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paracrine signaling, leading to an inability to support spermatogenesis. 
During fetal life, AMH is exclusively secreted by Sertoli cells and 
can be used as a functional marker of fetal Sertoli cells.1 Sertoli cells 
secrete other proteins that include (1) inhibins and activins, which 
are secreted by adult Sertoli cells to regulate follicle-stimulating 
hormone (FSH) production; (2) androgen-binding proteins (ABPs), 
which act as carrier proteins of testosterone and are responsible for 
the high concentration of intratesticular testosterone necessary for 
spermatogenesis;8 (3) estradiol, which is transformed from testosterone 
catalyzed by aromatases in Sertoli cells; and (4) glial cell line-derived 
neurotrophic factors (GDNFs), which contribute to the self-renewal of 
spermatogonial stem cells. All of these factors secreted by Sertoli cells 
are involved in spermatogenesis.9–11 Furthermore, Sertoli cells, rather 
than germ cells, express the androgen receptor,11 which is critical for 
the regulation of spermatogenesis induced by high concentrations of 
intratesticular testosterone.12

FSH is responsible for AMH transcriptional activation and the 
increase of Sertoli cell number in the absence of androgen signaling
The germ cell number in adult men depends on the number of 
Sertoli cells produced during perinatal development.5,13 FSH has 

INTRODUCTION TO AMH
Anti-Müllerian hormone (AMH), also known as Müllerian-inhibiting 
substance (MIS), is a Sertoli cell-secreted protein that plays a major 
role in the development of internal male genitalia.1 High expression 
of AMH in male gonads at the critical stage of embryonic genital 
development, i.e., 7 weeks of gestation,2,3 promotes regression of the 
Müllerian duct. In the absence of AMH, Müllerian ducts develop into 
female internal sex organs. Anti-Müllerian hormone is named based 
on these processes. AMH is a dimeric glycoprotein consisting of two 
identical 70-kDa subunits and constitutes the transforming growth 
factor-beta (TGF-β) superfamily together with inhibins, activins, bone 
morphogenetic proteins (BMPs), and growth differentiation factors 
(GDFs). TGF-β family members play important roles in the regulation 
of cell proliferation and apoptosis in many biological processes, 
including folliculogenesis and spermatogenesis.

ROLE OF AMH IN SERTOLI CELL PHYSIOLOGY
Sertoli cells are the earliest cell type that appear in the embryonic 
testis.4,5 More than 75% of the gonadal mass in the prepubertal testis 
is composed of Sertoli cells.6,7 Dysfunction of Sertoli cell proliferation 
or maturation may lead to secretory dysfunction via endocrine and 
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been recognized as a regulator of Sertoli cell number in developing 
testes.14,15 The hypothalamic–pituitary–gonadal (HPG) axis is inactive 
in prepuberty, as demonstrated by low levels of both testosterone 
and gonadotropins.1,16–19 Lukas-Croisier et al.20 used a prepubertal 
FSH-deficient (FSH-/-) transgenic male mouse model to demonstrate 
that FSH transcriptionally activates AMH production in the absence 
of androgen signaling. They showed that serum AMH concentration, 
Sertoli cell number, and testicular volume were decreased in FSH 
knockout mice and returned to normal after administration of 
recombinant FSH and transfection of FSH receptor plasmid. They next 
transfected different fragments of AMH promoter regions, together 
with the FSH receptor gene, into a prepubertal Sertoli cell line and 
added recombinant FSH protein to activate AMH transcription. The 
results showed that FSH transcriptionally activates AMH through 
a nonclassical cyclic adenosine monophosphate (cAMP) pathway 
by binding to the AMH promoter region located more than -1.9 kb 
away from the transcription initiation site at nuclear factor kappa-B 
(NF-κB) and transcription factor AP2-binding sites.20 Unlike the 
distal regulation of the AMH promoter region by NF-κB, regulation 
of the proximal promoter of AMH has been extensively studied. 
Sex-determining region Y box 9 (Sox9),21,22 steroidogenic factor-1 
(SF1),23–25 and GATA factors25–27 are implicated in the transcriptional 
activation of AMH within -220 bp of the transcriptional start site 
independent of gonadotropic control.28,29 A schematic diagram of 
FSH-regulated AMH transcriptional activation is shown in Figure 1. 
Another study using Tfm mice with a mutation in the androgen receptor 
gene that made the XY mouse insensitive to androgens30,31 showed that 
FSH administration resulted in the elevation of serum AMH levels in 
the absence of androgen signaling.32 FSH-induced AMH transcription 
and an increase in Sertoli cell number were also observed in neonates 
and adult humans suffering from hypogonadotropic hypogonadism 
(HH).6,16,33 The androgen signaling pathway of these individuals is not 
functional, and their decreased AMH levels return to normal after the 
administration of recombinant FSH.

Testosterone downregulates AMH expression
The most obvious example of negative regulation of AMH by 
testosterone is that when boys enter puberty, a sudden increase in 
their testosterone levels results in decreased levels of AMH, indicating 
that testosterone has an inhibitory effect on AMH;34 the increase in 
intratesticular testosterone levels is responsible for the inhibition of 

AMH levels.32,35–37 Another example is the increase in testosterone 
levels in precocious children, which is always accompanied by a 
decrease in AMH levels regardless of gonadotropin dependence or 
independence.18 This negative regulatory pattern can also explain 
hormone levels in patients with androgen insensitivity syndrome (AIS) 
caused by mutations in the androgen receptor gene. The diagnosis of 
AIS is made by detecting normal-to-high testosterone and AMH levels 
and the absence of Müllerian derivatives in 46,XY males;28,38–40 the high 
levels of testosterone do not induce a decrease in AMH levels due to 
androgen signaling dysfunction.

Animal experiments also revealed a pattern of negative regulation 
between testosterone and AMH. The knockout of androgen receptors 
in Sertoli cells in mice induces a significant decrease in testosterone 
levels and thus gives rise to transiently elevated expression of AMH 
at both the mRNA and protein levels in Sertoli cells.41 How does 
testosterone inhibit the expression of AMH? Another study performed 
the following mechanistic investigation to show that binding at the 
NF-κB-binding site in the distal promoter region of AMH provides 
transcriptional activity levels higher than those produced by binding 
at the SP1-, GATA-, and Sox9-binding sites in the proximal promoter 
regions.20 Although there are no androgen receptor-binding sites in the 
AMH promoter region,42 there are NF-κB  binding sites, and NF-κB  
is negatively regulated by androgen receptors;43,44 therefore, although 
testosterone cannot directly regulate AMH transcription, it can fulfill 
its function by inhibiting the transcription of NF-κB and thus suppress 
the transcriptional activation of AMH.

However, AMH levels are not always negatively regulated by 
testosterone because of defects in androgen signaling. For instance, a 
synchronous increase in AMH and testosterone levels was discovered 
in neonates.36,45 It was discovered that the androgen receptor is present 
in fetal and neonatal Leydig and peritubular cells but not in Sertoli 
cells.46,47 The absence of androgen receptor expression in fetal and 
neonatal Sertoli cells may contribute to the lack of transcriptional 
suppression of AMH. Thus, FSH-induced AMH transcriptional 
activation and luteinizing hormone (LH)-induced testosterone 
activation account for the main biological events in fetal and neonate 
boys.

ASSOCIATIONS BETWEEN SERUM AMH AND DISORDERS 
RELATED TO MALE FERTILITY
Diagnosis and differential diagnosis of disorders of sex development 
(DSD)
Male genital differentiation is driven by two hormones: testosterone, 
which is produced by fetal Leydig cells, maintains Wolffian ducts, and 
contributes to the virilization of external genitalia, and AMH, which 
is produced by fetal Sertoli cells and is responsible for the regression 
of fetal Müllerian ducts.48 DSD in males may result from defects 
in the signaling of one or both of these hormones. Dysfunction of 
secretion or an inactive state of AMH, caused by mutations in AMH 
or its receptor AMHRII, leads to persistent Müllerian duct syndrome 
(PMDS). Patients with PMDS are born male according to the general 
human standard at birth, but the Müllerian duct derivatives persist, 
manifested as undescended testes (cryptorchidism) and the presence 
of a small, underdeveloped uterus in an XY infant or adult. Notably, 
fertility in PMDS patients is rare but possible if at least one testis 
descends to the scrotum with its excretory ducts intact.49 No external 
genital ambiguity, especially without hypospadias, is the main feature 
of PMDS that distinguishes it from mixed gonadal dysgenesis, which is 
an early-onset complete type of DSD with fetal hypogonadism resulting 
from the dysfunction of both Leydig and Sertoli cells.28

Figure 1: Schematic diagram of FSH-regulated AMH transcriptional 
activation. FSH: follicle-stimulating hormone; FSHR: FSH receptor; 
AC: adenylate cyclase; NF-kB: nuclear factor kappa-B; IkB: NF-kB 
inhibitor; SP1: transcription factor Sp1; GATA: GATA-binding proteins; 
SOX9: sex-determining region Y box 9; AMH: anti-Müllerian hormone; 
cAMP: cyclic adenosine monophosphate.
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Recently, mutations in the AMH and its receptor gene were found 
to account for 88% of PMDS cases in which undescended testes (UDTs) 
are the clinical manifestation.49 The remaining 12% of PMDS cases are 
idiopathic, and no mutations in AMH or AMHRII have been detected. 
However, we cannot rule out the possibility of AMH or AMHRII 
mutations, as some studies have shown that the diversity of AMH or 
AMHRII mutations might be underrecognized and that the sensitivity 
and specificity of sequencing can be limited,49 leading to unidentified 
mutations in the distal promoter or introns of AMH or AMHRII. 
Furthermore, we cannot rule out the possibility of mutations in other 
molecules in the AMH signaling pathway.

PMDS should be distinguished from other types of UDT. Leydig 
cell function in patients with PMDS is generally normal,49 as indicated 
by normal levels of serum testosterone and LH.17,49 The levels of inhibin 
B, secreted by Sertoli cells,50–52 are normal in boys with AMH mutations 
but undetectable in boys with AMHRII mutations.17 Serum AMH levels 
depend on the molecular origin of AMH or AMHRII mutations. Very 
low or undetectable circulating AMH levels in prepubertal boys or 
adults with PMDS are characteristics of mutations in AMH, resulting 
in a lack of AMH protein secretion. Meanwhile, normal serum AMH 
levels are detected in boys with AMHRII mutations. Congenital adrenal 
hyperplasia (CAH) in females (46,XX) with a male phallus and bilateral 
nonpalpable gonads should first be differentially diagnosed from UDT 
via its severe complications, such as hyponatremia, hyperkalemia, 
and shock. When increasing severity of hypospadias with UDT is 
discovered, the possibility of a mixed DSD should be considered.53 In 
patients with mixed types of DSD accompanied by low serum levels 
of both AMH and testosterone and external genital malformations, 
low AMH reflects severe testicular dysgenesis and should not be 
confused with PMDS. If an infant with bilateral nonpalpable testes has 
a 46,XY karyotype, an evaluation to distinguish anorchia from bilateral 
abdominal testes is needed to avoid surgical exploration. To assess the 
presence of testicular tissue, serum AMH should first be considered;53 
other hormone tests include those that detect FSH, LH, inhibin B, and 
testosterone levels.53 A flowchart indicating the differential diagnosis 
of DSD is shown in Figure 2.

Studies of unilateral UDT revealed that UDTs in children are 
smaller than their descended counterparts (P < 0.001).54,55 Given that 
Sertoli cells account for 75% of testis mass in prepubertal males,6,7 
there may be varying degrees of decline in the number of Sertoli cells 
in UDT, which may result from increased temperature around the 
UDT. The degree of AMH decrease in boys bearing cryptorchidism is 
related to the severity of UDT injury,56–58 suggesting that deteriorated 
Sertoli cell function may be an early example of damage from UDT. 
Moreover, infertility is the major long-term concern of patients with 
a history of UDT.53 Infertility risks of 30% and 54% were discovered 
in unilateral and bilateral UDT, respectively,59–63 in accordance with 
the duration for which UDT is exposed to abdominal temperature. A 
75%–100% risk of infertility was found in boys with bilateral UDT in 
whom no germ cells were found on biopsy.64 In conclusion, the degree 
of male infertility caused by UDT is related to the severity of injury to 
Sertoli cells; thus, a higher degree of serum decline in AMH in boys 
may suggest a greater risk of infertility when they become adults.

Distinguishing pubertal delay from congenital hypogonadotropic 
hypogonadism
Constitutional pubertal delay and congenital HH share the same 
clinical manifestation of delayed sexual maturation in prepubertal boys. 
Levels of gonadotropin and testosterone are very low in prepubertal 
boys and therefore have little clinical significance; thus, AMH, the 

marker of Sertoli cells, is of great importance in the differential 
diagnosis of constitutional pubertal delay and congenital HH.18,46

Congenital HH is often accompanied by Sertoli cell dysfunction.65 
Severe deficiency in gonadotropin levels in congenital HH patients 
results in a decreased number of Sertoli cells and correspondingly low 
levels of AMH and inhibin B.65–67 The constitutional delay of puberty 
reflects a eugonadal state of Sertoli cells, and serum AMH is within 
the normal level for prepubertal boys.68 In patients with untreated 
congenital HH, the AMH level is increased upon administration of 
recombinant FSH due to FSH-induced proliferation of Sertoli cells, 
whereas further treatment with human chorionic gonadotropin 
(hCG) gives rise to a decline in AMH levels due to the hCG-induced 
increased levels of testosterone, which induces inhibition of AMH 
that overrides FSH-initiated AMH transcription. However, the 
administration of exogenous testosterone did not result in a decrease 
in AMH concentrations, which may be caused by low intratesticular 
testosterone levels in congenital HH patients.

Nonobstructive azoospermia and Klinefelter syndrome (47,XXY)
Nonobstructive azoospermia (NOA) is the most severe type of 
male infertility, characterized by a lack of sperm in semen induced 
by impaired spermatogenesis.69 Increased serum FSH, decreased 
serum AMH and inhibin B, have been discovered in men with 
NOA.70–72 With the advent of intracytoplasmic sperm injection (ICSI) 
technology, these NOA patients also have the opportunity to have 
their own children through testicular sperm extraction (TESE) or 
microdissection-testicular sperm extraction (MD-TESE), with sperm 
recovery rates (SRRs) of only 40%–60%.69,73 Currently, there are no 
acknowledged markers of SRR with good sensitivity and specificity. 
FSH, inhibin B, AMH, and testosterone, although differentially 
expressed in NOA, are not good predictors of SRR. Higher baseline 
testosterone,74 lower FSH,75 higher AMH,76 or higher inhibin B77 
levels do not guarantee a better SRR in NOA patients. The underlying 
mechanism may be the following: the function of the Sertoli cells 

Figure 2: AMH contributes to the differential diagnosis of DSD. 
UDT: undescended testis; CAH: congenital adrenal hyperplasia; DSD: disorders 
of sex development; PMDS: persistent Müllerian duct syndrome; 
AMH: anti-Müllerian hormone; T: testosterone; AMHR: AMH receptor.
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and interstitial cells is impaired, as indicated by abnormal hormone 
levels, but not completely lost in a large number of NOA patients; 
spermatogenesis is only present in small areas, if any.78 In our clinical 
practice, we have identified a certain number of NOA patients whose 
serum AMH levels are below the lower limit of the male reference 
interval or even undetectable and whose serum testosterone levels 
are normal or subnormal yet obtain good pregnancy outcomes using 
their own sperm retrieved via TESE or MD-TESE. These serum 
markers may be useful when combined with testicular volume, age 
and other markers to predict SRR before TESE or MD-TESE using a 
multivariable regression method.77,79

Klinefelter syndrome is characterized by accelerated germ cell 
depletion80 and occurs in approximately 10%–12% of NOA men.81 
In patients with Klinefelter syndrome, circulating AMH levels are 
within the reference range until puberty; thereafter, AMH declines 
to subnormal concentrations in adults.82,83 In a 12.3-year follow-up 
study of 29 patients with Klinefelter syndrome, an early increase in 
FSH was detected, accompanied by abnormally low or undetectable 
levels of AMH and inhibin B in advanced pubertal stages, which may 
be explained by progressive impairment of endocrine function during 
childhood and puberty.83 However, a delay in the puberty-related 
decline of AMH was observed in patients with Klinefelter syndrome, 
finally leading to decreased AMH levels in adulthood,82 which may 
be caused by temporary functional compensation of Sertoli cells. 
Furthermore, in our clinical practice, we identified a few severe 
NOA patients, including severe Klinefelter syndrome patients, whose 
serum AMH and testosterone levels were both undetectable and 
with no sperm retrieved via MD-TESE, indicating that their germ 
cells were completely depleted. Undetectable AMH and testosterone 
were also used to distinguish anorchia from UDT,84–86 as shown in 
Figure 2, implying that in male adults, undetectable serum AMH and 
testosterone can be used to assess whether any functional testicular 
tissue or, specifically, functional germ cells exist.

Varicocele
Varicocele is an abnormal enlargement and bending of the 
pampiniform venous plexus in the scrotum. The adverse effects of 
varicocele on spermatogenesis are progressive and therefore decrease 
male fertility with time. Expansion of the veins impairs the testicular 
blood supply, resulting in a reduction in the oxygenated blood and 
nutrient supply to the local testis, which leads to a decline in the 
quality and quantity of sperm; on the other hand, it also induces 
dysfunction of the testicular nervous plexus, the main function 
of which is to regulate testicular temperature. Higher testicular 
temperatures can lead to testicular atrophy and infertility. Indeed, 
varicocele is the main cause of male infertility,87 and it was found in 
approximately 35% of primary infertile men and 81% of secondary 
infertile men.88

The severe damage caused by varicocele is correlated with impaired 
function of Sertoli cells. According to the study from Li et al.,89 the 
levels of transferrins and androgen-binding proteins secreted by Sertoli 
cells were reported to be downregulated in patients suffering from 
varicocele, suggesting that decreased testicular blood flow may lead to 
impaired function of Sertoli cells. Furthermore, testicular biopsies in 
patients with varicocele showed that the germ cells in the seminiferous 
tubule were sloughed, and this phenomenon was often associated with 
impaired Sertoli cell function.90

An analysis of serum AMH levels in varicocele-bearing patients 
was inconclusive. A study in adult subfertility men including 
varicocele, idiopathic NOA, idiopathic nonobstructive dyspermia, 

cryptorchidism, and other diagnoses indicated that circulating 
AMH levels in subfertile men were 60% lower than those in 
corresponding controls, accompanied by a decreased level of inhibin 
B, indicating the decreased function of Sertoli cells in varicocele-
bearing adult patients.91 In prepubertal and pubertal boys with 
varicocele, AMH concentrations were elevated, accompanied by 
an increase in inhibin B levels, suggesting a compensatory increase 
in Sertoli cell function in the early-onset varicocele.92 There was 
also an article reporting a lower concentration of AMH in the local 
spermatic vein than in the peripheral blood, suggesting that poor 
blood supply in patients with varicocele causes the deterioration 
of Sertoli cell function.93

McCune-Albright syndrome in boys
As we mentioned previously, normal puberty is accompanied 
by decreased serum levels of AMH. However, in boys with 
McCune-Albright syndrome, precocious puberty is observed, 
but abnormal increased instead of decreased levels of AMH are 
detected,94–96 accompanied by macro-orchidism and androgen-
dependent secondary sexual defects. Hyperfunction of Sertoli cells 
without Leydig cell activation was reported to be responsible for the 
onset of this disease.97

Male senescence
Testes, hormone production, and spermatogenesis undergo senescence 
as a man ages.98 Johnson et al.99 identified an age-related decrease 
in Sertoli cell number; consistent with this, AMH, as a marker of 
immature Sertoli cells, was also found to be reduced with increasing 
age36,100,101 and negatively correlated with FSH and LH, which indicates 
that decreased AMH levels as a man ages represent age-related reduced 
Sertoli cell function.

CONCLUSION
In the absence of androgen signaling, FSH promotes AMH transcription 
by activating the -1.9 kb AMH promoter region, where NF-κB has the 
highest level of transcriptional activation activity, and the proximal 
within -220 bp20 AMH promoter region, where Sox9,21,22 SF1,23–25 and 
GATA factors25–27 reside. Testosterone inhibits the transcriptional 
activation of AMH, hypothetically through transcriptional inhibition of 
NF-κB. Regarding the associations between serum AMH and disorders 
related to male fertility, undetectable serum AMH and testosterone 
indicate a lack of functional testicular tissue, for example, that in 
patients with anorchia or severe Klinefelter syndrome suffering from 
impaired spermatogenesis. Normal serum testosterone levels and 

Table  1: Anti‑Müllerian hormone levels in disorders related to male 
fertility

Categories AMH level

Pubertal delay Normal prepubertal level in puberty

Severe congenital 
HH

Decreased in puberty

Klinefelter 
syndrome 
(47,XXY)

Within the reference range until puberty; a delay in 
puberty‑related decline; thereafter, declined to subnormal 
concentrations in adults

NOA Decreased AMH level

Varicocele Elevated in early‑onset varicocele in prepubertal and pubertal 
boys, and decreased in adults with severe varicocele

McCune‑Albright 
syndrome

Increased AMH level in boys

Male senescence Age‑related decrease

HH: hypogonadotropic hypogonadism; NOA: nonobstructive azoospermia; AMH: anti‑Müllerian 
hormone
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undetectable AMH are highly suggestive of PMDS. The levels of both 
AMH and testosterone are always subnormal in patients with mixed 
DSD (as shown in Figure 2). The usefulness of AMH levels in these 
conditions (pubertal delay, severe congenital HH, NOA, Klinefelter, 
varicocele, McCune-Albright syndrome, and male senescence) is also 
summarized, as indicated in Table 1.
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