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Adherens junctions connect the actin cytoskeleton of neighboring cells through transmembrane cadherin receptors and a network
of adaptor proteins. The interactions between these adaptors and cadherin as well as the activity of actin regulators localized to
adherens junctions are tightly controlled to facilitate cell junction assembly or disassembly in response to changes in external or
internal forces and/or signaling. Phosphorylation of tyrosine, serine, or threonine residues acts as a switch on the majority of
adherens junction proteins, turning “on” or “off” their interactions with other proteins and/or their enzymatic activity. Here,
we provide an overview of the kinases and phosphatases regulating phosphorylation of adherens junction proteins and bring
examples of phosphorylation events leading to the assembly or disassembly of adherens junctions, highlighting the important role
of phosphorylation switches in regulating their dynamics.

1. Introduction

Adherens junctions (AJs) are cell-cell adhesion sites where
calcium-dependent cadherin receptors bind with their extra-
cellular domains to cadherins on opposing cells and with
their cytoplasmic tails connect—via adaptors—to filamen-
tous actin [1, 2]. By essentially providing a physical link
between the actin cytoskeleton of neighboring cells AJs
facilitate the integration of individual cells into a tissue.
Additionally, AJs are instrumental in setting up and main-
taining the apicobasal polarity of epithelial cells [3, 4], they
function as mechanosensors [5] and serve as a nexus for
signaling affecting important cell decisions, such as survival
and differentiation [6].

During the development and lifetime of an organism,
cells frequently change shape and position relative to their
neighbors. Hence, the ability of cells to regulate their
adhesive interactions plays a key role during tissue morpho-
genesis, repair, and renewal [3, 7, 8]. Defects in the adhesive
characteristics of epithelial cells are pathological signs and
loss of cell-cell adhesion can generate dedifferentiation and
invasiveness of human carcinoma cells [9]. Thus, there is

great interest in understanding the factors that affect assem-
bly and disassembly of cell-cell adhesion at the molecular
level.

When considering regulatory mechanisms controlling
AJ proteins, we distinguish between three subsequent steps
of regulation: synthesis, localization, and activation. First,
a cell controls whether proteins are synthesized or not.
Indeed, transcriptional regulation of E-cadherin, notably
by the snail transcription factor, plays an important role
in the breaking down of AJs accompanying epithelial to
mesenchymal transition [10]. Once a protein is expressed
the cell can determine its localization by controlling its
transport. In fact, both exocytosis and endocytosis of E-
cadherin are tightly controlled and the balance between
the two processes has been shown to regulate AJ turnover
both in vitro and in vivo [6]. Finally, a cell can control
the activity and interactions of a protein at a given loca-
tion by posttranslational modifications. These modifications
include glycosylation, lipidation, ubiquitination, acetylation,
proteolysis, and phosphorylation [11]. Phosphorylation of
tyrosine (Y), serine (S), or threonine (T) residues, the
topic of this review, is a rapid and reversible form of
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regulation affecting the majority of AJ proteins [12–16]. In
some cases, posttranslational modifications have secondary
effects on transcription and/or protein transport [17, 18].
However, here we will focus on the more direct mechanisms
in which AJs are regulated by phosphorylation. First, we
will introduce the enzymes responsible for phosphorylation
and dephosphorylation at AJs and discuss how they are
recruited into AJ and activated. Next, we will describe the
targets of phosphorylation within AJ and by examining
the consequences of specific phosphorylation events will
show how phosphorylation is involved both in assembly and
disassembly of AJ, essentially driving the dynamics of this
highly responsive structure. In the end, we will point out
open questions and suggest methods to address them.

2. Recruitment of Protein
Kinases and Phosphatases into AJ

So far, twelve S/T kinases and one S/T phosphatase have been
implicated in regulating phosphorylation of AJ proteins,
and they are all cytoplasmic (Table 1). Prominent kinases in
this group include PKC-α, cAMP-dependent protein kinase,
Casein Kinase 1, Pak1, and ROCK1. Nine tyrosine kinases
and twelve tyrosine phosphatases have been shown to be
active in AJ, roughly half of them cytoplasmic and half part
of a transmembrane receptor (Table 1). Prominent tyrosine
kinases include the cytoplasmic Src, Fyn, Fer, and Abl, and
the receptors of epidermal and hepatocyte growth factors.
Major phosphatases involved are the cytoplasmic PTP-
1B, PTP-PEST, SHP-1, SHP-2, and receptor-type tyrosine-
protein phosphatases Mu, U, and Kappa.

Some of these kinases and phosphatases have been
localized to AJ by immunofluorescence (e.g., [19–21]) and
others have been shown to associate with AJ by coimmuno-
precipitation (e.g., [21–23]), but the exact mechanism of
recruitment into AJ of most of them is largely unknown.
A few were shown to bind directly with cadherin, such as
CSK with VE-cadherin and PTP-1B with E- and N-cadherin
[19, 24, 25]; others bind one of the catenins (adaptor proteins
linking cadherin with actin), such as MET and PTPRF with
β-catenin [26, 27] and ROCK1 with p120-catenin [21]; some
interact with other AJ adaptor proteins, such as PRKCA with
vinculin and ROCK1 with Shroom3 [28, 29].

While it is most likely every kinase and phosphatase can
recognize at least one docking site within the AJ, it is not cur-
rently known which of the kinases and phosphatases reside
in AJ permanently and which are transient components,
homing in to phosphorylate or dephosphorylate AJ proteins
only under specific conditions. Even permanent residents
may not always be active, as most kinases and phosphatases
need themselves to be activated.

3. Activation of Kinases and Phosphatases in AJ

Receptor tyrosine kinases are commonly activated by
an external ligand, such as a growth factor or cytokine,
which induces dimerization, cis-phosphorylation or
autophosphorylation and activation of the catalytic domain

[124, 125]. Receptor tyrosine phosphatases may be activated
by homophilic association with their counterparts on
neighboring cells [126], as well as by tyrosine phos-
phorylation [127]. Several S/T kinases are activated by
binding of Rho GTPases, for example ROCK1 is activated by
RhoA and PAK1 is activated by Rac1 and Cdc42 [128, 129].
S/T kinases are also regulated by tyrosine phosphorylation
and tyrosine kinases and phosphatases are regulated by
S/T phosphorylation, in a complex web of feedback and
feedforward loops that is poorly understood (Figure 1). For
example, Src phosphorylates PRKCD, which phosphorylates
PTPN6, which in turn dephosphorylates SRC (feedback)
[130–132]; PRKACA phosphorylates Src and Csk, and Csk
also phosphorylates Src (feedforward) [133–135].

As will be discussed further below, some of the phospho-
rylation events serve to activate the kinases or phosphatases
and others are inhibitory. One well-understood example of
kinase activation is the mechanism of activation of Src. As
reviewed in [136], the family of Src tyrosine kinases can be
found in a nonactive “closed” conformation or in an “open”
active conformation, depending on the phosphorylation
status of a tyrosine residue at the C-terminus. When this
residue is phosphorylated, it interacts with an SH2 domain
in the middle of Src, blocking the catalytic site. Upon
dephosphorylation of this specific tyrosine, the SH2 domain
is released, and the protein unfolds, allowing autophos-
phorylation of another tyrosine residue situated within the
enzyme’s activation loop, rendering the kinase fully active
[137]. It is important to point out that cadherin ligation and
clustering may act as an activation signal for some kinases.
Most notably, Src and Fer have been shown to be recruited
to the membrane upon cadherin binding [138, 139], and
EGFR signaling was shown to be stimulated by AJ formation
independently of EGF ligand [140]. Furthermore, cadherin
clustering has been found to indirectly induce activation of
Rho GTPases [141], which in turn could activate S/T kinases.

4. Phosphorylation Targets within the AJ

The AJ can conceptually be divided into four layers (Table 2).
The first, in the plane of the membrane, is where cadherins
and other transmembrane proteins, such as nectin and
AJAP1, reside. The next layer consists of membrane-bound
adaptors, such as ERM proteins and MAGI1, and adaptors
that directly bind transmembrane proteins, such as p120-
and β-catenin (bind cadherin) and afadin (binds nectin).
The following layer is composed of adaptor proteins, such
as α-catenin and vinculin, which bind to the second layer
adaptors and also bind F-actin. F-actin, along with actin-
binding proteins, such as α-actinin, and actin regulators,
such as cortactin, would be considered the last layer.
Regulatory proteins, such as GAPs, GEFs, and GTPases, can
be found throughout the AJ as reviewed in [14, 142].

There is evidence demonstrating both Y and S/T phos-
phorylation of proteins in all layers of the AJ (Table 2).
As illustrated in Figure 1, often the same kinase will phos-
phorylate proteins from different layers. For example, Abl
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Table 1: Kinases and phosphatases regulating phosphorylation of AJ proteins.

Gene symbol Protein name Phosphorylation type Localization Reference

Kinases

SRC
Proto-oncogene tyrosine-

Tyr nonreceptor [23, 30, 31]
protein kinase Src

CSK c-src tyrosine kinase Tyr nonreceptor [24, 32, 33]

FYN Tyrosine-protein kinase Fyn Tyr nonreceptor [34–36]

ABL1 Abl1 Tyr nonreceptor [37, 38]

SYK Tyrosine protein kinase SYK Tyr nonreceptor [39, 40]

PTK2B Protein-tyrosine kinase 2-beta Tyr nonreceptor [41–43]

FER Tyrosine-protein kinase Fer Tyr nonreceptor [44]

EGFR Epidermal growth factor receptor Tyr Receptor [45]

cMET/HGF Hepatocyte growth factor receptor Tyr Receptor [46]

PRKCA Protein kinase C alpha type Ser/Thr nonreceptor [47]

PRKACA
cAMP-dependent protein

Ser/Thr nonreceptor [48, 49]
Kinase catalytic subunit alpha

ROCK1
Rho-associated, coiled-coil

Ser/Thr nonreceptor
[50]containing protein kinase 1

PRKCD Protein kinase C delta type Ser/Thr nonreceptor [51, 52]

CSNK1E Casein kinase I isoform epsilon Ser/Thr nonreceptor [53]

CSNK2A1 Casein kinase 2 Ser/Thr nonreceptor [54]

PAK1 Serine/threonine-protein kinase PAK 1 Ser/Thr nonreceptor [55–57]

MAPK8 JNK Ser/Thr nonreceptor [58]

PRKD1 Protein kinase D1 Ser/Thr nonreceptor [59]

PRKCI Atypical protein kinase C-lambda/iota Ser/Thr nonreceptor [60]

PRKCZ Protein kinase C zeta type Ser/Thr nonreceptor [60]

MARK2
MAP/microtubule affinity-

Ser/Thr nonreceptor
[61]Regulating kinase 2, Par-1

Phosphatases

PTPN1
Tyrosine-protein phosphatase non

Tyr nonreceptor [19, 62–64]
receptor type 1, PTP1B

PTPN6
Tyrosine-protein phosphatase non

Tyr nonreceptor
[65]receptor type 6, SHP1

PTPN11
Tyrosine-protein phosphatase non-

Tyr nonreceptor
[66]receptor type 11, SHP2

PTPN12
Tyrosine-protein phosphatase non-

Tyr nonreceptor
[67]receptor type 12, PTP-PEST

PTPN14
Tyrosine-protein phosphatase non-

Tyr nonreceptor
[68]receptor type 14, PEZ

ACP1 Acid phosphatase of erythrocyte, LMW-PTP Tyr nonreceptor [69, 70]

PTPRJ
Receptor-type tyrosine-protein

Tyr Receptor
[71]phosphatase eta (R-PTP-eta), DEP1

PTPRM
Receptor-type tyrosine-protein

Tyr Receptor [72–74]
phosphatase mu (RPTP mu)

PTPRT
Receptor-type tyrosine-protein

Tyr Receptor [75]phosphatase T (R-PTP-T)

PTPRU
Receptor-type tyrosine-protein

Tyr Receptor [76, 77]
phosphatase U (R-PTP-U)

PTPRK
Receptor-type tyrosine-protein

Tyr Receptor [78, 79]
phosphatase kappa

PTPRF
Receptor-type tyrosine-protein

Tyr Receptor [80–82]
phosphatase F, LAR

PPP2CA
Serine/threonine-protein phosphatase 2A

Ser/Thr nonreceptor [83–85]
catalytic subunit alpha isoform
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Figure 1: Network of phosphorylation enzymes and targets in the adherens junction.

phosphorylates actin regulators WASP and VASP [143, 144],
as well as cadherin-bound adaptor δ-catenin [145] and
second layer adaptors Abi2 and Vinexin (SORBS3) [146,
147].

Some AJ proteins have additional functions in the cell,
and phosphorylation is also involved in regulating their
non-AJ roles [148]. The most notable example is β-catenin,
which plays an important role in the Wnt signaling pathway
as a cotranscription factor of TCF/LEF [149]. Whether
nonjunctional β-catenin will reach the nucleus or not
depends on whether it is phosphorylated by GSK3 and
Casein Kinse I in the “destruction complex” [150]. However,

such phosphorylation events taking place outside the context
of AJ are beyond the scope of this paper.

For the phosphorylation events occurring within AJ an
important question is how do they affect the target proteins?

5. Consequences of Phosphorylation
on AJ Proteins

A phosphorylated tyrosine, serine, or threonine residue can
affect a protein in three major ways: it can increase the
affinity for another protein, it can inhibit a protein-protein
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Table 2: Targets of phosphorylation in AJ.

Gene symbol Protein name Phosphorylated residue Reference

Transmembrane

CDH1 Ecadherin S/Y [54, 86, 87]

PVRL1 Nectin Y [88]

Cadherin- or membrane bound

CTNNB1 β-catenin S/T/Y [16, 89, 90]

EZR, RDX, MSN ERM proteins (ezrin/radixin/moesin) S/T/Y [91–93]

CTNND1 p120-catenin S/T/Y [94, 95]

JUP Gamma-catenin Y [96]

PARD3 Partitioning defective 3 homolog S/T/Y [97, 98]

Secondary adaptors

CTNNA1 α-catenin S/T/Y [99, 100]

VCL Vinculin S/Y [101, 102]

LIMA1 Eplin S [103]

VASP Vasodilator-stimulated phosphoprotein S/T/Y [104–106]

SHC1 SHC-transforming protein 1 Y [107, 108]

Actin and actin regulators

ACTN1 α-actinin S/Y [109, 110]

CTTN Cortactin S/T/Y [111, 112]

ACTB F-actin S/Y [113–115]

GTPASE regulators

PI3K Phospho-inositide-3-kinase Y [116]

RAPGEF1 Rap guanine nucleotide exchange factor 1 Y [117]

ARHGAP35 rho GAP p190A Y [118, 119]

ARHGAP32 p200RhoGAP Y [120, 121]

TIAM1 T-lymphoma invasion and metastasis-inducing protein 1 Y [122]

VAV2 Vav 2 guanine nucleotide exchange factor Y [122, 123]

interaction, or it can activate enzymatic activity. In proteins
with an intramolecular interaction, phosphorylation and
dephosphorylation can elicit a conformational change in the
protein. AJ components provide examples of each type of
these outcomes, as detailed henceforth.

(1) Turn “on” Protein-Protein Interaction. Tyrosine phospho-
rylation can create a docking site for an SH2 or PTB domain
of a partner protein. For example, tyrosine phosphorylation
of cadherin creates docking sites for the SH2 domain of
the adaptor SHC1 [151] and the PTB domain of the cell
polarity protein Numb [152]. As mentioned earlier, SRC
family kinases are inhibited by an intramolecular interaction
between a central SH2 domain and a phosphorylated
tyrosine at the C-terminus [137].

(2) Turn “off” Protein-Protein Interaction. Examples of inter-
action inhibition by phosphorylation are also found both
between different proteins and intramolecularly: tyrosine
phosphorylation of VE-cadherin at certain residues pre-
vents the binding of p120-catenin and β-catenin [153];
phosphorylation of a threonine residue in the C-terminal
actin binding domain of ERM proteins interferes with its
interaction with the N-terminal FERM domain, helping to
keep the protein in an active open conformation [154].

(3) Turn “on” Enzymatic Activity. Activation of the catalytic
activity of tyrosine kinases and phosphatases by tyrosine
phosphorylation has already been mentioned above [127].
Another important example is the activation of the motor
activity of myosin by the phosphorylation of serine and
threonine residues of myosin light chain [155].

We next address the question what are the ramifications
of phosphorylation of AJ proteins on AJ structure and
dynamics.

6. Global versus Specific
Consequences of Phosphorylation
on AJ Structure and Dynamics

Numerous experiments have been carried out over the
years to address the role of Y and S/T phosphorylation
in regulating AJ. Early experiments used broad-spectrum
chemical inhibitors of kinases or phosphatases to conclude
that phosphorylation negatively impacts cadherin function.
For example, inhibition of S/T phosphatases by Okadaic acid
or Calyculin-A was reported to lead to complete disassembly
of AJ within an hour, and this disruption was attributed to an
increase in S/T phosphorylation of β-catenin [89]. However,
Calyculin-A has also been shown to increase actomyosin
contractility in cells [156], suggesting that the disruption of
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AJ in the above mentioned study may have been caused by
mechanical tension at the junctions exceeding their adhesive
strength. Inhibition of tyrosine phosphatases with sodium
orthovanadate was reported to lead within minutes to a
dramatic increase in phosphotyrosine signals at AJ, followed
by the disassembly of AJ [157]. Consistent with the notion
that excessive tyrosine phosphorylation in AJ causes their
disassembly, cells expressing constitutively active Src kinase
lost their AJ, and inhibition of tyrosine kinase activity by
the drug tyrphostin was able to restore AJ in the Src-
transformed cells [157]. These and similar experiments have
led researchers in the late 90s of the previous century to
the general conclusion that phosphorylation is a negative
regulator of AJ.

However, in more recent years, there is accumulating
evidence for a positive role of phosphorylation in AJ assem-
bly, mainly coming out of loss-of-function experiments of
specific kinases. For example, SRC and FYN were found to
be essential for the formation of AJ in mouse keratinocytes
[158]. Moreover, SRC activity was shown in vitro to be
important for the recruitment of PI3K to AJ and the ability
of cells to expand nascent cadherin-adhesive contacts [159].
Along the same lines, ABL1 tyrosine kinase activity was
shown to be important for the maintenance of adherens
junctions in epithelial cells [37], and S/T phosphorylation
of E-cadherin by protein kinase D1 (PRKD1) was found to
be associated with increased cellular adhesion and decreased
cellular motility in prostate cancer [59].

Hence, the emerging view is that it is not possible to
generalize the effect of phosphorylation on AJ. With some
phosphorylation events leading to the switching “on” of a
protein or interaction and other phosphorylation events,
even on the same protein, serving as a switch “off”, the
effect of phosphorylation on AJ dynamics has to be examined
on a residue-by-residue basis. After we delineate the effect
of each individual phosphorylation event, we should be
able to integrate this information into a single network of
interconnected switches and perhaps then we can follow the
global effects of a single phosphorylation switch, starting, for
example, with hepatocyte growth factor stimulation [160].

7. Consequences of Specific
Phosphorylation Events on AJ,
Composition and Dynamics

We close this paper by giving a few examples of cases in
which the consequences of specific phosphorylation events
are known. The phosphorylation events presented occur on
proteins from each layer of the AJ as well as one cell polarity
protein.

(1) Cadherin. Serine phosphorylation of residues S840, S851
and S853 in the C-terminus of human E-cadherin (likely by
CSNK1E or PRKD1) increases the binding affinity towards
β-catenin, whereas phosphorylation of S846 is said to inhibit
the same interaction [86]. Stronger binding of β-catenin to
E-cadherin is conducive to a stronger AJ structure. Tyrosine
phosphorylation of VE-cadherin at two critical tyrosines,

Y658 and Y731, is sufficient to prevent the binding of
p120- and β-catenin, respectively [161]. Phosphorylation
by Src of three tyrosines in position 753–755 on human
E-cadherin creates a docking site for the E3-ligase Hakai
[162]. Ubiquitination of E-cadherin by Hakai leads to
internalization of E-cadherin facilitating disassembly of the
AJ [162, 163].

(2) P120-Catenin. Eight tyrosine residues in the N-terminus
of p120-catenin can be phosphorylated by Src [94]. Upon
phosphorylation, these sites serve as docking sites for the
recruitment of interacting proteins carrying SH2 domains,
such as the tyrosine phosphatase SHP-1 [164]. Under certain
conditions tyrosine phosphorylation of p120-catenin was
shown to increase its affinity to cadherin, while in other
instances such an increase was not observed (reviewed in
[95]). The affinity of p120-catenin to cadherin is significant
for AJ dynamics because p120-catenin protects cadherin
from being internalized [165].

(3) Zyxin. Phosphorylation of S142 of zyxin is thought to
result in the release of an intramolecular head-tail interaction
[166]. Opening of the protein expose its ACTA repeats that
recruit VASP, whose actin polymerization activity (see below)
is important for AJ assembly and maintenance. Since zyxin-
mediated recruitment of VASP has a positive effect on AJ
[167, 168], it is not surprising that expression of a zyxin
phosphomimetic mutant results in ultrastable AJ [166].

(4) VASP (Vasodilator Stimulated Phosphoprotein). As its
name suggests, VASP is often found phosphorylated in
cells. Three phosphorylation sites on residues S157, S239,
and T274 are phosphorylated by PKA and PKG, as well
as PKC [169, 170] and dephosphorylated by unknown
phosphatase/s. The phosphorylation of VASP was shown to
reduce its affinity towards actin [171] and essentially turn off
its actin bundling and anticapping/elongation activity [171,
172]. VASP-mediated actin elongation is important for the
formation of AJ and for the maintenance of actin structures
associated with AJ [173, 174]. Thus, the consequence of
VASP phosphorylation is to negatively regulate AJ assembly
and maintenance.

(5) PARD3. In Drosophila epithelial cells the par-3 ortholog
Bazooka is confined to AJ as a result of phosphorylation by
either apical or basal polarity complexes [4]. At the apical
side of cells Bazooka is phosphorylated by aPKC, resulting
in its release from the cortex [175, 176]. In the basolateral
membrane Par1 kinase phosphorylates Bazooka on unique
sites that also lead to its cortical release [4]. Recently, it was
shown that the ratio between Par-1 and aPKC determines
the position of Bazooka and AJ along the lateral side and a
reduction in Par-1 kinase activity leads to a basal shift of AJ
followed by folding of the epithelial sheet [177].
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8. Conclusions and Outlook

From the examples presented above, it is clear that phos-
phorylation switches play a pivotal role in regulating AJ
assembly and disassembly dynamics. At the same time it
is also clear that our knowledge is only scratching the
surface of the phosphorylation network regulating AJ. For
the majority of known phosphorylation events in AJ, we
know either of a kinase or of a phosphatase involved, but
rarely do we know both. Furthermore, while traditional
biochemistry techniques have facilitated the characterization
of a handful of phosphorylation events on AJ proteins,
phosphoproteomic data indicates that the majority of AJ
proteins are phosphorylated on multiple serine/threonine
and tyrosine residues [178]. Phosphoproteomics, which
utilizes a variety of techniques to label cells, enrich for
phosphorylated peptides and identify them using mass-
spectrometry (reviewed in [179–181]), not only highlights
the hole in our knowledge but also offers the means to fill
it.

Phospho-proteomics offers an unbiased and comprehen-
sive snapshot of phosphorylation events, and several differ-
ent approaches can be taken to elucidate phosphorylation
switches in AJ: during normal assembly and maturation,
following a signal for disassembly, or when a certain kinase or
phosphatase is activated or missing (e.g., [39, 182–184]). The
phospho-proteomic data obtained, especially if it is dynamic,
can be used for a systems level analysis of phosphorylation
switches in AJ [185, 186], but it seems likely to us that before
the network can be modeled in a meaningful way more
in depth characterization of specific phosphorylation events
will be necessary, using cell biological techniques.

While for the discovery and mapping of phosphorylation
events in AJ, one wants to be as comprehensive as possible,
when it comes to characterizing a particular switch the more
specific the tools, the better. One example of a specific
tool is phosphorylation site-specific antibodies, such as
those recognizing individual phosphorylation events on β-
catenin and p-120-catenin [187, 188]. Another example
are site-specific phospho-mimetic or nonphosphorylatable
mutations, such as those successfully applied to the study
of the effects of phosphorylation on cortactin, VASP, VE-
cadherin, zyxin, and paxillin [153, 166, 189–191].

Facing an ever-changing landscape of forces and sig-
naling cues, a cell must respond rapidly by adjusting the
strength of its AJs according to need. For this it relies on
continuous turnover and assembly of core AJ components.
Phosphorylation is particularly suitable for regulating the
balance between assembly and disassembly as it is rapid
and affects the AJ proteins directly. Feedback loops must
guarantee a combination of phosphorylated residues at AJ
that matches the requirements for a given condition. Exper-
iments have shown that when it comes to phosphorylation
both “all on” and “all off” treatments are deleterious to AJ.
The challenge now is to elucidate the mechanisms by which
the cell maintains a “just right” level of phosphorylation in
AJ. While phosphorylation is probably the most prominent
regulatory switch controlling cell adhesion, other switches,
such as GTPases, lipids and proteases, do exist [192]. A future

challenge, therefore, will be to integrate the phosphorylation
switch network with the other regulatory switches to facili-
tate a true understanding of how different signaling pathways
and force regulate AJ dynamics.
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cell adhesion and inhibits dishevelled-mediated transforma-
tion of Madin-Darby canine kidney cells,” Molecular Biology
of the Cell, vol. 17, no. 8, pp. 3345–3355, 2006.

[62] J. Balsamo, C. Arregui, T. Leung, and J. Lilien, “The
nonreceptor protein tyrosine phosphatase PTP1B binds to
the cytoplasmic domain of N-cadherin and regulates the
cadherin-actin linkage,” Journal of Cell Biology, vol. 143, no.
2, pp. 523–532, 1998.

[63] P. Pathre, C. Arregui, T. Wampler et al., “PTP1B regulates
neurite extension mediated by cell-cell and cell-matrix
adhesion molecules,” Journal of Neuroscience Research, vol.
63, no. 2, pp. 143–150, 2001.

[64] M. V. Hernández, D. P. Wehrendt, and C. O. Arregui, “The
protein tyrosine phosphatase PTP1B is required for efficient
delivery of N-cadherin to the cell surface,” Molecular Biology
of the Cell, vol. 21, no. 8, pp. 1387–1397, 2010.

[65] J. Schnekenburger, J. Mayerle, B. Krüger et al., “Protein
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