCR4 and CCR6, were used to annotate clusters, some markers did not perform 
well at distinguishing between sub-types, particularly in the unstimulated sample. The added measurement of cell 
surface proteins could help improve the discriminatory ability when transcript expression is low. Furthermore, 
by pooling both conditions together, for example by using cell  hashing22, it would mitigate batch effects and allow 
a direct comparison between unstimulated and stimulated cells. While this is unlikely to align cells entirely, it 
would be advantageous for accurately comparing between cell states.

Despite the strong effect of stimulation, after CCA alignment, cells did indeed cluster independent of stimu-
latory status and shared cell types could be identified, allowing the direct comparison between cells with very 
different activities and expression profiles. This indicates that it should be possible to compare similar samples 
with different disease activity, efficiently controlling for any confounding caused, but confirmation will require 
testing patient samples with a spectrum of disease activities.

By producing a high depth, high cell number primary CD4+ T-cell scRNA-seq dataset, both with and with-
out TCR stimulation, we have shown that while the accuracy of cell type classification in scRNA-seq is effected 
by both sequencing read depth and cell number, cell number has a much greater effect. The study provides an 
important, initial indication of both sequencing and cell number requirements for scRNA-seq experiments using 
CD4+ T-cells. Our data shows that for CD4+ T-cells, 60–70 thousand reads per cell should be sufficient, provid-
ing cell number is maintained, and supports droplet-based scRNA-seq as the preferred platform due to the high 
cell numbers attainable. While it is unexpected that inter-individual variability would significantly change this 
recommendation, it should be noted that it is based on a single individual and as such, further validation would 
be required to support this conclusion further. Our CCA analysis shows that by aligning samples using shared 
structures we were able to identify known cell subtypes and characterise the transcriptome of these subtypes, as 
well as their response to stimulation. Again, while the effect of stimulation has been shown to be similar between 
samples in bulk RNA-seq23, increased sample numbers would be required to confirm this in scRNA-seq. Despite 
this, these findings suggest it is possible to directly compare samples with different disease activities, an essential 
step in studies investigating treatment response.

Methods
Ethical approval and consent to participate. Informed consent from participates was taken by the 
NHS Blood and Transplant (NHSBT) service and samples provided were covered under ethical approval by the 
North West Multi-Centre Research Ethics Committee (MREC 99/8/84). All experiments were performed in 
accordance with relevant guidelines and regulations.

Sample preparation. Peripheral blood mononuclear cells (PBMCs) were extracted from a leukocyte cone 
collected from a healthy human volunteer from the NHSBT service by ficoll density gradient centrifugation. 
CD4+ T-cells were then isolated from 100 million PBMCs using the EasySep Human CD4+ T Cell Isolation Kit 
(STEMCELL Technologies, catalog # 17952) using negative selection following the manufacture’s protocol. Flow 
cytometry analysis ensured a high purity (97.5%) CD4+ T-cell population was obtained (Supplementary Fig. 1a). 
Cells were seeded at 1 million cells/ml in RPMI, 10% FBS, pen/strep and incubated overnight at 37˚C. Half were 
stimulated using Dynabeads Human T-Activator CD3/CD28 beads (ThermoFisher Scientific, Cat. No. 111.31D) 
for 4 h at a ratio of 1:1 (beads:cells); the remaining half were kept at the same conditions with no stimulation. 
After stimulation, a magnet was used to collect the Dynabeads to ensure they did not interfere with downstream 
processing. Successful stimulation was confirmed by flow cytometry analysis (Supplementary Fig. 1b).

Single cell RNA‑seq. Single cell RNA-seq libraries were prepared using the Chromium Single Cell Con-
troller (10x Genomics, Pleasanton, CA) using the Chromium Single Cell 3′ Library & Gel Bead v2 kit. Briefly, cell 
suspensions were diluted in nuclease-free water according to manufacturer instructions to obtain a target cell 
recovery of 6000 cells (Supplementary Table 1). Remaining steps were carried out according to the manufactur-
ers’ instructions using 12 cycles for cDNA amplification and 14 cycles for the sample index PCR.

Final libraries were sequenced on one flow cell of an Illumina HiSeq 4000 (Illumina, San Diego) with a 
read length of 26 bp for read 1 (cell barcode and unique molecule identifier (UMI)), 8 bp i7 index read (sample 
barcode), and 98 bp for read 2 (RNA read) to yield approximately 1.25 billion reads per sample (208,000 reads 
per cell).

Data processing and quality control. Raw sequence reads were aligned against the human reference 
(GENCODE Human Release 26 (GRCh38.p10)) using the Cell Ranger 2.1.0 pipeline (10x Genomics) and pro-
cessed further using Seurat—R toolkit for single cell genomics 2.3.024. Initial filtering removed cells expressing 
less than 200 genes and genes that were expressed in less than 3 cells. Poor quality cells and potential multiplets 
were classified as outside three median absolute deviations (MADs) for percentage mitochrondrial content, 
number of genes and number of UMIs and removed.

Read depth subsampling. To analyse the effect of read depth, raw sequence reads were subsampled to 
varying target depths using two methods. The first approach simulated biological variability by exploiting dis-
crete sequencing lanes. By simply taking all combinations of 1, 2 or 3 lanes, sampling of intended read depths of 
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approximately 50 K, 100 K and 150 K mean reads per cell was performed, followed by replication (Supplemen-
tary Table 2). An additional method to subsample reads allowing lower and finer control of target read depths of 
between 20 K-100 K mean reads per cell at 10 K intervals was also undertaken. Firstly, raw reads were converted 
to unmapped BAM format and merged using Picard Tools 2.9.2 and Samtools 1.7 respectively. Samtools was 
then used to randomly subsample reads and convert back to FASTQ format. Subsampling at each depth was 
replicated three times and processed using the Cell Ranger pipeline as the full datasets.

Cell number subsampling. To investigate the impact of the number of cells in a sample, cells passing qual-
ity control at selected read depths, including the high sequencing depth datasets, were randomly subsampled to 
obtain 500, 1000, 1500, 2000, 2500, 3000, 3500 and 4000 cells (Supplementary Table 3) from the Seurat object 
using R 3.4.2. Each subsampled dataset was filtered and poor quality cells and potential multiplets were removed 
using the same approach as the full datasets.

Clustering of cells. Following quality control, gene expression counts were normalised using the log nor-
malisation method implemented in Seurat using default parameters. Highly variable genes were identified for 
downstream analysis using Seurat’s FindVariableGenes function using an average expression cut-offs of 0.0125 
and 8 and a lower dispersion cut-off of 0.5. Data was scaled and centred, regressing out number of UMIs and 
percentage mitochondrial content. Principle component analysis was performed using the highly variable genes 
to identify the top 20 principle components (PCs). Graph based clustering of cells was performed using Seu-
rat’s FindClusters method using a resolution of 1 and selected PCs. PCs were selected manually based on visual 
inspection of PC heat maps on the 500 most ‘extreme’ cells. Clustering was visualised using t-distributed sto-
chastic neighbour embedding (tSNE) plots based on the same number of PCs. Manual inspection of the clusters 
identified for each high depth dataset showed two clusters in each condition, which showed minimal differences. 
These clusters were therefore merged prior to comparing clusters.

Cell type classification accuracy. To assess the accuracy of the graph based clustering on cell type clas-
sification, each subsampled dataset was compared against the relevant high sequencing depth dataset. For the 
subsampled cell number datasets, this corresponded to all cells identified at that particular read depth. To relate 
clusters identified in the subsampled datasets to clusters identified in the high depth dataset, a random forest 
classifier was trained on the relevant high depth dataset based on the highly variable genes. This classifier was 
then used to assign a predicted identity to each cell in the subsampled dataset. The identity of each cluster was 
then selected based on the highest proportion of cells in the subsampled dataset. For example, if 90% of cells 
within a cluster in the subsampled dataset were predicted to match cluster 2 in the high depth dataset, the entire 
subsampled cluster would be assigned to cluster 2. The approach is therefore unbiased and is not reliant on speci-
fying a particular cell type, or selecting a list of representative genes for that cell type. Confusion matrices were 
then calculated and accuracy determined using the caret package in R.

Cluster cell type identification. Cluster cell types were annotated using a combination of differentially 
expressed markers, identified using the Seurat FindAllMarkers and FindMarkers functions, and the expression 
of selected canonical markers for CD4+ T-cell subsets, for example CCR4 (Th2) and CCR6 (Th17).

Comparison between stimulatory conditions. To compare samples before and after TCR stimulation, 
we used the Seurat canonical correlation analysis (CCA) and alignment strategy. To identify shared correlation 
structures across both datasets, we merged samples and ran the CCA on the union of the top 2000 most variable 
genes from each sample (3487 genes). Cells showing poor correlation between CCA and principle component 
analysis (PCA) were removed (> twofold difference) and the remaining cells aligned using the ‘AlignSubspace’ 
command on the first 25 CCA components. Cells were clustered as previously described using the first 25 aligned 
CCA components and visualised using tSNE plots as before.

Data availability
All data generated during this study is available through the Gene Expression Omnibus accession GSE147928.
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