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Abstract

The mammalian airways and lungs are exposed to a myriad of
inhaled particulate matter, allergens, and pathogens. The immune
system plays an essential role in protecting the host from
respiratory pathogens, but a dysregulated immune response
during respiratory infection can impair pathogen clearance and
lead to immunopathology. Furthermore, inappropriate immunity
to inhaled antigens can lead to pulmonary diseases. A complex
network of epithelial, neural, stromal, and immune cells has
evolved to sense and respond to inhaled antigens, including the
decision to promote tolerance versus a rapid, robust, and targeted
immune response. Although there has been great progress in
understanding the mechanisms governing immunity to

respiratory pathogens and aeroantigens, we are only beginning to
develop an integrated understanding of the cellular networks
governing tissue immunity within the lungs and how it changes
after inflammation and over the human life course. An integrated
model of airway and lung immunity will be necessary to improve
mucosal vaccine design as well as prevent and treat acute and
chronic inflammatory pulmonary diseases. Given the importance
of immunology in pulmonary research, the American Thoracic
Society convened a working group to highlight central areas of
investigation to advance the science of lung immunology and
improve human health.
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Overview

In this workshop report, we have chosen four
main areas we believe are central to the
advancement of lung immunology, including
airway and lung immune sensing, tissue-
resident immune memory, age-related changes
in lung immunity, and advancing human
experimental systems. In each area, we outline
our current working models, including areas of
uncertainty and technical limitations, and pose
remaining questions for future investigation.
Our goal is to provide a framework for greater
cross-disciplinary investigation and the
development of novel tools and techniques in
lung immunology research. The key points of
this workshop are as follows:

� The mechanisms whereby the airways
and lungs sense and respond to inhaled
pathogens, particulate matter, and
allergens remain incompletely defined.
Specifically, the cross-talk between
various sensors, including the airway
epithelium, peripheral nervous system,
stromal cells, immune cells, and local
microbiota, remains unclear. An
integrated model of airway and lung
immune sensing will require novel
experimental approaches and greater
collaboration among scientists with
distinct areas of expertise.

� After inflammatory responses within
the airways and lungs, local immune
memory persists, with significant
implications for host protection and
pulmonary diseases. However, the
mechanisms whereby protective or
pathogenic immune memory persists
in the lungs remain unclear.
Specifically, how innate immune cells
and structural cells within the lung are
trained by previous inflammation and
how adaptive immune cells are
instructed for tissue residency in
various contexts remains poorly
defined. Furthermore, the niches and
signals supporting mucosal immune
memory are incompletely understood.
Developing novel mucosal vaccine
platforms as well as targeted therapies
for inflammatory pulmonary diseases
will require defining immune memory
at the tissue level.

� There are marked differences in
airway and lung immunity across the
human life course. For example, early
life is associated with an increased risk
for allergic asthma, whereas extremes
of age are risk factors for severe
pneumonia. Older individuals and the
very young exhibit marked differences
in lung immunity and repair after
injury. Defining the mechanisms
whereby the lung microenvironment
and immune responses change over
the life course will be critical to reduce
morbidity and mortality from
pulmonary diseases.

� Although model systems have been
tremendously valuable for elucidating
lung immunology, our ultimate goal is
to define the rules of human lung
immunology in vivo. Improving
animal models to better recapitulate
human biology and developing novel
ex vivo and in vivo human
experimental approaches, such as
human challenge studies, will be
needed to advance our understanding
of human lung immunology.

Introduction

The main function of the mammalian lungs
is to perform gas exchange, which exposes
the host to a myriad of inhaled antigens,
including particulate matter, allergens, and
pathogens (1). The immune system plays an
essential role in protecting the host from
respiratory pathogens, but a dysregulated
immune response during respiratory
infection can impair pathogen clearance and
potentially lead to immunopathology (2).
Furthermore, inappropriate immunity to
inhaled antigens can lead to inflammatory
pulmonary diseases, such as asthma and
hypersensitivity pneumonitis (3). A complex
network of epithelial, neural, stromal, and
immune cells has evolved in the airways and
lungs to sense and respond to inhaled
antigens, including the decision to promote
tolerance versus a rapid, robust, and targeted
immune response. Although there has been
great progress in understanding the basic
immunological rules andmechanisms
governing the host response to various
respiratory pathogens and aeroantigens, we

are only beginning to develop an integrated
understanding of the cellular networks and
niches governing tissue immunity within the
lungs. Furthermore, there is a growing
appreciation of how the local microbiota,
previous inflammation, immune system
development, and aging influence lung
immunity. An integrated, systems-level
model of airway and lung immune responses
in various contexts will be necessary to
improve mucosal vaccine design as well as
prevent and treat acute and chronic
inflammatory pulmonary diseases.

Methods

To address critical areas of investigation in
lung immunology, the American Thoracic
Society (ATS) convened a panel of lung
immunology experts. The workshop
co-chairs (R.A.R., A.I.S., and B.D.S.)
identified investigators based on their
research expertise in lung immunology.
All participants in the workshop submitted
conflict-of-interest statements before the
workshop was held. All participants disclosed
industry relationships and other potential
conflicts of interest, which were vetted and
managed according to the rules of the ATS.
The workshop proposed the following topic
areas: airway and lung immune sensing,
tissue-resident immune memory, age-related
changes in lung immunity, and advancing
experimental systems for human lung
immunology. The workshop convened
virtually on June 10 and 11, 2021. Workshop
moderators (C.A.B. andW.P.D.) oversaw
presentations by individual workshop
participants that covered subtopics within
each of the four general topic areas. After the
presentations, there was open discussion of
the topics, including addressing key
questions and the need for new experimental
tools and approaches. After the workshop
was completed, presenters drafted narrative
reviews covering each subtopic. Each author
limited information and citations to
published manuscripts. The workshop
co-chairs (R.A.R. and B.D.S.) integrated and
expanded the sections into a complete
workshop report. Upon completion of a draft
report, members of the workshop reviewed
and edited the document before submission
for publication.

Correspondence and requests for reprints should be addressed to Rod A. Rahimi, M.D., Ph.D., Division of Pulmonary and Critical Care
Medicine, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, 149 East 13th Street, Room 8400, Boston, MA
02129. E-mail: rrahimi@mgh.harvard.edu.
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Toward an Integrated Model
of Airway and Lung
Immune Sensing

How do airway and lung sensors
cross-talk to regulate an
immune response?
The airways and lungs have evolved complex
sensors capable of recognizing a broad range
of noxious particles and respiratory
pathogens (1). Airway epithelial cells and
their associated tight junctions form a
physical barrier, but they also perform
critical immune sensing and effector
functions and serve as an integrative hub of
the airway immune system (4). The
traditional model of the airway epithelium
focused on its barrier role, with basal
epithelial stem cells forming a platform on
which other epithelial cells construct a
protective mucociliary barrier. Specialized
goblet cells produce mucus, a complex
viscoelastic biopolymer, and ciliated
epithelial cells synchronously sweep mucus
in a distal-to-proximal fashion, promoting
mucociliary clearance that protects against
noxious particles and pathogens (5). Beyond
the barrier functions of mucociliary
clearance, epithelial–immune cell
interactions are critical in the initiation,
progression, and resolution of immune
responses to both pathogens and
allergens (4). In humans, genetic defects in
epithelial cell function contribute to a range
of immune-mediated pulmonary diseases,
due to either barrier dysfunction or altered
immune signaling (6, 7). Studies using
mouse models have dissected the immune
functions of the airway epithelium and how
interactions between the airway epithelium
and cells of the immune system determine
the response to pathogens and allergens
(1, 4, 8). Airway epithelial cells express
various pathogen recognition receptors and
in response to respiratory infection secrete a
broad array of cytokines, chemokines,
antimicrobial peptides, danger-associated
molecular patterns, and enzymes that
directly promote pathogen clearance or
induce a robust and targeted immune
response (8). For instance, in response to
respiratory viral infection, pathogen
recognition receptor expression in the airway
epithelium, such as RNA-sensing, Retinoic
acid-inducible gene I-like receptors and
TLRs (Toll-like receptors), induce
production of type I and III IFNs, which
inhibit viral replication and orchestrate

immunity to enhance host defense (9–11).
In contrast, the airway epithelium also plays
an important role in inappropriate immunity
to environmental antigens such as allergens.
For example, TLR-4 and Protease-activated
receptor 2 expression in the airway
epithelium can be activated directly by
allergens or via cleavage products of allergen
proteases, leading to epithelial cell secretion
of granulocyte-macrophage colony-
stimulating factor, IL-1, and various alarmins
such as IL-33 and thymic stromal
lymphopoietin that promote allergic
immunity (12, 13). Consequently, the airway
epithelium coordinately performs barrier
and immune sensing functions.

The development of single-cell RNA
sequencing platforms and high-resolution
imaging has dramatically expanded our view
of the epithelial landscape to reveal a
dynamic cellular structure that contains a
wide variety of specialized cells contributing
to both barrier defense and
immunosurveillance (8). Landmark single-
cell RNA sequencing studies in mice and
humans characterized the composition and
heterogeneity of airway epithelial cells,
including Tuft, neuroendocrine, and
ionocytes, which are continually and directly
repleted by basal progenitors (14–16).
Notably, although ionocytes are relatively
rare in abundance, they are the major source
of transcripts for the cystic fibrosis
transmembrane conductance regulator and
seem to play an important role in airway
fluid andmucus physiology in vivo,
underscoring that rare epithelial cell types
contribute to airway homeostasis and
response to stress (14–16). In addition,
transcriptional profiling of the airway
epithelium led to the discovery of “hillocks,”
which consist of Keratin-13–expressing cells
arranged in discrete, stratified structures (15).
Such hillock structures exhibit high turnover
and expression of genes associated with
squamous epithelial differentiation, cell
adhesion, and immunomodulation (15).
Last, although microfold cells (M cells) have
been described in the intestine, where they
function to endocytose and transport
luminal antigens into the lamina propria, it is
clear that M cells also exist in the airways of
mice and humans, where their function is
beginning to be defined (17–21). Adding to
the heterogeneity of airway epithelial cells,
there are distinct epithelial cell subtypes,
including two goblet cell subsets as well as
distinct tuft cell subsets (8, 15, 22). Beyond
the airway epithelium, alveolar epithelial cells

play an important role in host defense and
the response to lung injury. Within the
alveolar epithelium, alveolar type 2 (AT2)
cells produce pulmonary surfactant to reduce
surface tension, which prevents atelectasis
and promotes gas exchange. Surfactant
is enriched in the phospholipid
dipalmitoylphosphatidylcholine (DPPC) as
well as four SPs (surfactant-associated
proteins), SP-A, SP-B, SP-C, and SP-D (23).
DPPC and the hydrophobic SPs, SP-B and
SP-C, lower surface tension at the air–liquid
interface (23). In contrast, SP-A and SP-D
are hydrophilic proteins that belong to a
family of innate immune proteins termed
collectins, which promote pathogen
clearance and exhibit immunomodulatory
properties (23, 24). In addition, AT2 cells
serve as progenitor cells that slowly promote
self-renewal and differentiate into AT1
cells (25). Upon lung injury, AT2 cells
increase their proliferation to promote
regeneration. Multiple groups have identified
a unique transitional stem cell state
promoting repair (26–28). Of note, cytokines
such as macrophage-derived IL-1b can
promote the transitional stem cell state,
demonstrating important cross-talk between
the local immune system and regeneration, a
process that we are only beginning to
define (25, 28). Consequently, single-cell
transcriptional analysis has transformed our
view of the airway and alveolar epithelium
and significantly advanced our
understanding of the development and
heterogeneity of cell types and states. Moving
forward, we need to define the significance of
novel epithelial cell types and states in
regulating homeostasis and airway immunity
in various contexts and how these epithelial
cells change phenotype and/or function
during disease states and across the life
course. Furthermore, although previously
thought to be sterile, it is now well accepted
that the epithelial surfaces of the respiratory
tract are colonized by a complex and
dynamic microbial ecosystem, termed
the “lung microbiome,” which plays an
important role in both health and
disease (29). Determining the role of the
airway microbiome in regulating various
airway epithelial cell functions and
pulmonary disease remains a central area
for future investigation.

Although it is clear that the airway
epithelium continuously senses inhaled
antigens, the peripheral nervous system,
which densely innervates the airways, also
plays an important role in aeroantigen
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immunosurveillance and immune function.
The vagus nerve innervates most visceral
organs, with up to 20% of its termination
being located within the airways (30). The
vagus nerve dominates innervation of the
airways with an additional small (�5%)
contribution from lumbar neurons (31, 32).
Vagal neurons serve various physiologic,
homeostatic, and organ-monitoring
functions. Similar to the airway epithelium,
neurons are also heterogeneous in nature,
and their biological role appears to be circuit
dependent. For example, NPY2R

1 vagal
neurons control rapid and shallow breathing,
P2RY1

1 neurons silence respiration and
promote expiratory reflexes, and PIEZO2

1

vagal sensory neurons, akin to the
mechanosensing neurons of the skin,
regulate apnea (33–35). A large portion of
vagal neurons are also of sensory origin and
express markers such as the heat-sensing ion
channel TRPV1 (Transient receptor
potential cation channel subfamily V
member 1) and the voltage-gated sodium
channel NaV1.8 (36–38). These sensory
neurons are high-threshold noxious stimuli
detectors designed to limit tissue damage by
detecting chemical, mechanical, or thermal
threats and initiating protective airway
reflexes such as coughing and
bronchoconstriction (39).

Numerous findings support an
important role for the peripheral nervous
system in regulating immunity. Pathogens
can directly activate nociceptor neurons,
which regulate immune responses via locally
released neuropeptides, promoting both pro-
and antiinflammatory responses, depending
on the context (40–48). Nociceptor neurons
also play a critical role in regulating
immunity to allergens. For instance,
nociceptor neurons directly respond to
allergens, producing neuropeptides that
promote the function of type 2 innate
lymphoid cells (ILC2s), induce mast cell
degranulation, and promote the trafficking of
type 2 conventional dendritic cells (cDC2) to
the draining lymph node, driving CD41

T-helper cell type 2 (Th2) differentiation
(48–54). Furthermore, TRPV11 vagal
neurons regulate inflammatory cell
recruitment to the airways during allergic
disease as well as promote mucin production
(55–57). Together with the direct sensing of
pathogens and allergens, neurons receive
inputs from immunemediators that regulate
their function. For instance, nociceptor
neurons respond to inflammatory cytokines
such as IL-4 as well as antibodies (58, 59).

Specifically, TRPV11 sensory neurons
express the high-affinity IgE receptor FceR1
and respond to IgE–allergen immune
complexes by releasing the neuropeptide SP
(Substance P), which, in turn, amplifies Th2
cell production of IL-5 and IL-13 (58, 60–62).
Albeit at lower surface amounts than in Th2
cells, B cell subtypes also express SP
receptors. When coexposed to IL-4 and LPS,
SP-stimulated B cells showed enhanced
formation of antibody-secreting cells and IgE
release (63). In response to allergen
challenges, the genetic ablation and
pharmacological silencing of vagal
nociceptors decreases IgE production as well
as inflammatory cell infiltration,
demonstrating that IgE-sensing neurons
amplify the lung humoral immune
responses, highlighting a novel nociceptor–B
cell circuit (63). Notably, the airway nervous
system changes during development,
influencing airway immunity. During
postnatal development in mice and humans,
sympathetic nerves undergo a dopaminergic-
to-adrenergic transition. In young mice,
allergen exposure induces dopamine release,
directly promoting Th2 cell differentiation
via dopamine receptor 4, enhancing allergic
immunity, and suggesting a mechanism
whereby young children are more likely than
adults to develop allergic asthma (64).
Furthermore, airway nerves can change in
the context of chronic inflammation. For
example, patients with asthma have airways
that are hyperinnervated, display an increased
sensitivity to air irritants, and exhibit higher
levels of airway neuropeptides (65).
Together, these features indicate excessive
lung nociceptor activity in the context of
allergic asthma, and, as such, a TRPA1
antagonist is now in clinical trials for allergic
asthma (66–68). Consequently, there is a
complex cross-talk between the airway
nervous and immune systems, which interact
through shared receptors, cytokines, and
neuropeptides (69). Of note, althoughmuch
of the work on the cross-talk between the
peripheral nervous system and immune
system has focused on allergic inflammation,
type 2 immunity plays an important role in
host defense against toxins and toxin-
producing pathogens (70–74). For instance,
IgE andmast cells contribute to host defense
against toxin-producing bacteria such as
Staphylococcus aureus (74). Defining the
cross-talk between the nervous and immune
systems in the lung in various contexts
represents an important area of investigation

to promote host defense while limiting
immunopathology.

Together with the airway epithelium
and peripheral nervous system, the
mononuclear phagocyte (MP) system plays a
central role in immune sensing and
responses (75). The MP system in the lungs
is composed of tissue-resident alveolar
macrophages, interstitial macrophages (IMs),
dendritic cells (DCs), and monocytes (75).
Of note, humans have similar MP subsets in
the lungs and lymph nodes compared with
mice (76, 77). Resident macrophages can be
divided into two categories: tissue-resident
macrophages that only exists in one organ
and express a unique transcriptional profile
(i.e., alveolar macrophage) and IMs, which
are macrophage subtypes present in many
organs sharing a common transcriptional
profile. In the murine lung, there are at least
two IMs, Lyve11Folr21 IMs that express
high levels of CD206 with gradient
expression of Timd4 (T cell immunoglobulin
andmucin domain containing 4), and
Lyve12Folr22 IMs expressing low levels of
CD206 and high levels of MHCII (Major
Histocompatibility complex class II), CD11c,
and CCR2 (78). These two IMs appear to
have distinct locations and functions. Folr21

IMs surround the blood vessels, whereas
Folr22 IMs colocalize with nerves (79–81).
Functionally, Folr21 IMs display classical
macrophage characteristics based on
transcriptome expression, phagocytosis, and
slow replenishment rates by circulating
monocytes, whereas Folr22 IMs, although
displaying macrophage properties, have a
higher turnover rate, expressing
proinflammatory mediators andmonocytic
and DC-like genes and properties (78).
Circulating monocytes traditionally have
been viewed as precursors to tissue-resident
macrophages. However, we now know that
monocytes continuously traffic through
nonlymphoid and lymphoid tissues, where
they survey the environment. Unless there is
a macrophage niche to fill, steady-state
monocytes do not readily differentiate into
self-renewing, tissue-resident macrophages
(82, 83). During inflammation, monocytes
can differentiate into inflammatory and
resolving macrophages, which display
distinct properties from resident
macrophages (84–86). DCs are potent
antigen-presenting cells that link innate and
adaptive immunity. In contrast to tissue
macrophages, peripheral conventional DCs
acquire antigens, traffic through lymphatic
vessels to draining lymph nodes, and present
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exogenous antigens to cognate T cells,
inducing adaptive immunity (87–91). The
induction of naive T cells into effector T cells
is mainly attributed to two conventional DC
subtypes, cDC1 and cDC2, with further
subdivision of cDC2 states during
inflammation (92–95). The various lungMP
cells, including subsets of macrophages,
tissue monocytes, and migratory DCs, are
capable of directly sensing pathogens via a
diverse array of pattern recognition receptors

(96, 97). In addition, lungMP cells can
respond to epithelial cell–derived alarmins
and neuropeptides (8). Future research is
needed to define how cells of theMP system
cross-talk with various immune sensors in
the airways and lungs, including the
epithelium and peripheral nervous system,
during homeostasis and in response to
various stimuli in vivo.

Although single-cell sequencing
technologies have allowed for a detailed

delineation of cell heterogeneity among
airway and lung immune sensors, we are
only beginning to integrate such complexity
into working models of lung immunity
in vivo. For the lung immunology
community, it will be essential to rigorously
define how the heterogeneous immune
sensors recognize and respond to epithelial
barrier breach by respiratory pathogens or
noxious aeroantigens. How do the
specialized subsets of airway epithelial cells,
neurons, immune cells, and other structural
cell types coordinately respond in specific
contexts; how are the output signals
integrated; and how do immune sensors
cross-talk to regulate an immune response
in vivo (Figure 1)? An integrative model of
airway and lung immune sensing has great
therapeutic potential. For instance, an
optimal mucosal vaccine platform will likely
benefit from regulating the airway epithelial
and sensory neuronal responses. In addition,
targeting airway immune sensors may hold
therapeutic potential for inflammatory
pulmonary diseases. For instance, targeting
nociceptive neuronal cross-talk with
proallergic cytokines and/or IgE may
improve allergic inflammation in asthma.
Murine models have been, and will continue
to be, critical for advancing our
understanding of airway and lung immune
sensors in vivo. Specifically, genetic
approaches in mice will continue to be a
mainstay approach for mechanistic studies.
Developing novel Cre-drivers that can
specifically target unique cell populations will
be required to interrogate the heterogeneous
cell populations defined by single-cell
sequencing approaches. Furthermore, as
outlined below, it will be vital to create better
models and systems for investigating human
lung immunity. Such innovations will
require multidisciplinary approaches and,
consequently, greater cross-disciplinary
collaborations.

Defining Tissue-Resident
Immune Memory within the
Airways and Lungs

How do the airways and lungs
remember previous
inflammatory responses?
Together with the airway and lung immune
sensors and their associated effector
functions outlined above, the lungs contain a
variety of tissue-resident ILCs and innate-

Sensing barrier
breach MCC

Integrating
sensor
outputsDC

ILC

Sensor
crosstalk

Gob
Club Basal NE

Ciliated
Tuft

Trm Brm Lymphatics

Trm

DC

Adventitial niche
Development and

maintenance

Protective vs.
pathologic?

ILC

ILC

Treg

Trained immunity

Mø

Mø

Mø

iBALT

Figure 1. Model of airway sensing and memory. The airway epithelium consists of
heterogeneous cell types that perform barrier functions, including mucociliary clearance, as
well as immunosurveillance. Barrier function breach, such as occurs with respiratory
pathogens, is sensed by specific epithelial cell subsets and other sensors, including neurons
and innate immune populations. Defining how various immune sensors respond and integrate
signals in distinct contexts to initiate an immune response represents a critical area of
investigation. After an immune response, inflammatory memory is retained in various cell
populations and niches, including tissue-resident memory T and B cells in adventitial niches or
inducible bronchus-associated lymphoid tissue, which can promote host protection or
immunopathology. The signals regulating the development and maintenance of tissue-resident
memory remain an active area of investigation. Illustration created in Biorender.com. Brm=tissue-
resident memory B cell; DC=dendritic cell; Gob=goblet cell; iBALT= inducible bronchus-associated
lymphoid tissue; ILC= innate lymphoid cell; MCC=mucociliary clearance; Mf=macrophage;
NE=neuroendocrine cell; Treg= regulatory T cell; Trm= tissue-resident memory T cell.
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like, unconventional T cells such as iNKT
(Invariant natural killer T), gd T cells, and
mucosal-associated invariant T cells (98, 99).
ILCs and unconventional T cells can directly
respond to exogenous antigens and/or
respond to signals from the airway
epithelium, peripheral nervous system,
stromal cells, or other immune cells to play
important protective and pathologic roles in
the lungs (98, 99). For instance, ILC2s are
regulated by alarmins such as IL-33, IL-25,
and thymic stromal lymphopoietin, as well as
neuropeptides such as neuromedin and
calcitonin gene–related peptide, and promote
type 2 immunity as well as tissue repair in the
context of injury or infection (51–54, 99,
100). In addition, over the last decade, it has
become well established that a subset of
memory T and B cells establish residency in
peripheral tissues to orchestrate local recall
responses (101–103). The discovery of tissue-
resident memory T (Trm) and B (Brm) cells
has revealed that nonlymphoid tissues can be
imprinted with antigen-specific immune
memory, transforming our view of immune
memory. Given the critical role of memory
T and B cells in host protection against
pathogens as well as driving inflammatory
diseases, there has been great interest in
defining the biology of Trm and Brm cells
in vivo.

Landmark studies using viral infection
models inmice demonstrated that a subset of
effector CD81 T cells establish long-term
residency in previously inflamed peripheral
tissues and offer superior protection to viral
rechallenge (104–106). Trm cells exhibit a
distinct phenotype and transcriptional program
from their circulating counterparts (101).
Within the lungs, CD81 Trm cells specific for
respiratory pathogens such as influenza not
only offer protection against recurrent infection
but also provide subheterotypic immunity,
leading to significant interest in the
development ofmucosal vaccines capable of
promotingTrmdevelopment (107–109). In
addition, in variousmurinemodels of
pulmonary infection ormucosal vaccination,
multiple distinct CD41 T cell subsets,
includingTh1, Th17, andT follicular helper
cells, establish tissue residency and play an
important role in local immunity and host
protection (110–115). In human lungs, both
memoryCD81 andCD41 Tcells with a Trm
phenotype have been described (116–122).
AlthoughTrm cells enhance host protection
against pathogens, it is clear that they can also
mediate immunopathology. Inmodels of
inflammatory pulmonary diseases such as

asthma, allergen-specificmemory Th2 cells
establish residencywithin the lungs and play an
important role in driving recurrent allergic
airway disease (123–125). Furthermore, a
subset of individuals with steroid-resistant
asthma exhibit a Th1-biased inflammatory
profile in the airwayswith high-dimensional
profiling of airway immune cells
demonstrating the presence of IFNg-
expressingCD81 andCD41 Trm cells
(126–128). Trm cells regulate barrier immunity
by rapidly responding to cognate antigen,
producing inflammatory cytokines that can
quickly enhance local innate and adaptive
immunity (129–133). Furthermore, Trm cells
cross-talkwith structural cells, including the
airway epithelium,which can enhance host
protection to infection but also promote
immunopathology (125, 129, 134, 135).
BeyondTrm cell biology, Brm cells persist
within the lungs and enhance airway
antibody production upon antigen reexposure
(122, 136–140). Consequently, the
development of distinct subsets of Trmand
Brm represents an importantmechanism
whereby the airways and lungs remember
previous inflammatory insults.

In light of the importance of Trm and
Brm cells to immunity, the signals
instructing tissue residency represent an area
of active investigation. To establish
residency, Trm and Brm cells upregulate
tissue-retention receptors and downregulate
tissue egress molecules (101). In CD81 T
cells, the transcription factors Runx3, Hobit,
and Blimp-1 drive the tissue-residency
program (141). Although there are certain
features shared by all Trm cells (e.g., low
expression of tissue egress molecules), recent
studies in CD81 Trm cells have revealed
significant Trm cell heterogeneity within and
across organs, demonstrating that there may
be distinct pathways to Trm development in
various contexts (142, 143). Furthermore,
although inflamed tissues clearly provide
signals to regulate Trm development, several
recent studies have suggested that T cells are
programmed for Trm fate during initial
priming via instructive signals within the
lymph node (144). During priming of naive
CD81 T cells, a population of DNGR-11

(dendritic cell NK lectin group receptor-1)
DCs exhibit an enhanced capacity of cross-
presentation, allowing exogenously acquired
antigens to be loaded on MHCI and
presented in the draining lymph node. In a
murine model of influenza infection,
depletion of DNGR-11 DCs minimally
impacted the effector CD81 T cell response

but had a dramatic effect on CD81 Trm cell
development within the lungs (145).
Additional studies have suggested that naive
CD81 T cells can also be preconditioned for
Trm fate or instructed for tissue residency
during early T cell priming, before
significant clonal expansion (144, 146, 147).
Whether similar preconditioning or early
instructive signals within lymph nodes
promotes a tissue-residency program for
CD41 T cell or B cell responses remains to
be determined. Defining potential
preconditioning or early instructive signals
as well as fate-determining signals within
inflamed tissues that promote tissue
residency has significant implications for
mucosal vaccine development as well as
novel therapeutic approaches for
inflammatory diseases.

There is great interest in defining the
lung niches supporting tissue-resident
lymphocytes in vivo. Broadly, immune
niches in nonlymphoid tissues can be
characterized as 1) epithelial and
subepithelial niches; 2) mesothelial or
capsular boundary niches; 3) parenchymal
niches; and 4) adventitial niches (148).
Recently, adventitial stromal niches, which
include the outmost layer of the airways and
blood vessels, have been shown to be critical
locations regulating immunity (148–150).
Adventitial stromal niches are the site of
diverse immune cells, including IMs, DCs,
mast cells, ILCs, innate-like or
unconventional T cells, regulatory T (Treg)
cells, as well as Trm cells (148–150). In
addition, these adventitial locations are
enriched in lymphatics, neurons, and a
variety of specialized stromal cells, which
cross-talk with immune populations during
homeostasis and immunity (148, 150–152).
The unique immune and nonimmune cells
that compose adventitial stromal niches,
including their heterogeneity and
immune regulatory functions in various
contexts, remain an ongoing area of
investigation (148).

In terms of Trm localization, after
influenza infection, CD81 Trm cells
within the lungs persist in adventitial
niches with features of tissue repair that
have been termed repair-associated
memory depots (153). Interestingly, Trm
cell durability seems to vary between the
upper and lower airways. For instance,
CD81 Trm cells generated after influenza
infection in mice appear to persist for
longer within the nasal mucosa than in
the lower airways, where an attrition over
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time is well described (107, 154–156).
Whether a unique adventitial niche
promotes greater Trm maintenance in the
upper airway requires further investigation.
In the context of chronic inflammation,
adventitial domains give rise to tertiary
lymphoid structures, such as inducible
bronchus-associated lymphoid tissue
(iBALT) (150). Certain types of CD41

Trm cells have been shown to persist in
iBALT (115, 157, 158). In addition,
although organ transplant studies reveal
that Trm cells can persist for years,
studies in mice and humans have
suggested that Trm cells may be capable
of egress from peripheral tissues,
presumably via adventitial lymphatics, and
join the circulating memory T cell
compartment, while maintaining features
of the Trm program and exhibiting a
predilection to return to the tissue of
origin (159–162). The local environmental
signals dictating persistence, death, and
egress over time represent an active and
important area of study. For instance,
lymphatic endothelial cells can acquire and
maintain antigen for prolonged periods of
time in vivo, which influences memory T
cell biology (163, 164). Whether such
antigen “archiving” occurs in adventitial
niches or iBALT to regulate Trm cell
biology remains unclear. In terms of Brm
cell biology, the niches for Brm cell
persistence appear different depending on
the model. After influenza infection, Brm
cells persist in iBALT (113, 114, 136). In
contrast, after pneumococcal pneumonia
in mice, Brm cells seem to predominantly
persist independently of mature iBALT,
but rather within small clusters in
adventitial niches of bronchovascular
bundles (137).

iBALT is a well-characterized immune
niche within the lungs, defined by the
presence of distinct T and B cell areas, which
are interspersed with conventional dendritic
cells, follicular dendritic cells, and stromal
cell networks, and is generally located near
airways or blood vessels (165, 166). In some
instances, such as infection with
Mycobacterium tuberculosis, the formation of
iBALT structure is protective and is
beneficial to the host (167–169). In contrast,
under conditions of persistent exposure to
antigens during chronic inflammation,
including allergic inflammation or
autoimmunity, iBALT can mediate
immunopathology (170–172). Although
some of the early molecular signals that

mediate formation of iBALT structures have
been identified, including expression of
CXCL13, IL-17, and IL-22, the functional
role of iBALT toward a protective or
pathogenic function within the lungs
remains unclear (169, 173, 174). For
example, differences in the type and duration
of inflammation may result in distinct roles
of iBALT structures in vivo. Although iBALT
formation may serve an immediate
protective solution for pathogen control, if
left unresolved and upon chronic exposure to
antigen, it may result in long-term foci of
immunopathology. Furthermore, the flavor
of T cells associated with protective versus
pathological iBALTmay be distinct; although
Th1 and Th17 responses appear to be
involved in protective iBALT, prolonged
Th17 and Th2 responses may be associated
with immunopathologic responses (170,
174–177). For instance, persistent Th17 cell
responses and iBALT structures are
associated with airway pathology in chronic
obstructive pulmonary disease (172).
Defining the features andmechanisms
regulating protective versus pathologic
iBALT has important therapeutic
implications. For instance, mucosal vaccine
platforms that drive potential targets, such as
IL-17, IL-22, lymphotoxin-a, and the
associated chemokines CXCL13 and
CXCL12, has the potential to induce iBALT,
providing enhanced tissue-resident host
defense. However, pathways associated with
protective and pathogenic iBALT formation
may overlap significantly, underscoring the
need to define the unique features and
functions of iBALT in distinct contexts. Last,
delineating how epithelial, stromal, and
nervous system inputs regulate iBALT
development, persistence, and function
remains important. These new avenues of
research could open up a new field of host-
directed therapeutics that specifically target
iBALT for improved protection against
pathogens and inhibition of inflammatory
pulmonary diseases.

Together with tissue-resident adaptive
immune memory, ILCs and unconventional
T cells as well as other innate immune cells
can acquire andmaintain memory-like
properties, a process termed “innate
training.” Innate training is characterized by
a nonspecific (antigen-independent)
enhancement in cell responsiveness to
activating signals (178). Although the
mechanisms of innate training are cell-type
and context specific, the operational
pathways generally involve metabolic and

epigenetic reprogramming after stimulus
exposure (178). For instance, after activation,
ILC2s acquire memory-like properties,
including enhanced responsiveness to
alarmins, which are driven by epigenetic
changes that promote a poised effector
program (179). ATAC-seq (Assay for
transposase-accessible chromatin with
sequencing) analysis demonstrated that
memory-like ILC2s possess altered gene
accessibility, which is driven by Bach2 (BTB
Domain And CNCHomolog 2) and AP1
(Activator protein 1) motifs, and include a
“preparedness” program that allows
activation to previous subthreshold
stimulation (179). In addition to innate
training of immune cells, growing evidence
suggests that structural cells, including the
airway epithelium, can acquire and retain
inflammatory memories that regulate
immune responses. Last, the peripheral
nervous system plays an important role in
regulating immunity, but neuronal memory-
regulating tissue immunity remains a largely
unexplored area. The interested reader is
referred to the excellent reviews on these
topics (178, 180). An integrated
understanding of how the lungs “remember”
and “forget” inflammatory experiences is a
critical area of investigation. How do Trm
cells, Brm cells, and other forms of resident
memory develop and persist in the airways
and lungs? How do specific adventitial niches
change after inflammation, such as giving
rise to iBALT, to permanently change the
immune function of the lungs (Figure 1)?
Addressing such questions will be needed to
intelligently and effectively regulate airway
and lung immune memory to prevent and
treat pulmonary diseases.

Delineating Age-related
Changes in Lung Immunity

How is lung immunity altered
by aging?
There are marked differences in airway and
lung immunity across the human life course.
Early life is a critical period in immune
education in which individuals are exposed
to new environmental antigens and
pathogens. Growing evidence suggests that
exposures in utero and during early life,
including the acquisition of the lung
microbiome, can have long-term influences
on immunity (29, 181, 182). Early life is
associated with an increased risk of allergic
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asthma, which coincides with a Th2 bias in
the developing lung and can be influenced by
early environmental exposures (183, 184).
For example, during the perinatal period in
mice, there is an accumulation of type 2
innate immune cells within the lung that
occurs in an IL-33–dependent manner, and
postnatal lung DCs are efficient at inducing
Th2 immunity (183). Furthermore, as
outlined above, sympathetic innervation in
the lung exhibits a dopaminergic-to-
adrenergic transition during the postnatal
period, and dopamine signaling in CD41

T cells promotes Th2 cell differentiation and
susceptibility to allergic inflammation (64).
These physiological differences also increase
the risk of lower respiratory tract infection
(pneumonia) due to both bacteria and
viruses during early childhood. Indeed,
pneumonia is responsible for more than 6
million deaths per year in children,5 years
of age, and�1 million of these deaths occur
in neonates (infants.28 d of age) (185, 186).
Introduced above, the Th2 bias present early
in life results in dysregulated Th1- and
Th17-coordinated protection from
pathogens (187). Although the function of
infection-induced iBALT in children remains
a topic of controversy (188), it is notable that
children with severe respiratory infection
carry a high incidence of iBALT and that
iBALT appears in the lungs of nearly all late-
term fetuses that miscarry after pulmonary
infection–related amnionitis (189–191).
Finally, although influenza pneumonia has
classically demonstrated a J-shapedmortality
curve across the life course, children with
severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) infection
uncommonly develop severe pneumonia
(192). Analysis of upper respiratory tract
samples obtained from children and adults
with viral infection suggests that age-related
differences in IFN responses explain
differences in disease severity between
children and adults with SARS-CoV-2
pneumonia compared with pneumonia due
to other pathogens (193, 194).

Older age is also a dominant risk factor
for many other lung diseases, including
pneumonia (195). Indeed, pneumonia,
which is most often due to viral pathogens,
represents the leading cause of death from an
infectious disease (196, 197). Influenza
viruses cause 300,000–650,000 respiratory
deaths per year, principally among people
.65 years old (198). Recently, the
coronavirus disease (COVID-19) pandemic
has highlighted the dramatic association

between age and the severity of viral
pneumonia–induced lung injury (199, 200).
As the number of adults.65 years old will
exceed 2 billion by 2050, these epidemiologic
observations have prompted an examination
of how the immune system changes with age
to render older individuals more susceptible
to pneumonia (201).

Although a full accounting of age-
related immune system alterations is beyond
the scope of this ATS Document, we will
focus on the alterations in lung immunity
associated with advancing age. Changes in
both innate and adaptive immunity result in
the lungs of older individuals exhibiting
increased basal secretion of inflammatory
cytokines, decreased pathogen-induced T cell
cytokine production and cytolytic function,
and increased neutrophil-mediated tissue
injury (202). Older people have increased
levels of proinflammatory cytokines—
including IL-1b, IL-6, IL-8, and TNF-a—in
their circulation and lung tissue. Advancing
age is also associated with decreased
production of naive T and B cells. This
decreased production limits the diversity of
the adaptive immune pool, which becomes
progressively hypofunctional over time. As
discussed below, the tissue-protective and
reparative functions of lung immune cells are
also diminished with aging (203).

The cumulative effect of these age-
related alterations in immune cell phenotype
and function is decreased resilience to the
stress of pneumonia, which results in
increased mortality and often heralds the
compounding multimorbidity and
functional limitation observed among older
survivors of severe respiratory infection
(204–210). A complete view of cellular and
molecular mechanisms underlying age-
related immune system dysfunction in the
lung remain unclear, although aging
hallmarks—including epigenetic alterations,
mitochondrial dysfunction, cellular
senescence, and other phenomena—have
been proposed as causal mediators (211).
Identifying cell-nonautonomous versus cell-
autonomous mechanisms of age-related
immune system dysfunction provides a
tractable framework to study and address the
biology of aging in a translational context.
Importantly, murine models of viral
pneumonia and aging recapitulate many
features of human disease (199, 212, 213).
Here, we highlight recent studies of the effect
of aging on critical cell types involved in the
host response to experimental viral
pneumonia–induced lung injury—alveolar

macrophages, tissue-resident CD81 T cells,
and Treg cells.

Alveolar macrophages are responsible
for launching andmodulating the host
immune response to respiratory viral
pathogens. A recent study found that cell-
nonautonomous alterations in the aging lung
microenvironment govern the dysfunctional
response of alveolar macrophages to viral lung
injury (214). Alveolar macrophages acquired
transcriptional programs aligned with the age
of themicroenvironment, irrespective of their
age at the time of heterochronic (age-
mismatched) adoptive transfer. Interestingly,
heterochronic parabiosis experiments revealed
that age-related alterations in alveolar
macrophage phenotype and function are
independent of circulating factors or cells.
The authors went on to suggest that
hyaluronan, which is increased in the aged
lungmicroenvironment, drives a
hypoproliferative state in macrophages. This
study highlights the cell-nonautonomous role
that the aging lungmicroenvironment plays in
driving immune system alterations over the
life course.

After the initiating inflammatory events
mediated mostly by myeloid cells, the
adaptive T cell response to viral infection is
critical in viral clearance and in coordinating
resolution of inflammation and repair of the
damaged parenchyma. Tissue-resident
CD81 T cells represent a key cell type in
providing adaptive antiviral immunity.
Interestingly, a recent study demonstrated
that tissue-resident CD81 T cells contribute
to persistent lung pathology in aged hosts
(215). Unlike the data in alveolar
macrophages discussed above, adoptive
transfer experiments revealed that the age-
related dysfunction of tissue-resident CD81

T cells is cell autonomous, as transfer of
tissue-resident CD81 T cells from aged lungs
were unable to induce heterologous
protective immunity. Depletion of tissue-
resident CD81 T cells mitigated postviral
lung fibrosis in aged, but not young, mice.
Altogether, these findings support a cell-
autonomous role for tissue-resident T cells in
driving age-related lung pathology after viral
pneumonia.

Foxp31 (Forkhead Box P3) Treg cells are
a subset of CD41 T cells possessing immune-
suppressive functions that maintain self-
tolerance and dampen overexuberant immune
system activation (216, 217). Foxp3 gene
mutations inmice result in the scurfy
phenotype, characterized by severemultiorgan
lymphoproliferative inflammation (218, 219).
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Human FOXP3mutations lead to a similar
presentation: the immunodysregulation,
polyendocrinopathy, enteropathy, X-linked
(IPEX) syndrome (220). Beyond their
canonical suppressive function, investigators
have identified emerging tissue-protective and
tissue-reparative roles for Treg cells, mediated
in part by the generation of proepithelial
growthmolecules such as amphiregulin (221).
A recent study demonstrated that aged Treg
cells are hypofunctional in their ability to
suppress inflammation and promote repair in
amurinemodel of influenza pneumonia (222).
The authors found that in heterochronic
adoptive Treg cell transfer experiments, aged
Treg cells exhibit a cell-autonomous
impairment in their ability to resolve lung
inflammation and orchestrate lung
parenchymal repair after influenza
pneumonia. These results demonstrate that
Treg cells retain amemory of their age even
when transferred into an age-mismatched
environment. A corollary concept is that the
aged lungmicroenvironment retains its ability
to undergo Treg cell–mediated repair after
virus-induced lung injury. Mechanistically, the
authors found evidence for both a loss of
reparative function and a gain of deleterious
inflammatory function within Treg cells as a
function of age. Specifically, amphiregulin,
among other reparative molecules, was
upregulated to a greater extent by the lung
Treg cells of youngmice than agedmice after
influenza. Simultaneously, aged Foxp31 T cells
generated inflammatory cytokines (e.g., IFN-g
and IL-17A) and expressed canonical T helper
transcription factors (e.g., TBX21 [T-Box
Transcription Factor 21] and RORgt [retinoic
acid-related orphan receptor-gt]). DNA
methylation, a hallmark age-related epigenetic
alteration, governs Treg cell phenotype and
function inmice and humans across the life
course (212, 223–226). Interestingly, genome-
wide DNAmethylation profiling and
computational analyses determined that age-
related epigenetic alterations explained the loss
of reparative transcriptional programs after
influenza infection (222). In summary, this
work demonstrates how aging drives cell-
autonomous dysfunction of Treg cells in
mediating immune homeostasis and
promoting tissue repair after viral lung injury.
Defining themechanisms that promote age-
related alterations in the lung
microenvironment remains a critical area of
investigation in lung immunology. Delineating
how the airway and lung immune sensors as
well as tissue-resident immune cells and niches

change with aging will have significant clinical
implications in various pulmonary diseases.

Advancing Human Models of
Lung Immunity

How can we improve our ability to
model human lung immunity?
Animal models have been an essential tool to
define lung immunity in vivo, allowing for
the development of novel therapies for
human pulmonary diseases. Although
certain features of human disease can be
recapitulated in murine models, there are
important aspects of human biology that are
distinct in mice. For instance, the
transcriptional signature of Th2 cells in
humans andmurine models of allergic
disease are similar (227). In contrast, a
population of CD45RA1 effector memory
CD81 T cells, which represent a substantial
fraction of the memory CD81 T cell
compartment in humans, do not exist in
mice (228). Together with differences within
the immune system, there are notable
differences in airway structure and airway
epithelial cell composition between humans
andmice (229). In humans, pseudostratified
epithelium containing basal cells extends to
the terminal bronchioles, with the respiratory
bronchioles exhibiting a simple, cuboidal
epithelium lacking basal cells. In mice, a
pseudostratified epithelium with basal cells is
restricted to the trachea, with the
intrapulmonary airways exhibiting a simple
columnar epithelium without basal cells and
lacking respiratory bronchioles.
Consequently, it is important for
investigators using murine models to be
aware of such limitations when addressing
specific questions.

Given the power of murine
experimental systems, there is great interest
in modifying murine models to more
accurately recapitulate features of human
biology. For instance, it is now clear that
mice maintained in standard laboratory
conditions (“specific pathogen–free” [SPF])
exhibit a drastically different microbiome
and immune profile frommice with diverse
microbial exposures throughout life (230).
Wild or pet-store mice (i.e., “dirty mice”)
exhibit immune responses with greater
similarity to humans than SPFmice,
resulting in significant interest in using dirty
mice as a better model for human immunity
(230). For example, compared with SPF

mice, laboratory mice cohoused with pet-
store mice exhibit an immune response upon
influenza vaccination that better recapitulates
the response in humans (231). Specifically,
cohoused mice exhibited a dampened
vaccine-induced humoral response,
resulting in poorer control upon influenza
challenge (231). Consequently, mice with a
diverse history of microbial exposure
potentially offer a better preclinical system
for vaccine testing than SPFmice. Beyond
dirty mice, genetically modified mice have
been used to improve in vivo experimental
systems. For example, mice modified to
express human ACE2 (Angiotensin
Converting Enzyme 2) have allowed for the
study of SARS-CoV-2 infection in vivo,
including using mice with humanized Ig
genes to generate human antibodies against
the SARS-CoV-2 spike protein (232–234). A
wide variety of humanized murine models
have been developed to advance preclinical
studies, and innovations in this area have the
potential to further leverage experimental
techniques in mice to gain insight into
human biology (235).

The lack of a murine model can
significantly limit scientific progress in
biomedical research, including lung
immunology. For example, for.100 years,
eosinophilic inflammatory diseases such as
asthma, chronic rhinosinusitis with nasal
polyps, and allergic bronchopulmonary
aspergillosis have been associated with
extracellular deposits of morphologically
diverse crystals. First described by Charcot
followed by Leyden in the 19th century,
Charcot-Leyden crystals (CLCs) are
composed of Gal10 (galectin-10), which is
one of the most abundant proteins in human
eosinophils (236–239). However, mice lack
an ortholog of Gal10, and, as a result, it had
remained unclear whether CLCs regulate
disease or represent a bystander
phenomenon during eosinophilic
inflammation in vivo. The administration of
recombinant CLCs to mice has revealed
these crystals to be important regulators of
immunity (238). Specifically, administration
of Gal-10 crystals, but not soluble protein, to
the airways of mice significantly enhanced
inflammatory cytokine production, including
IL-1b, IL-6, and TNF-a (238). Furthermore,
CLCs enhanced neutrophil, monocyte, and
dendritic cell recruitment to the lungs as well
as enhanced mucus production by airway
epithelial cells (238). CLC treatment also
promoted antigen-specific T cell responses
and increased antigen-specific antibody
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responses in vivo (238). Of note, type 2
immunity in mice also triggers protein
crystal formation, which is due to
crystallization of two closely related
chitinase-like proteins, Ym1 (Chil3) and
Ym2 (Chil4) (239). Defining the biology of
CLC and pseudo-CLC (Ym1 and Ym2
crystals) and their function in type 2
immunity is an ongoing area of investigation.
Such work underscores the importance of
defining distinct features of murine and
human lung immunity, as it allows for the
development of novel murine models to
uncover new biology relevant to humans.

Although murine models have been
critical experimental systems for mechanistic
studies, there is great interest in developing
human ex vivomodels, allowing for
experimental approaches that cannot be
easily performed in vivo. The advent of
air–liquid interface cultures represented an
important breakthrough that allowed the
investigation of differentiated human airway
epithelial cells in vitro (240). Various
methods have been devised to advance the
air–liquid interface culture system, such as
organ-on-a-chip models and precision-cut
lung slices (PCLS) (240, 241). Efforts to
culture primary cells from healthy donors
and patients with pulmonary disease at
air–liquid interface have progressed, with the
development of protocols to induce self-
assembled organoids as well as biological and
bioengineered scaffolds. The latter
incorporate biodynamic forces to mimic air
flow and stretch to better simulate the in vivo
environment. However, as of yet, few of these
systems reflect the heterogenous epithelial
cell communities that are emerging from
large-scale sequencing studies described
above, and most do not recapitulate the
cross-talk between the airway epithelium,
peripheral nervous system, MP system, as
well as other cell types that occurs in vivo.
PCLS are an attractive model and can use
both healthy and disease-specific tissue (241).
However, PCLS eliminate the natural
innervation of the airways, and care must be
taken given heterogeneity between slices
from different locations, particularly in
disease states. Consequently, although these
approaches are very promising and will likely
play an important role, none can completely
recapitulate the complexity of human lung
biology in vivo. Obtaining samples from the
airways and lungs of humans is an essential
tool for understanding lung disease but
requires careful attention to the safety of
research participants as well as novel

technologies to extract as much information
as possible from limited samples (242).

Research bronchoscopy facilitates direct
sampling of the airways and has become an
indispensable tool for the study of human
lung immunology. BAL fluid, endobronchial
brushings or biopsies, and transbronchial
biopsies can be collected during
bronchoscopy and used for qualitative and
quantitative measurements of structural and
immune cells as well as mediators, mucus,
and features of tissue remodeling. Research
bronchoscopy has been most extensively
used in volunteer participants with chronic
lung diseases (e.g., asthma, chronic
obstructive pulmonary disease, interstitial
lung disease) or with chronic exposures
(e.g., cigarette smoke) and has substantially
contributed to our understanding of the
mechanisms that contribute to these
disorders (243–246). Research bronchoscopy
has also increasingly been applied to acute
lung diseases, including acute respiratory
distress syndrome and SARS-CoV-2
infection (128, 213, 247, 248). This approach
has significant advantages, including the
ability to measure dynamic immune
responses over time and to link these
responses to clinical outcomes. Limitations
include heterogeneity in the inciting cause as
well as the presence of coexisting conditions
or treatments that can alter lung immune
responses.

Airway challenge (or provocation)
models have been used since the 1980s and
are a powerful tool for studying dynamic
lung immune responses in vivo (249, 250).
These models allow for control over the
timing and intensity of exposure, can be
safely performed in both healthy volunteers
and participants with chronic lung disease,
and are generally well tolerated (251–254).
During airway challenge, an experimental
reagent is delivered to the upper or lower
airways to mimic environmental exposures,
infections, or asthma exacerbations.
Experimental reagents can be delivered to
the whole lung through the use of an
exposure chamber or via nebulization.
Alternatively, bronchoscopy can be used to
administer reagents to one or more
segments of the lung, allowing for more
precise localization and dosing while
limiting the total amount of lung exposed.
Airway challenge is often coupled with
pulmonary function testing or novel
imaging modalities to enable correlation
between the immune response and lung
structure and function (255, 256).

Airway challenge models have been
most extensively used to study mild to
moderate allergic asthma. Allergen- or virus-
induced asthma exacerbations can be
simulated by exposure of the lower airways
to allergen or inoculation of rhinovirus in the
nose (257, 258). In addition, some study
designs use sequential challenges, for
example administration of diesel exhaust or
ozone before allergen challenge, to
understand how environmental exposures
alter airway immune responses (259, 260).
These studies have contributed to our
understanding of the key cell types and
mediators involved in asthma exacerbations,
their kinetics, and the relationship between
inflammation, tissue remodeling, and airway
hyperresponsiveness. Importantly, challenge
models have also been successfully used to
predict the response to pharmacologic
interventions, thereby directly contributing
to the development of new treatments for
asthma (261, 262). In addition, human
challenge studies with respiratory viruses
have revealed novel biology that could not
have been replicated with other human
model systems. For instance, although
reinfection with a respiratory virus can be
partially explained by waning adaptive
immunememory, a recent study using nasal
administration of respiratory syncytial virus
demonstrated that neutrophilic
inflammation in the airways at the time of
pathogen exposure predisposes the host to
symptomatic infection (263). Furthermore, a
human influenza challenge study
demonstrated unique, innate-like features of
lung-resident CD81 T cells during influenza
infection (264).

Although research bronchoscopy and
airway challenge models have proven to be a
powerful tool for understanding the in vivo
airway immune response, one of the
limitations has been the relatively low
number of cells recovered. These challenges
are now being addressed by methodologies
for high-dimensional profiling of single cells,
including RNA and ATAC sequencing, mass
cytometry, and spectral flow cytometry.
Single-cell approaches have greatly facilitated
the study of rare cell types and are helping to
unravel heterogeneity within immune cell
subsets recovered from the airway (265, 266).
The application of multiomics approaches
and newer techniques, such as spatially
resolved transcriptomics, to research
bronchoscopy has the potential to increase
the resolution with which we can study
airway immune responses in vivo. Finally,
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machine learning approaches hold potential
to classify disease states and reveal novel
patterns present in high dimensional data
sets (267, 268).

Conclusions

In this workshop report, we have
discussed four areas of investigation that
we believe are critical to advance our
understanding of lung immunology,

including outlining important questions
and challenges (Table 1). Although this
report cannot be exhaustive, we believe
the themes discussed above represent
central topics of inquiry. Although there
has been tremendous progress in
defining the biology of airway and lung
immunity, it has become increasingly
clear that developing more integrative
models will require the development of
new tools and great multidisciplinary
collaborations. Specifically, improving

murine and human models and
leveraging novel single-cell technologies
will be necessary. In addition, multi-
investigator collaborations among
immunologists, epithelial and stromal
cell biologists, neuroscientists,
computational biologists, and clinicians,
among other disciplines, will be
necessary to develop new models and
novel therapeutic approaches to prevent
and treat inflammatory pulmonary
diseases. �
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Table 1. Outstanding Questions and Challenges in Airway and Lung Immunology

Airway/lung immune sensing
� How do novel epithelial cell types and states regulate airway immunity?
� How do airway epithelial cells, neurons, stromal cells, and immune cells cross-talk to regulate immunity?
� How does the microbiome influence airway and lung immunity?

Tissue-resident immune memory
� When and how is the tissue-residency program instructed in various adaptive lymphocyte populations?
� What are the niches supporting tissue-resident immune memory in various contexts?
� How does innate training integrate with Trm and Brm cells to imprint inflammatory memory at the tissue level?

Age-related changes in lung immunity
� Which features of the aging lung microenvironment are causal in driving cell-nonautonomous alterations in immune cells?
� What are the cell-autonomous pathways that drive age-related immune cell dysfunction?

Advancing human experimental systems
� How can animal models be improved to better recapitulate human airway and lung immunity?
� How do we improve human in vitro and ex vivo experimental systems?
� How do we improve human in vivo models, such as challenge studies, and enhance high-dimensional profiling of the recovered
cells?

Definition of abbreviations: Brm= tissue-resident memory B cell; Trm= tissue-resident memory T cell.
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