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Abstract

Analysis of microbiome data involves identifying co-occurring groups of taxa associated

with sample features of interest (e.g., disease state). Elucidating such relations is often diffi-

cult as microbiome data are compositional, sparse, and have high dimensionality. Also, the

configuration of co-occurring taxa may represent overlapping subcommunities that contrib-

ute to sample characteristics such as host status. Preserving the configuration of co-occur-

ring microbes rather than detecting specific indicator species is more likely to facilitate

biologically meaningful interpretations. Additionally, analyses that use taxonomic relative

abundances to predict the abundances of different gene functions aggregate predicted func-

tional profiles across taxa. This precludes straightforward identification of predicted func-

tional components associated with subsets of co-occurring taxa. We provide an approach to

explore co-occurring taxa using “topics” generated via a topic model and link these topics to

specific sample features (e.g., disease state). Rather than inferring predicted functional con-

tent based on overall taxonomic relative abundances, we instead focus on inference of func-

tional content within topics, which we parse by estimating interactions between topics and

pathways through a multilevel, fully Bayesian regression model. We apply our methods to

three publicly available 16S amplicon sequencing datasets: an inflammatory bowel disease

dataset, an oral cancer dataset, and a time-series dataset. Using our topic model approach

to uncover latent structure in 16S rRNA amplicon surveys, investigators can (1) capture

groups of co-occurring taxa termed topics; (2) uncover within-topic functional potential;

(3) link taxa co-occurrence, gene function, and environmental/host features; and (4) explore

the way in which sets of co-occurring taxa behave and evolve over time. These methods

have been implemented in a freely available R package: https://cran.r-project.org/package=

themetagenomics, https://github.com/EESI/themetagenomics.
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Introduction

High-throughput sequencing now permits for the analysis of multiple large datasets on the

microbiome and diseases of interest. Historically, researchers have sought to reduce the

dimensionality of the data and/or perform feature selection to identify species (or other taxa)

of interest that are correlated with sample/community-level attributes (which we will refer to

as “phenotypic” attributes or “phenotypes”) like host health status. Unfortunately, these phe-

notype-associated species may co-occur with the same or different proportions across samples

within the same phenotype. Capturing these configurations is of interest to us, as we contend

it is more informative than merely finding specific taxa [1,2].

Nevertheless, obtaining meaningful configurations or subsets of taxa is often a daunting

task. These high-dimensional microbiome datasets include categorical and numeric features

associated with each sample. These, in turn, may be linked to a set of taxonomic abundances

that are derived from clustering similar sequencing reads. Typically, taxonomic markers, such

as variable regions of the 16S rRNA gene common to all prokaryotes, are used to perform the

clustering based on a fixed degree of sequence similarity among reads. Such clusters are

termed Operational Taxonomic Units (OTUs), and each OTU is usually assigned to some

level of taxonomy, such as a genus. Identifying OTUs correlating with specific sample features

(e.g., body site, disease presence, diet, age) can be done via unsupervised exploratory methods

[3]. Unfortunately, complexities inherent to taxonomic abundance data hinders many of these

methods. These complexities include vastly more OTUs relative to the number of available

samples [4], substantial sparsity in the OTU counts (absence of organisms in most samples),

and differences in sampling depth among samples. The sampling depth issue then requires

normalization, introducing additional challenges. In particular, the normalization transforms

the abundances into relative abundances within each sample (compositional data) [5,6].

Common approaches (e.g., differential abundance analysis [3,7,8] and regularized regression

[9,10]) associate indicator taxa with sample information, leading to overly simplified biological

interpretations.

From an ecological perspective, co-occurring OTUs may represent related subcommunities

of taxa, which consist of OTUs that are common to (or overlap with) each sample. This overlap

is due to taxa that covary with host or environmental factors; thus, identifying important sub-

communities (groups of taxa) and configurations of taxa (the grouping and ratios/relative

abundances of co-occurring taxa) may allow for a more biologically meaningful interpretation

than identifying indicator OTUs, because identifying subcommunities preserves the groupings

and abundances of taxa [2,11–13]. Developing techniques for identifying subcommunities is a

fundamental goal of this work.

Methods that predict functional profiles from 16S rRNA survey data usually report the

overall function of a sample and do not provide granularity on how each subcommunity pro-

vides specific functions (Fig 1). Standard methods that predict function from 16S rRNA survey

data include PICRUSt, Tax4fun, Piphillin, and SINAPS [14–17]. These simulate gene abun-

dances from the OTU relative abundance profile by assigning pre-existing gene ontologies,

based on whole genome sequences, to the OTUs. The simulation is trivial for known microbes,

but for novel OTUs, gene content is interpolated through its neighbors’ genes. These are deter-

mined via an unsupervised phylogenetic tree reconstruction. However, after the gene abun-

dance profiles are simulated for an entire sample, a user cannot view which functional content

associates with which taxa, nor how subcommunities contribute to function.

We consequently have developed themetagenomics, a novel pipeline for analyzing 16S

rRNA amplicon surveys that (1) identifies subcommunities associated with specific sample fea-

tures and (2) uncovers functional profiles that further characterize these subcommunities. We
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use a topic model approach to uncover subcommunity structure by estimating taxonomic co-

occurrence. Topic models are dimensionality reduction techniques that have had considerable

use in natural language processing to represent, as topics, co-occurrence relationships between

words from a corpus of documents. They have more recently shown promise as a method for

exploring taxonomic abundance data [2,18], where topics act as low-dimensional representa-

tions of co-occurring sets of taxa given a set of samples, i.e., far fewer topics than OTUs

(Table 1). Unlike other dimensional reduction techniques common to microbiome data analy-

sis (e.g., principal coordinate analysis), topic models provide a new set of features (topics) that

should be familiar to microbiome researchers in that they have a form similar to relative abun-

dances: each sample is represented as a vector of frequencies across topics and each topic is

represented as a vector of frequencies across taxa. Lower dimensional features that are also

familiar may ease their interpretation.

Our pipeline aims to concisely summarize high-dimensional data in the form of OTU

abundances as low-dimensional sets of co-occurring taxa (topics) with their corresponding

Fig 1. (Thematic Approach) Given a 16S rRNA gene abundance table, a topic model is used to uncover the thematic structure of the

data in the form of two latent distributions: The samples-over-topics frequencies and the topics-over-OTUs frequencies. The samples-

over-topics frequencies are regressed against sample features of interest to identify the strength of a topic-covariate relationship to rank

topics (top). The topics-over-OTUs frequencies are used in a gene function prediction (FP) algorithm to predict gene content.

Important functional categories are identified via a fully Bayesian multilevel negative binomial (NBR) regression model (middle). The

topics-over-OTUs distribution is hierarchically clustered to infer relationships between clusters of co-occurring OTUs and topics

(bottom). The result is the ability to identify key topics that associate clusters of bacteria and their associated functional content to

sample information of interest. (Alternative Approach). A common alternative approach currently used in the literature involves

independently (1) characterizing the taxonomic configuration and (2) predicting the functional configuration of the OTU abundance

table. Gene function prediction is performed on the full OTU abundance table, followed by a differential abundance analysis to infer

differences in specific genes between sample features of interest (top). The OTU table is normalized to overcome library size

inconsistencies and then analyzed via two methods: (1) an elastic net (EN) to find sparse sets of OTUs that are predictive for the sample

feature of interest (middle) and (2) a multivariate (MV) analysis to identify relationships between beta diversity and the sample feature of

interest (bottom). The result are three analyses that summarize the entire OTU relative abundance table, unlike the thematic approach,

which characterizes co-occurring sets of OTUs (configurations) in three ways.

https://doi.org/10.1371/journal.pone.0219235.g001
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predicted functional potential. When additional high-dimensional data is available (e.g., pre-

dicted gene function abundances), interpretability becomes increasingly difficult. Although

topic models have been applied to microbiome data because of their interpretable features, no

work has been done to leverage their interpretability to link low-dimensional representations

of OTU and predicted gene function abundances. In addition, little research addresses ways to

fully leverage the latent features topic models extract from microbiome data. For example, cor-

related topic models [19] not only capture taxonomic co-occurrence but also topic co-occur-

rence, such that the frequency of two topics, with different sets of co-occurring taxa, occurring

in any given sample, may be positively correlated. This is the basis of our novel approach to

exploit the correlation structure of topics across samples to resolve long-term temporal behav-

ior of subcommunities (represented as topics) in microbiome time-series datasets.

Our approach at linking taxonomic composition to predicted functional content (obtained

via methods that leverage preexisting gene ontologies) within topics is unique. We apply a

recently developed structural topic model (STM) [20] to a novel domain (16S rRNA amplicon

surveys), where each topic represents a cluster of co-occurring OTUs and each OTU can occur

in multiple topics with varying frequency. Functional content is then predicted within-topic,

allowing the topics to act as low-dimensional taxonomic and functional summaries of the

input data. The topics are then linked to sample-information that reflects host or environment

status. Topics-of-interest (e.g., those that contain differentially-enriched functional profiles)

can easily be identified in our pipeline via a fully Bayesian multilevel regression model. We

also apply our approach to empirical time-series data where we characterized events in terms

of sets of correlated topics to explore how the taxonomic configurations evolved over time.

Our pipeline has been implemented in the R package themetagenomics: https://cran.r-

project.org/package=themetagenomics, https://github.com/EESI/themetagenomics.

Results and discussion

Here we explore the use of themetagenomics on publicly available datasets studying Crohn’s

disease microbiota (Gevers et al. [21]), oral cancer microbiota (Schmidt et al. [22]), and the

variation of microbiota as a function of time (David et al. [23]). With the larger Gevers et al.

Crohn’s dataset, we validate the ability of themetagenomics to capture microbial profile “signa-

tures” (configurations of taxa which are groups with specific ratios/relative abundances of co-

occurring taxa). We show that (1) topics generalize well to test data not initially seen by the

model (generalizable topics are topics robust to overfitting, such that they avoid fitting noise

and thus can capture important signals representative of true taxonomic co-occurrence

Table 1. Relationship of terms.

Topic Model Pipeline Description

Document Sample Collection of reads from subjectm at time t
Topic Topic Collection of co-occurring taxa, subcommunity

Word OTU, Gene, Taxa Features from taxonomic abundance table or predicted

functional content

Document-Level

Covariate

Sample information,

Sample class

Sample-level variable of interest–e.g., disease presence, diet,

rainfall, time

θ Samples-Over-Topics

Distribution

Vector of topic frequencies in a given sample; probability of a

topic occurring in a given sample

β Topics-Over-OTUs

Distribution

Vector of OTU frequencies in a given topic; probability of an

OTU occurring in a given topic

https://doi.org/10.1371/journal.pone.0219235.t001
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profiles), and (2) topics capture distinct microbial signatures found in the original OTU rela-

tive abundance data.

After validating the configuration of taxa within-topic (by assessing classification perfor-

mance to evaluate topic generalizability and OTU co-occurrence to evaluate topic quality) and

the configuration of predicted gene functions within-topic (via a permutation test using meta-

genomic data), we assess the biological relevance of our low-dimensional summaries (topics).

We then apply our complete pipeline to Gevers et al. [21] to link a topic’s functional content,

taxonomic co-occurrence, and sample information (clinical diagnosis of Crohn’s disease

(CD)), and we compare these results to those obtained by the original authors. We compare

our results to those obtained by DESeq2 and an alternative topic-model based microbiome

analysis tool, BioMiCo [2]. We validate the functional prediction of our pipeline with the oral

cancer Schmidt et al. [22] dataset by showing the low-dimensional topic profiles identified by

themetagenomics are also present in complementary metagenomic shotgun (MGS) sequence

data. We lastly implement our approach on time-series gut microbiome data from David et al.

[23]. We interpret the results in terms of topics and posterior uncertainty and compare our

findings to those obtained by a HC approach, as well as the results reported by David et al.

[23].

Topic modeling Feasibility and generalizability

We assess (1) if topics correlate to sample phenotypes (e.g., disease state) and (2) whether

those topics generalize well–that is, can the learned topics predict phenotypes from new data.

Using a random forest classifier, we compared the classification performance between two

different sets of predictors: (1) frequencies of topics-across-samples, θ, from the STM, and

(2) OTU relative abundances across samples generated from QIIME [24]. For this analysis, we

focused on the Crohn’s disease study from Gevers et al. [21] given its large sample size (555 ter-

minal ileum samples).

To assess generalizability, we used a training/testing approach. We randomly selected 80%

of samples as our training set; the remaining 20% were set aside for testing (Table A in S1

File). Class labels were binary, with positive (CD+) and negative (CD-) clinical diagnoses act-

ing as the positive and negative classes, respectively. For classifying CD diagnosis, we hypothe-

sized that using topics as predictors would outperform using relative abundances of OTUs,

since the relative abundance-based predictors are sparser, whereas topic modeling performs

dimensionality reduction, resulting in a relatively smaller set of topics that are less sparse rela-

tive to OTUs. There was little difference between the topic model with at least 25 topics and

the OTU table to train the classifier (Fig A and Table B in S1 File). During testing, however,

using topics as features outperformed relative abundances, particularly in the F1 score, with

relative abundances achieving 80.8% and at least 25 topics achieving greater than 82.1%

(Table C in S1 File). Using OTU relative abundances as predictive features resulted in a larger

proportion of false negatives, which was likely due to its reliance on few, relatively rare taxa.

Topics, on the other hand, are less reliant on rare taxa because dimensionality reduction gener-

ates less sparse features (S1 Appendix).

Correlation between topics and phenotype

To identify topics of interest that were strongly associated with phenotype, we again imple-

mented themetagenomics on the Crohn’s disease dataset, using the same binary indicator for

CD diagnosis as above. We then performed posterior inference. The primary output of the

topic model, as with any Bayesian analysis, is a posterior distribution of quantities that estimate

latent variables-of-interest (e.g., the frequencies of topics, θ, in a particular sample) given the

Thematic structure of 16S rRNA amplicon data
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observed data (e.g., OTU abundances). Posterior inference involves sampling these latent vari-

ables-of-interest from the posterior distribution of the fitted topic model to calculate expected

means and assess uncertainty in those expectations.

With the posterior distribution, we identified topics-of-interest based on their “topic-sam-

ple-effects”–the regression coefficients that represent differences in topic frequencies between

CD+ and CD- samples. We performed permutation tests to ensure that detected topic-sample-

effects were not spurious (S1 Appendix). For the model with 25 topics (K25), we performed 25

permutations, where we randomly permuted class label assignments (CD+, CD-), refit the

topic model, and calculated the mean regression coefficient for each topic. Of the 25 topics, 8

topics had 95% uncertainty intervals for the effect size (differences between CD+ and CD-)

that did not span 0 (Figure B in S1 File). We consider these “high-ranking-topics.” Topics T15,

T12, T2, and T14 had estimates greater than 0 (implying robust associations with CD+),

whereas topics T11, T25, T13, and T19 had estimates less than 0 (implying robust associations

with CD-). Increasing the number of fitted topics gave similar results; for K75, 14 topics did

not span 0 (Figure C in S1 File).

We next tested how well a topic model (fit with the binary CD encoding) could capture the

severity of disease using the Pediatric Crohn’s Disease Activity Index (PCDAI) associated with

CD+ that increases as CD severity increases (CD- samples were set to PCDAI = 0). The fre-

quency of a sample containing a particular topic given its PCDAI is shown in Fig 2A for

models K25 and K75. Topics are color-coded based on their association with CD, which is esti-

mated using their topic-sample-effects (yellow and violet represent topics most and least asso-

ciated with CD, respectively). Each overlapping line represents one of 25 replicate simulations.

Fig 2. (A). The relationship between topic frequency within a sample and that sample’s Crohn’s Disease (CD) severity (PCDAI score) for the 25-topic

STM. Each line represents the frequency of a topic as a function of sample PCDAI score. High frequency topics are labeled. Violet and yellow color-

coded trajectories designate CD- and CD+ associated topics, respectively. Posterior sampling was performed across 25 replicates, with each line plotted

to represent the distribution of the topic frequency trajectories. (B). Trajectories for the 75-topic model. (C). The relative abundance of OTUs in the

(input) OTU relative abundance table for “noteworthy” OTUs from high-ranking-topics. The left and right panels show the relative abundance of these

OTUs in each CD- and CD+ sample, respectively. Noteworthy OTUs are defined as high-frequency OTUs, sampled from the posterior distribution,

that concentrate into high-ranking-topics (yellow = CD+ topic group, violet = CD- topic group, green = unassociated topic group). The horizontal line

marks a subset of samples that contain a large proportion of the OTU profile associated with CD+ high-ranking-topics.

https://doi.org/10.1371/journal.pone.0219235.g002
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Both panels demonstrate that as PCDAI increases, the thematic profile shifts from one domi-

nated by a single CD- associated topic (T8) to a set of CD+ topics (T12, T15, T45). The transi-

tion occurs at approximately PCDAI = 35. Because the K25 model had greater separation of

high probability topics, it will be the focus for the remainder of analyses involving Gevers et al.

[21] data.

From the posterior topics-over-OTUs distribution (β) for the K25 model, we identified

OTUs highly associated with CD, that is, OTUs with high frequency in high-ranking-topics

(CD+ associated topics T19, T13, T25, T11; CD- associated topics T14, T2, T12, T15) in more

than 99% of posterior samples (arbitrary threshold). We categorized these OTUs as CD+ asso-

ciated OTUs, CD- associated OTUs, and unassociated OTUs. Fig 2C shows the relative abun-

dances of the 3 groups for each sample in the QIIME-generated OTU abundance table. Of

CD+ samples (right of vertical black bar), approximately 25% were characterized by a greater

proportion of CD+ associated OTUs relative to CD- (marked by the horizontal black bar). The

ratio of CD- associated OTUs to unassociated OTUs had a similar distribution among CD+

and CD- samples, suggesting that the OTU profile from CD+ high-ranking-topics is specific

for the CD+ disease status. Lastly, when we regressed PCDAI against the relative abundances

of the CD+ associated OTU profile, we found a significant positive relationship (β = 0.057,

p = 0.01, 100 permutations), albeit explanatory for only a small portion of the variation (R2 =

8.64%), suggesting that presence of this OTU profile may be weakly indicative of severe cases

of CD (S1 Appendix).

Comparison to BioMiCo. We compared our approach’s performance to BioMiCo, a

topic model that identifies meaningful sets of “assemblages” (analogous to topics–i.e., sets of

cooccurring taxa) by directly incorporating sample- or environmental level features (labels)

during the training procedure. It is fully supervised and assumes that a sample is comprised of

a mixture of communities that share sample- or environmental level features. These communi-

ties are described by a set of high probability assemblages which are in turn described by a set

of high probability taxa.

We fit BioMiCo using 25 and 50 assemblages and compared its ability to distinguish CD

from control using held-out testing data (same train/test splits as described previously) and

then compared these results to the prediction performance of the STM. Testing performance

was similar between the two approaches (Table C and Table F in S1 File). The balanced accu-

racy was highest for the 25-topic STM model, but the STM’s performance varied as a function

of topic number. F1 score, however, was much worse for BioMiCo due to its low precision.

For the 25-assemblage model, there were roughly four assemblages with high posterior

probability for CD samples and low posterior probability for controls. If we focused on the

taxa with the top-10 highest posterior probability of belonging to these assemblages, no more

than 2 taxa were present in the top-10 highest probability taxa in the STM’s CD-topics that

were most associated with CD, suggesting little correspondence between the composition of

assemblages and topics. Alternatively, when focusing on assemblages with high posterior prob-

ability for control but not CD, one assemblage had 4 genera in common with the STM’s topic

13: Parabacteroides, Bacteroides, Ruminoccous, and Roseburia.

It is worth noting, however, that the STM and BioMiCo aim to characterize data differently

and hence the distribution of taxa within a given topic are expected to be different. Still, both

approaches show they similarly generalize to new data. An advantage of themetagenomics is

that it leverages output inherent to the design of the STM that is not available via BioMiCo,

notably topic-topic correlation. Also, the STM is appreciably faster, taking minutes to run on

the Gevers data whereas BioMiCo took days. Unlike BioMiCo–as well as the STM which is

aimed for more general use–themetagenomics delivers a framework that facilitates ease-of-use

microbiome analysis using a topic model via an R package with a variety of intuitive functions

Thematic structure of 16S rRNA amplicon data
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for preprocessing, analyses, and visualizations. It also provides novel downstream approaches

such as time series analysis which leverages the STM’s estimation of topic-topic correlation, as

well as methods to associate a topic’s taxonomic composition to its predicted gene functions.

Linking function to taxonomy with topics

We wanted to discern whether the topics would continue to identify meaningful relationships

upon introducing another layer of information: predicted function (via abundances of meta-

bolic pathways). Consequently, we applied our full themetagenomics pipeline to the Crohn’s

disease dataset and compared our findings to those of the original authors. To further charac-

terize topics, we applied PICRUSt to the topics-over-OTUs distribution, β, to predict the func-

tional gene content within topics. The genes were then annotated in terms of their KEGG

functional hierarchy designation [25], thereby providing each gene with a metabolic pathway

label. We then performed a fully Bayesian multilevel regression analysis on the predicted abun-

dances of each gene to identify strong topic-pathway interactions.

Like Gevers et al. [21], we identified an increase in membrane transport associated with

CD+ subjects’ gut microbiome; however, using themetagenomics, we were able to pinpoint

the specific topics associated with the enrichment of these functional categories, T2 and T12

(Fig 3A). We then could link enrichment of membrane transport genes to the taxa that were

also enriched in this topic. For example, topics T2 and T12 were dominated by Enterobacteria-

ceae. These Enterobacteriaceae-enriched topics were also enriched for siderophore and secre-

tion system related genes. Like T2 and T12, T15 was highly associated with CD+; however, it

was less enriched for membrane transport genes. This suggests that the cluster of bacteria

found in T15 (Haemophilus spp., Neisseria, and Fusobacteria) may have contributed less to the

shift of transport genes reported by Gevers et al. [21] and instead have distinct pathway associ-

ations with CD.

The strongest topic-pathway interaction was found in T19 for genes encoding bacterial

motility proteins. For T19, three motility-related pathways (bacterial motility proteins, bacte-

rial chemotaxis, flagellar assembly) had topic-pathway interactions that did not span 0 at 80%

uncertainty, suggesting that T19 was more enriched in cell motility genes relative to all other

topics. The pathways inferred from T19 are consistent with this taxonomic profile, which con-

sisted of motile bacteria belonging to Lachnospiraceae, Roseburia, and Clostridiales. Enrich-

ment of two lipopolysaccharide (LPS) synthesis categories were associated with CD+ topics;

however, one of these categories was specific for only T15 (Table D in S1 File).

Comparison to DeSeq2. We compared the topics’ functional profiles to the results

obtained by performing a DESeq2 differential abundance analysis on functional predictions

obtained by applying PICRUSt to the QIIME-generated OTU abundance table. Of the 160

(level-3) KEGG pathway categories, more than half (87) were found significant (α< 0.1) in the

DESeq2 approach, despite using Bonferoni correction (a conservative approach to correct for

multiple comparisons), complicating interpretation (Fig 3B). Despite minor differences in spe-

cific pathway enrichment between themetagenomics and the DESeq2 approach (S1 Appendix)

the major difference was the greater number of low-uncertainty/significant pathway categories

found by DESeq2. While one could reduce the significance level when applying DESeq2 to

achieve a smaller subset of significant pathway categories, the choice is arbitrary. Moreover, the

predicted functional abundances (via PICRUSt, Tax4fun, etc.) are scaled based on the abun-

dance of taxa from which they were derived. Thus, high taxonomic abundances will often yield

high functional abundances. Many of the significant pathway categories identified by DESeq2

may be driven by a small subset of highly abundant taxa. Themetagenomics, on the other hand,

first groups co-occurring taxa into topics. Because functional prediction is performed within a
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topic, taxa that are highly abundant in the input OTU abundance table can only affect the

topics in which they are present at high frequency. Thus, this prevents high abundance taxa

associated with a subset of samples (e.g., CD+), and their corresponding predicted pathway

abundances, from disproportionately influencing the statistical significance of these pathways.

Fig 3. (A). Level-3 pathway category-topic interaction regression coefficients from the multiple level negative binomial model. Red asterisks indicate

estimated pathway-topic interaction weights that do not span 0 at 80% uncertainty (pathways lacking robust interactions are omitted). Green = large

positive coefficients thus enrichment for that pathway in that topic, Violet = large negative coefficients thus depletion for that pathway in that topic.

Topics are ordered from CD- associated (left, T19) to CD+ associated (right, T15). High-ranking-topics are delineated by the vertical dotted lines (CD-:

T19-T11; CD+: T14-T15). (B). Volcano plot showing DESeq2 results for differentially abundant predicted level-3 KEGG categories. Functions were

predicted using PICRUSt on the copy number normalized OTU abundance table. Blue points represent categories significantly enriched for CD- and

red points are categories enriched for CD+, respectively. Gray points are categories with p-values greater than 0.1 after Bonferroni correction.

https://doi.org/10.1371/journal.pone.0219235.g003
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Validating the functional predictions of themetagenomics via Paired MGS

samples

Using sample-matched (N = 12) oral cancer microbiome samples from Schmidt et al. [22] that

underwent both 16S rRNA amplicon sequencing and metagenomic shotgun sequencing, we

verified enrichment or depletion of predicted functional content (collapsed into metabolic

pathway categories) of the themetagenomics pipeline. The pipeline processed the 16S rRNA

samples and compared the results to metagenome-based gene functional abundance data. Fig

4A shows the relative enrichment/depletion of various topic-pathway combinations identified

by themetagenomics. For example, bacterial motility genes were enriched in topic 25 (positive

coefficient, shaded green), whereas bacterial motility genes were depleted in topics 3 and 9

(negative coefficients, shaded violet).

To compare the results from themetagenomics to gene function abundances inferred from

metagenomic shotgun sequencing for each topic, we first identified high frequency taxa (those

with frequencies greater than 1% in that topic) then identified all reads belonging to these taxa

in the metagenomic shotgun data. To identify pathway-topic enrichment/depletion, we then

applied a multilevel regression model. The results indicate that the taxa belonging to a topic

are associated with an enrichment/depletion of genes present in the shotgun data (Fig 4B).

Notably, LPS biosynthesis proteins and porphyrin metabolism pathways were depleted in mul-

tiple topics in both sets of results. The relative enrichment/depletion of phosphotransferase

system genes was also similar.

Fig 4. (A). KEGG (level-3) pathway category-topic interaction regression coefficients from the multilevel negative binomial model as a measure of

association between pathway and topic. Only pathways present in both the themetagenomics analysis of 16S rRNA data and HUMAnN2 analysis of the

metagenomics shotgun sequencing data are shown. Green = associated samples with positive cancer diagnosis, Purple = associated with healthy

samples. (B). Pathway category-topic interaction regression coefficients for metagenomic data. Topics were generated based on KOs that belonged to

high frequency taxa in the themetagenomics pipeline. (C). Example topic-pathway heatmaps, similar to Fig 4A and 4B from four of the 100 permuted

metagenomic datasets using in the permutation test. (D). Distribution of root-mean-squared-error (RMSE) scores (between the topic-pathway

interaction regression coefficients between themetagenomics and the metagenomic data) from the 100 permuted metagenomic datasets. The RMSE

score (0.56) for the unpermuted metagenomic dataset is delineated by the red dotted line.

https://doi.org/10.1371/journal.pone.0219235.g004
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We performed a permutation test to determine whether the similarities in gene enrich-

ments/depletions between themetagenomics and the metagenomic data were spurious. We

randomly permuted the topic and gene pathway labels in the metagenomic data, refit the mul-

tilevel regression model, and then calculated the root mean square error (RMSE) for each

topic-pathway interaction regression weight between the themetagenomics and permuted

metagenomic models. After 100 replicate simulations, the RMSE for the unpermuted metage-

nomic model was smaller than every permuted metagenomic model (p < 0.05) (Fig 4C and

4D). Therefore, the apparent similarities in the gene enrichment/depletion profiles between

themetagenomics and the shotgun data were not due to random chance, indicating that using

predicted gene enrichment/depletion from 16S rRNA amplicon surveys resulted in similar

within-topic predicted functional profiles to those obtained by directly measuring functional

content via metagenomic shotgun sequencing.

Detection of events in subject B from David et al. [23]

The David et al. [23] dataset contains fecal and salivary 16S rRNA gene surveys from two sub-

jects. We focused on fecal samples from subject B. We compared our results to the three pro-

files described by David et al. [23], which consisted of a pre-food-poisoning profile (days

1–150), food-poisoning profile (151–159), and post-food-poisoning profile (150–318).

The topic model approach identified 3 distinct gut configurations. In the topic correla-

tion network (Fig 5A), we identified a small subnetwork of three topics (marked by violet

bracket) and two large subnetworks that contained 24 and 14 topics each (red and green brack-

ets, respectively). The large subnetworks were connected by a chain of four topics (T9, T24, T2,

T37) (blue bracket). We defined the four sets of correlated topics as topic clusters and sampled

topic frequencies (across samples) and taxa frequencies (across topics) from the topic model’s

posterior distribution to assess how often topics and taxa occurred within these clusters.

Fig 5B shows the posterior frequency in which the topic clusters occurred given the day in

which the sample was collected (the estimated posterior probability of a cluster occurring on a

given day). There were two clear periods of rapid change in cluster frequency, specifically

when transitioning from cluster 1 to 2 (days 152–154) and clusters 2 to 3 (day 161). Our inter-

vals are similar to the original study’s transition points at days 144–145 and 162–163, where

the shift from a topic cluster 1 to topic cluster 2 corresponded with subject B’s food poisoning

diagnosis. The transition between topic clusters 1 and 2 is abrupt and likely occurred around

day 153. Taxonomically, this transition is marked by a shift from Bacteroideaceae (posterior

frequency = 0.338), Lachnospiraceara (0.276), and Rumunococcaceae (0.266) to Enterbacteria-

ceae (0.246) and Clostridiaceae (0.195) families (Fig 5D). In particular, day 153 was distinctive

for topic 20. This rare topic was not correlated with any other topics and hence did not belong

to any topic cluster. While its taxonomic profile was quite similar to topic cluster 1, it was dis-

tinctly enriched for Enterobacteriaceaea spp., which is consistent with the subject’s Salmonella
diagnosis. Topic 20 likely marks the event of initial exposure to the pathogen.

The distribution of topic assignments for topic cluster 2 followed the order in which its top-

ics were positioned in the topic correlation network (the linear chain of topics) (Fig 5E). The

start of topic cluster 2, day 155, was dominated by topic 9, characterized by taxa substantially

different from topic cluster 1. Bacteria enriched in this topic includedHaemophilus parain-
fluenzae, Clostridium perfringens, and, notably, Enterobacteriaceaea spp. Thus, topic 9 likely

represented the disrupted configuration of microbiota due to exposure to Salmonella. Enter-

bacteriaceae spp. and C. perfringens, via topic 24, continued to dominate on day 156. Day 157

was best described by topic 2, a topic rich in Enterobacteriaceae spp. as well as Veillonella spp.

It should be noted, however, that our results were more conservative than David et al. [23] in
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that we confidently estimated that topic cluster 2 lasted roughly 4 days (155 to 158), which is

much shorter than the original study’s estimate (145 to 162). Our estimated length of illness

(153 to 158) was more consistent to David et al. [23] (151 to 159), however. At approximately

day 159, the taxonomic profile shifted toward cluster 3, which was similar to cluster 1 in terms

Fig 5. Application of the topic model approach to David et al. [23] data. (A). The topic-to-topic correlation graph

showing two topic clusters (clusters 1 and 3) connected by a linear chain of topics (cluster 2) that follow the time

progression of the taxonomic change due to the food poisoning infection. (B). Distribution of topic assignments as a

function of day and cluster (panels), indicating 3 distinct profiles. The interval in which food poisoning symptoms

presented (per David et al. [23]) are marked with dotted vertical lines. Gray shading indicated 80% uncertainty

intervals. (C). Frequency of cluster assignments as a function of day, indicated day 153 marking the shift from

profiles 1 to 2 and day 159 marking the shift from profiles 2 to 3. (D). Frequency of taxa assignments given a cluster

assignment. Cluster 2 is shown in terms of its topics (9, 24, 2, 37). Topic 20 is also shown (misc. cluster), which lacked

any edges in the correlation graph, but marks the initial appearance of Enterobacteriaceae on day 153 (representing the

start of the infection). (E). The probability of the topic assignments given each day for cluster 2. The progression of

topics also follows the progression of taxonomic change shown in the correlation graph.

https://doi.org/10.1371/journal.pone.0219235.g005
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of Bacteroidaceae (0.369), but enriched in Lachnospiraceae (0.360) and depleted in Rumunoi-

coccaceae (0.165) (Fig 5D).

HC was unable to separate the transition between during- and post-illness periods.

We compared our approach to one using HC. HC cluster 4 contained 360 taxa and corre-

sponded well to the pre-illness period, spanning days 1 to 150. The set of taxa was similar to

the taxa identified in topic cluster 1 (Figure D in S1 File). The post-illness period was captured

by HC clusters 1 and 3, but these clusters failed to completely separate the during- and post-ill-

ness periods; they spanned days 151 to 318.

Limitations

There are limitations to our approach. First, the topic-pathway inference step currently scales

poorly in terms of computation time for large numbers of topics, which may be more impor-

tant as datasets grow. Regularization and sparsity-inducing priors help limit the number of

important topics; hence, exploring only a subset of topics during the final regression step can

offer substantial speed improvements at little cost, but utilizing the complete set of topic infor-

mation would be ideal. Second, we are capable of separately estimating the uncertainty in our

topic model, the multilevel regression model, and the functional predictions from PICRUSt,

but we currently do not propagate the uncertainty throughout the pipeline. Doing so would

improve downstream interpretation with better estimation of the uncertainty in topic-sample

covariates and topic-pathway interactions, which in turn would greatly improve one’s confi-

dence in focusing on within-topic gene sets. Third, we do not incorporate phylogenetic branch

length information, which could lead to more meaningful topics. Fourth, we can only provide

our best estimations regarding how the model behaves with different sample and feature sizes.

Our simulations (S1 Appendix) suggested that by effectively decreasing the number of sam-

ples, either through rarefying or using sparser data, power decreases. As expected, we were

able to detect more sample effects using 500 samples compared to 100 samples. However, as

we increased the sparsity of our feature space, our ability to capture known subcommunities

was compromised, which would certainly have detrimental effects on detecting sample-level

effects. The degree in which sparsity, feature space size, and sample size affect power and the

ability of topics to capture meaningful co-occurrences will vary depending on the dataset,

which in turns will vary in terms of diversity, range of counts, and sample-level information.

Conclusion

We present our approach at a time when easily-to-interpret analyses for complex microbiome

data are direly needed. Current methods often link the relative abundance of a single OTU to a

sample information of interest (e.g., disease state). These methods routinely identify important

subsets of taxa but ignore OTU co-occurrence and ratios. Network methods can overcome

this concern, but typically don’t incorporate phenotypic information within the model; conse-

quently, they are incapable of directly linking sections of the OTU correlation network with

sample metadata of interest. Constrained ordination methods, such as canonical correspon-

dence analysis, do in fact couple inter-community distance with sample information, but the

user is limited to specific distance metrics (e.g., Chi-squared) and must follow key assumptions

(e.g., the distributions of taxa along environmental gradients are unimodal) [26]. Moreover,

interpretation of biplots becomes increasingly difficult as more covariates are included. While

linking key taxa to functional content can be accomplished via sparse canonical correlation

analysis [27], this approach is susceptible to many of the interpretability problems found in

other ordination approaches, and exploring inferred relationships in the context of taxonomic

co-occurrence is not straightforward.
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The ability to make meaningful inferences using current methods is further limited by the

fact that microbiome data is often inadequately sampled (thus justifying some type of normali-

zation procedure), compositional (due to normalization), sparse, and overdispersed. Thus,

recent work has explored the use of Dirichlet-Multinomial models, which are well equipped at

managing overdispersed count data [28–30]. The fact that Dirichlet-Multinomial conjugacy is

exploited in many topics models hints at their applicability for relative abundance data. We

selected the recently developed STM for our workflow because of its ability to not only utilize

sample data as prior information as in the Dirichlet-Multinomial regression topic model [31],

but also capture topic correlation structure and apply partial pooling over samples or regulari-

zation across regression weights.

Thus, we have proposed an approach for uncovering latent thematic structure in 16S rRNA

amplicon data that provides a low-dimensional, biologically interpretable representation of

taxonomic and predicted functional content. Rather than inferring functional content inde-

pendently of taxonomic relative abundances, our approach shifts the focus to investigating

within-topic functional content. Unlike other methods, by exploring our topics, we can link

categories of functional content to specific clusters of taxa which can in turn be linked to sam-

ple features of interest. For example, like Gevers et al. [21], we detected a relationship between

membrane transport genes and CD+, but our approach also allowed us to determine which

bacteria (OTUs belonging to Enterobacteriaceae) were the prime contributors to the enrich-

ment of membrane transport genes. Moreover, the pathogenic set of bacteria reported by

Gevers et al. [21] (Haemophilus spp., Neisseria, and Fusobacteria) contributed less to the pre-

dicted abundance of membrane transport genes. By independently applying statistical

approaches to the OTU and predicted functional content, as is typical, the apparent relation-

ship between membrane transport genes and specific configurations of bacteria would be lost.

We have also shown that our approach drastically reduces the dimensionality of two high-

dimensional sources of information, taxonomic relative abundances and predicted functional

content, increasing the ease in which these data can be interpreted. For Gevers et al. [21], we

determined that T15 is (1) associated with CD+ samples; (2) dominated by a cluster of bacteria

previously associated with CD; and (3) uniquely enriched for a subset of LPS synthesis genes.

With a gene profile from a topic of interest, one could focus on gene subsets associated with

topic-specific bacterial clusters that are known disease biomarkers, which in turn may facilitate

targeted approaches for future research endeavors.

Lastly, our complete pipeline is computationally manageable. Fitting the topic model to a

dataset with nearly 5000 samples reached convergence in minutes. Functional prediction via

PICRUSt also only takes minutes (using our C++ implementation in themetagenomics). Infer-

ring topic-pathway interactions via our multilevel, negative binomial regression approach is

comparatively slower, however, taking hours for large datasets. However, this is still manage-

able. Thus, we offer a viable package that can help researchers discover configurations of taxa

and functions that correlate to sample metadata. This is because we implement this model in

the probabilistic programming language Stan, which uses Hamiltonian Monte Carlo. Maxi-

mum likelihood (a much faster alternative) does not provide estimates of uncertainty and gen-

erally fails to converge for these data, although the regression weight estimates tend to be quite

similar based on our experience.

Methods

Review of the Structural topic model

The STM [20] is a Bayesian generative topic model. It begins with a given a set of M samples,

each consisting of N OTUs. These N OTUs are, in turn, elements of a fixed vocabulary of V
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unique OTU IDs. From this, K (a fixed number chosen a priori) latent topics are assumed to

be generated from the data. These topics consist of overlapping sets of co-occurring OTUs.

Note that we will describe the STM in the context of the analyses perform herein; for a com-

plete description of the STM, see [20]. The observations include the presence of OTU wn

occurring in sample m and anM × Pmatrix of sample-level information such as disease state

or age.

For our purposes, the posterior distribution of unobserved (latent) parameters given the

observed data is given by:

Posterior Distribution : pðy; b;S;G; zw;XÞ:

The generative process is formulated by first specifying the probability

PðTopic k occurs in Sample mÞ ¼ ym;k;
XK

k¼1
ym;k ¼ 1

and, for each of the samples, is assumed to follow logistic normal distributions,

y � LNK� 1ðG
TXT

m;SÞ

where Γ is a P × (K − 1) matrix of regression coefficients that estimate the degree of influence a

covariate Xp has on θ; and S is a K × K covariance matrix. In addition to θ, the probability

PðOTU n occurs in Topic kÞ ¼ bk;n;
XN

n¼1
bk;n ¼ 1

For each topic, βk is assumed to be Dirichlet distributed. Finally, both topic assignments zm,

n for each OTU wm,n, along with each OTU, obey multinomial distributions,

zm;n � MultinomialðymÞ

wm;n � Multinomialðb; zm;nÞ

For the relationships between topic model nomenclature and our terminology, see Table 1.

The posterior distribution is estimated by a semi-collapsed variational expectation maximiza-

tion procedure. Convergence is reached when the relative change in the variational objective

(i.e., the estimated lower bound) in successive iterations falls below a predetermined tolerance.

Empirical datasets

The Gevers et al. [21] dataset (PRJNA237362, 03/30/2016) is a multicohort, IBD dataset that

includes 16S rRNA amplicon data from control, CD, and ulcerative colitis samples taken from

multiple locations throughout the gastrointestinal tract. The Schmidt et al. [22] dataset

(PRJEB4953, 08/14/2017) consists of human oral microbiota obtained from control subjects

and subjects diagnosed with oral cancer. These samples underwent 16S rRNA amplicon

sequencing, and a subset (N = 12) also underwent metagenomic shotgun sequencing.

16S rRNA amplicon data preparation and OTU picking

Paired-end reads were joined and quality filtered via QIIME v 1.9.1 and dada2 for Gevers et al.

[21] and Schmidt et al. [22] data, respectively. Closed-reference OTU picking was performed

with QIIME using SortMeRNA against GreenGenes v13.5 at 97% sequence identity. This was

followed by copy number normalization via PICRUSt version 1.0.0 [32]. Samples with fewer

than 1000 total reads were omitted. OTUs that lacked a known classification at the phylum

level were removed. For Gevers et al. [21], we selected only terminal ileum samples and filtered
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OTUs with fewer than 10 total reads across samples, yielding 555 samples over 1500 OTUs.

For Schmidt et al. [22], we filtered any OTU with non-zero abundances in fewer than two sam-

ples, yielding 81 samples over 1029 OTUs.

Metagenomic shotgun sequence data preparation and functional genomic

profiling

Low quality reads and human genomic sequences were filtered via KneadData. Functional

profiles were then generated using HUMAnN2 with the ChocoPhlAn nucleotide database and

UniRef90 protein database. The UniRef90 protein families were collapsed into KEGG ortholo-

gies (KOs), yielding abundances (copies per million (CPM)) for 12 samples over 36,806 KOs.

Structural topic model fitting

The OTU abundance tables consisted of counts normalized by 16S rRNA gene copy number

(to be consistent with the PICRUSt approach for functional prediction, which we use down-

stream after model fitting). No other normalization (e.g., rarefying, DESeq2 method, or divid-

ing by total reads) was performed based on the simulation results in (S1 Appendix). STMs

with different parameterizations in terms of topic number (K 2 15, 25, 50, 75, 100, 150, 250)

and sample features (e.g., no features, indicators for presence of disease, diet type, etc.) were fit

to the OTU tables generated from Gevers et al. [21] data via the R package stm [33]. We evalu-

ated each model fit for presence of overdispersed residuals and conducted permutation tests

(permTest in the stm package) where the sample feature of interest is randomly assigned to a

sample prior to fitting the STM. To compare parameterizations between models, we evaluated

predictive performance using held-out likelihood estimation [34].

Assessing topic generalizability

We performed classification to assess the generalizability of the extracted topics. No sample

information was used as covariates in the logistic normal component of the STM. Samples

were split into 80/20 training-testing datasets. For different number of topics (K 2 15, 25, 50,

75, 100, 150), an STM was trained to estimate the topics-over-OTUs distribution (β). We then

held this distribution fixed; hence, only the testing set’s samples-over-topics distribution (θ)

was estimated. For both the training and testing sets, simulated posterior samples from the

samples-over-topics distribution (θ) were averaged. The resulting posterior topic frequencies

in the training set were then used as features to classify sample labels, similar to using �Z in

supervised LDA [35]. Generalization (testing) error was assessed using the optimal parametri-

zation based on cross-validation performance on the test set topic frequencies. Classification

was performed using a random forest classifier, which underwent parameter tuning to deter-

mine the number of variables for each split. This was accomplished through repeated (10x)

10-fold cross-validation, using up-sampling to overcome class imbalance. We performed a

parameter sweep over the number of randomly selected OTU features, while setting the num-

ber of trees fixed at 128. The optimal parameterizations were selected based on maximizing

ROC area under the curve.

The performance of the STMs was compared to the performance using OTUs as features

from the original OTU abundance table. Separately, training and testing set OTU abundances

were converted to relative abundances with the following equation: OTUn,m/Sn OTUn,m. In

words, OTU n for samplem is scaled by the library size of samplem (the total abundance of

samplem). The resulting OTU relative abundance tables were separately z-score normalized.

Training cross-validation and testing using a random forest was then performed as above.
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Identifying within-topic clusters of high frequency OTUs

Using the topics-over-OTUs distribution, we performed hierarchical clustering via Ward’s

method on Bray-Curtis distances. We refer to high frequency groups of OTUs as “clusters.”

Inferring within-topic functional potential

We obtained the topics-over-OTUs distribution (β) for each fitted model and mapped the

within-topic OTU probabilities to integers (“pseudo-counts”) using a constant: 10000 × β. A

large constant was chosen to prevent low frequency OTUs from being set to zero, although

their contribution to downstream analysis was likely negligible. Gene prediction was per-

formed on each topic-OTU pseudo-count table using PICRUSt version 1.0.0 [14]. (Normaliza-

tion of 16S copy number was performed prior to topic model fitting using PICRUSt.)

Predicted gene content was classified in terms of KOs [36].

Identifying topics of interest

Topics of interest were identified using the samples-over-topics distribution, where each col-

umn represents the frequency of topic k for each sample. Each column was regressed against

CD diagnosis. We calculated 95% uncertainty intervals using an approximation that accounts

for uncertainty in estimation of both the sample covariate coefficients and the topic frequen-

cies. We refer to these coefficients as “topic-sample-effects.” Coefficients whose 95% uncer-

tainty intervals do not span 0 are referred to as “high-ranking-topics.”

Validating within-topic co-occurrence

To determine how well the high-ranking-topics captured co-occurrence in the original OTU

relative abundance table, we sampled the top-10 highest frequency taxa in each high-ranking

topic’s topics-over-OTUs distribution (β). We then normalized the original OTU table using

the centered-log-ratio transformation and then evaluated how the high frequency taxa vary as

a function of CD diagnosis and PCDAI.

Posterior inference

To determine how well the high-ranking-topics captured the taxonomic profile associated

with CD, we performed the following posterior simulation over R = 1000 iterations. First,

for iteration r, for all samplesm 2M (e.g., subject 134), we obtained 100 posterior samples

(i 2 {1, . . ., 100}) of y
ðiÞ
m from the posterior distribution, p(θ, β, S, Γ, z|w, X). For each of

these y
ðiÞ
m , we sampled topic assignments zðiÞm;n � MultinomialðyðiÞm Þ, and then OTUs

ŵðiÞm;njz
ðiÞ
m;n � MultinomialðzðiÞm;n; bÞ.

We then recorded whether the topic assignments zðiÞm;n belonged to one of the high-ranking-

topics and whether they have a positive or negative association with sample covariates of inter-

est, resulting in positive-, negative-, and no-association topic groups. We calculated the fre-

quency f ðgÞn in which OTUs ŵðiÞm;n were sampled from a given topic group g:

f ðgÞn ¼
X

i

X

ŵðiÞm;n jz
ðiÞ
m;n

1½zm;n 2 g�

where 1[�] is the indicator function. For each OTU, we calculated which group had the largest
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sampling frequency:

f ðgÞ�n ¼ 1 f ðgÞn ¼ argmin
g

fn

" #

After 1000 iterations, we calculated

FðgÞ�n ¼
1

R

X

r

f ðgÞ�ðrÞn

For each topic group, we extracted a subset of OTUs that had frequencies above 0.99. In the

original relative abundance table, for each sample, we calculated the relative abundance of

each group of OTUs.

Identifying functional content that distinguishes topics

To determine which predicted functional gene content best distinguished topics, we used the

following multilevel negative binomial regression model:

yk;c ¼ exp½mþ bk þ bc þ bk;c�

yk;c � NBðyk;c; lÞ

where μ is the intercept, βk is the per topic weight, βc is the per level-3 gene category weight, βk,

c is the interaction weight for a given topic-function (gene category) combination, yk,c is the

count for a given topic-function combination, and λ is the dispersion parameter. The intercept

μ was given a Normal(0, 10) prior; all weights were given Normal(0, 2.5) priors; and the disper-

sion parameter λ was given a Cauchy(0, 5) prior. Model inference was performed using Hamil-

tonian Monte Carlo in the R package rstanarm [37]. Convergence was evaluated across four

parallel chains using diagnostic plots to assess mixing and by evaluating the Gelman-Rubin

convergence diagnostic [38]. To reduce model size, we used genes belonging to only 15 (arbi-

trary number) level-2 KEGG pathway categories (Table E in S1 File). For large topic models,

we fit only the top 25 topics, ranked in terms of topic-sample-effects that measure the degree

of association between samples-over-topics probabilities and our sample feature of interest.

Assessing relationships between sample information of interest and

taxonomic relative abundance

To quantify the relationship between taxonomic relative abundance and continuous sample

features (such as PCDAI), we performed negative binomial regression (log-link), using sample

library size (sum of OTU abundances across samples) as an offset. The family-wise error rate

was adjusted via Bonferroni correction. Significance levels for hypothesis testing was set at

0.05.

Comparing within-topic functional profiles to an OTU-relative-

abundance-based approach

We compared the results from the hierarchical negative binomial model to a differential abun-

dance approach. We performed predicted functional content using PICRUSt on copy number

normalized OTU abundances. The resulting functional abundances were collapsed into level-3

KEGG pathways. Note that, for consistency, we again restricted the KOs to the 15 level-2

KEGG pathways used previously. The resulting level-3 pathway abundances underwent
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DESeq2 differential abundance analysis, which uses negative binomial regression and variance

stabilizing transformations to infer the difference log-fold change of OTU relative abundance

[7,8]. The resulting p-values were corrected via the Bonferroni method. Adjusted p-values

below 0.1 were considered significant.

Fitting BioMico

The same training and testing sets were used as described above. Assemblages of 25 and 50

were trained with default parameters unless specified: burnin = 5000, delay = 500 (25 assem-

blages) or delay = 100 (50 assemblages), rarefaction_depth = 1000. Parameters were adjusted

to decrease training time to less than 3 days. Posterior distributions were evaluated to ensure

MCMC convergence.

Validating extracted functional profiles using metagenomic shotgun

sequencing data

The themetagenomics pipeline was applied to the Schmidt et al. [22] OTU table: (1) data were

normalized for 16S rRNA gene copy number; (2) normalized OTU abundances were fit using

a 25 topic STM with cancer diagnosis as a binary covariate; (3) within-topic functional content

was predicted using PICRUSt; and then (4) topic-pathway effects were detected using the mul-

tilevel regression model.

For each topic, we identified the high probability OTUs (those with frequencies greater

than 1% in that topic), obtained their genus classification, and then subset the metagenomic

KO table such that only KOs corresponding to these genera are present. Then, for each level-3

KEGG pathway, we summed the abundances of all remaining KO members. Topic-pathway

effects were then detected with the following multilevel regression model:

yk;c ¼ exp½mþ b1X þ bk þ bc þ bk;c þ log Z�

yk;c � NBðyk;c; lÞ

where X is a binary column vector indicating positive cancer diagnosis, β1 is the coefficient for

cancer diagnosis, and log Z is an offset accounting for sample library size (sample sum). The

remaining parameters are analogous to the model described above.

A permutation test was performed to compare the similarity in topic-pathway effects

between themetagenomics and the metagenomic model to random sampling. In the metage-

nomic KO table, topic and pathway labels were randomly permuted. The permuted table was

then refit with the regression model described. The root mean squared error was calculated

between the topic-pathway regression coefficient βk,c for themetagenomics and the metage-

nomic model:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

k;c ðb
ðthemeÞ
k;c � b

ðmetaÞ
k;c Þ

2

n

s

This process was repeated over 100 permuted replicates to calculate a null distribution of

RMSE scores, which was then compared to the true RMSE between the unpermuted metage-

nomic KO table and themetagenomics. A p-value (α = 0.05) was calculated as the proportion of

RMSE scores from the 100 permuted metagenomic KO tables that were less than the RMSE

score for the unpermuted metagenomic KO table.
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Exploring thematic structure in David et al. [23]

Data preparation and OTU picking. The David et al. [23] dataset contains fecal and sali-

vary 16S rRNA surveys from two subjects. The samples were obtained at uneven sampled

times from 318 days. Data from were downloaded from the European Bioinformatics Institute

(EBI) European Nucleotide Archive (ENA) (accession number ERP006059). It consisted of 1.7

million 16S rRNA gene (V4 region) sequencing reads, 100 bp in length. The reads were quality

filtered using the fastqFilter command in the dada2 package [39]. Closed reference OTU pick-

ing was then performed with QIIME version 1.9.1. using SortMeRNA again GreenGenes v13.5

at 97% sequence identity [24].

Data preprocessing and STM fitting. From the OTU table, we removed any samples

with fewer than 1000 total reads, were not of fecal origin, were not from donor B, and did not

include sample data for day, donor, and body site. OTUs lacking a known phylum classifica-

tion or present in fewer than 1% of the remaining samples were removed. The remaining

OTUs were normalized in terms of 16S rRNA gene copy number per the table provided by

PICRUSt [14]. The final OTU table consisted of 1562 OTUs across 189 samples.

We fit 7 STMs that varied in terms of topic number K 2 {15, 25, 50, 75, 105, 155, 250}. To

infer the relationship between sample data and the samples-over-topics distribution θ, we used

two sample covariates: two continuous, integer valued sequences representing the day number

in the sequence and the DOW. Given our assumption that fluctuations in microbiota likely

varied nonlinearly with respect to day, we used a smoothing spline with 10 degrees of freedom

on day and a second-degree polynomial on DOW.

Event detection. To detect events in subject B, we repeated the approach described for

simulation 2 (S1 Appendix).

Hierarchical clustering. We performed HC for comparison. The David et al. [23] data

were normalized using the sample geometric mean to correct for library size imbalance. Each

feature was then centered and scaled as described for simulation 2. Clustering was performed

as detailed for simulation 2. The resulting tree was cut to produce 6 clusters. The choice of 6

clusters was based on the three profiles identified by David et al. [23] (days 1–150, 151–159,

and 160–318). We included three additional clusters to account for the background taxonomic

variation lacking one of the three profiles of interest. Because we are basing our parameter

choice on what can be considered the truth, this can be considered a best-case-scenario.

Themetagenomics. An R package, where the user provides a taxonomic abundance table,

sample-level information, and taxonomy information. A topic model is fit, and the user is pro-

vided interactive Shiny applications, allowing the user to visualize, graphically, (1) which taxa

dominant which topics, and hence which taxa co-occur; (2) which functional content domi-

nant which topics, and (3) relationships between sample-level information (e.g., age) and the

relative frequency of co-occurring taxa. The figures can be exported as image files.

Supporting information

S1 Appendix. Contains additional information regarding the following: (1) simulation 1

which explores different normalization approaches, (2) time series analysis methods for

David et al. [23] data including simulation 2; and (3) additional results for Crohn’s disease

data as well as expansion of results detailed above and comparisons to other approaches

such as SPIEC-EASI.

(DOCX)

S1 File. Contains figures A-D and tables A-F.

(DOCX)
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