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Abstract

Metastatic lesions leading causes of the majority of deaths in patients with the breast can-

cer. The present study aimed to provide a comprehensive analysis of the differentially

expressed genes (DEGs) in the brain (MDA-MB-231 BrM2) and lung (MDA-MB-231 LM2)

metastatic cell lines obtained from breast cancer patients compared with those who have

primary breast cancer. We identified 981 and 662 DEGs for brain and lung metastasis,

respectively. Protein-protein interaction (PPI) analysis revealed seven shared (PLCB1,

FPR1, FPR2, CX3CL1, GABBR2, GPR37, and CXCR4) hub genes between brain and lung

metastasis in breast cancer. Moreover, GNG2 and CXCL8, C3, and PTPN6 in the brain and

SAA1 and CCR5 in lung metastasis were found as unique hub genes. Besides, five co-regu-

lation of clusters via seven important co-expression genes (COL1A2, LUM, SPARC,

THBS2, IL1B, CXCL8, THY1) were identified in the brain PPI network. Clusters screening

followed by biological process (BP) function and pathway enrichment analysis for both met-

astatic cell lines showed that complement receptor signalling, acetylcholine receptor signal-

ling, and gastric acid secretion pathways were common between these metastases,

whereas other pathways were site-specific. According to our findings, there are a set of

genes and functional pathways that mark and mediate breast cancer metastasis to the brain

and lungs, which may enable us understand the molecular basis of breast cancer
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development in a deeper levele to the brain and lungs, which may help us gain a more com-

plete understanding of the molecular underpinnings of breast cancer development.

Introduction

Breast cancer is the most frequent malignancy among females, followed by colorectal and lung

cancer in terms of incidence and vice versa in terms of mortality. Overall, breast cancer is the

second most common cancer following lung cancer [1]. Triple-negative breast cancer (TNBC)

is a subtype of breast cancer characterized by lack of an estrogen receptor (ER), progesterone

receptor (PR), and HER2 expression, with a high frequency of visceral metastases and worse

prognosis [2]. Clinically, metastasis is the major cause of death from cancer. Dissemination of

tumour cells to certain organs is an intentional process known as “metastatic organotropism”.

This process is controlled by various factors such as the cancer subtype, molecular features of

cancer cells, host immune microenvironment, and cross-talk with local cells [3]. For instance,

the host microenvironment is modified to form a pre-metastatic niche, which provides a pro-

tective environment for tumour growth in the host tissue before tumour dissemination [4].

Tumour metastasis is the main challenge in solid tumour oncology [5]. The most frequent

sites of breast cancer metastasis include the bones (30%–60%) and lungs (21%–32%), while the

liver (15%–32%) and brain (4%–10%) are less frequent [6]. Tumour genomic alterations such

as gene expression levels and mutations play an important role in stimulating breast cancer

metastasis. For instance, mutations in the TP53 tumour suppressor gene, which account for

more than 50% of metastatic TNBC tumours, as well as PIK3CA, RB1, and PTEN genes, are

more prevalent [7]. Liu et al. have reported that pathway enrichment levels of TP53-mutant

breast cancer samples are significantly different from TP53-wildtype breast cancer specimens.

They showed that immunogenic activity-associated pathways are altered in TP53-mutant BCs.

For example, the SPNS2 (sphingolipid transporter 2) gene, which promotes tumour metastasis

by regulating lymphocyte trafficking, has higher expression levels in TP53-mutant BCs com-

pared with TP53-wildtype samples [8]. Moreover, the homologous recombination system,

which is essential for maintaining DNA integrity, showed a deficiency in 10–20% of TNBC

patients due to germline mutations of BRCA1/2 [9]. Another study demonstrated that DEGs

and PPI networks are affected by the BRCA1/2 gene mutation in breast cancer samples. This

study also reported that distant metastasis, aggressiveness, and protein interactions in many

biological pathways are changed in BRCA1/2-mutated condition when compared with

BRCA1/2-wild-type breast cancer samples [10]. In addition to genomic alterations, tumour

microsatellite instability (MSI), which disrupts the DNA mismatch repair system, is another

stimulant of breast cancer metastasis [7].

Despite breakthroughs in early diagnosis and better treatment of breast cancer that lead to

improved survival, the median survival of breast cancer patients is approximately 4–5 months

after the development of brain metastasis and 22 months after the onset of lung metastasis [11,

12]. Hence, the development of management strategies for early diagnosis and treatment of

brain and lung metastases induced by breast cancer is of critical importance and would lead to

improved quality of life [13].

An aberrant gene expression plays a pivotal role in tumorigenesis, progression, and metas-

tasis of breast cancer [14]. For instance, Massaque and colleagues identified 18 genes, includ-

ing IL13Ra2, SPARC, MMP1, and MMP2, which can lead to breast cancer metastasis to the

lungs [15]. Lee et al. identified a panel of 22 genes such as VCAM1, CXCL12, and MMP2
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resulting in significant differential expressions between primary breast cancer and brain

metastasis [16]. Furthermore, Engin et al. have detected seven hub nodes for both brain and

lung metastases induced by breast cancer. Breast cancer was also linked to a higher incidence

of infectious diseases and immune system activity in lung metastasis, while catabolism and

transport were more prevalent in brain metastasis, according to this study [17].

The above-mentioned microarray data were utilized to identify DEGs and functional path-

ways associated with breast cancer-induced brain and lung metastases. Nevertheless, recently

with the advancement of next-generation sequencing technologies, cancer early detection has

become easier and faster [18]. The RNA-sequencing approach has several advantages over

microarray data processing, including the ability to identify a greater proportion of genes

encoding differentially expressed protein-coding genes, increased specificity and sensitivity,

and a wider dynamic range [19, 20]. As a result of this cutting-edge analytical technique, a

more solid option for fully investigating novel genes in the genetics area is accessible now.

RNA-sequencing data analysis on the human breast cancer cell line MDA-MB-231 has

shown that CXCR4, PLLP, VCAM1, SLC7A11, SLC8A2, and TNFSF4 genes are highly over-

expressed in brain metastasis [21]. CHIP-sequencing and RNA-sequencing data analysis per-

formed by Li et al. revealed that many biological pathways promote lung metastasis of breast

cancer. These include cell migration, immune response, and other potential factors and regula-

tors of metastasis such as LMO4 [22].

In the present study, we used RNA-sequencing gene expression data analysis to identify the

potential genes and key pathways in brain and lung metastases from breast cancer. Our study

provides a new deeper insight into betterunderstanding of these hub genes and the pathways

involved in tumour progression. The obtained data have depicted that certain hub genes are

correlated with brain and lung metastases from breast cancer, suggesting that they can poten-

tially be used in novel therapeutic strategies.

Materials and methods

Data source

The MDA-MB-231 (ATCCHTB-26) cell line derived from human tissues and its metastatic

subpopulations, BrM2 and LM2, were also appeared in Massaque analysis [23]. In this study,

we elucidated the main differences between the primary and secondary breast cancer cell lines

by comparing the transcriptional content of breast epithelial tissues in primary breast cancer

with their metastases to the brain and lungs. Three replicates of each sample were used for the

analysis. The RNA-seq FASTQ [24] files were downloaded from the Gene Expression Omni-

bus (GEO) [25] database (accession number: GSE138122).

Data processing and analysis

Paired-end reads were aligned to the hg38 reference genome by using STAR aligner version

2.7.0 [26] with the default parameters and quant mode for gene counts. DEGs were obtained

using DESeq2 [27]. The details of RNA-sequencing data processing methods were performed

according to a study conducted by Cail et al. [28]. An adjusted P-value of�0.05 was consid-

ered significant. To extract the DEGs, log2 fold changes greater than +2 and less than -2 were

set as the cutoff values. Volcano plots were used to visualize the concentration of significant

DEGs and site specific comparison of genes expression. Visualization of overlapping DEGs

was illustrated using Venn diagrams of the lung and brain metastatic samples compared with

non-metastatic breast cancer samples by using the VennDiagram package in R [29].

Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment analysis. Gene Ontology (GO) is categorized into three main parts; biological

PLOS ONE Metastatic tumour’s behavior from protein-protein interactions insight

PLOS ONE | https://doi.org/10.1371/journal.pone.0260584 January 19, 2022 3 / 23

https://doi.org/10.1371/journal.pone.0260584


process (BP), molecular function (MF), and cellular component (CC). BP and Kyoto Encyclo-

pedia of Genes and Genomes (KEGG) [30] pathway analyses for the DEGs from the clusters

were performed using an online functional annotation tool named Enrichr [31] (https://amp.

pharm.mssm.edu/Enrichr) to provide a comprehensive understanding of the biological infor-

mation of the genes, proteins, and their associated pathways. An adjusted P-value of<0.05

was set as the cutoff criteria for screening the BP and KEGG enrichment pathways. The BP

and KEGG results were ranked based on the Rich factor, that is the ratio of the DEG numbers

and the numbers of genes that were annotated in the associated pathway. Accordingly, the

degree of enrichment increases with an increase in the Rich factor.

Protein-protein interaction (PPI) network construction and subnetwork analysis. To

predict the interaction pattern of DEGs in brain and lung metastases, the PPI of DEGs was

visualized using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING)

database (https://string-db.org) with a combined score of>0.7. STRING currently covers 24.6

million proteins from 5090 organisms [32]. In general, there are three types of confidence

scores for PPIs: 1) low confidence: score < 0.4, 2) medium confidence: 0.4< score<0.7, and

3) high confidence: score >0.7 [33]. In the present study, we selected a high confidence score

to eliminate PPIs with low probability/significance and obtain more reliable results. However,

we also utilized the BioPlex database (https://bioplex.hms.harvard.edu) that includes nearly

120,000 interactions of nearly 15,000 proteins making it the most comprehensive experimen-

tally derived model of the human interactome [34]. Protein-protein interaction (PPI) networks

constructed with a confidence score of�0.7 from the STRING and BioPlex database were

then merged and visualized by Cytoscape software (version 3.7.2) [35]. We removed the pro-

tein nodes with no interactions with other proteins. In the PPI network, the genes served as

the nodes and the edges represented the associated interactions. The connectivity degree of

each node, which indicates the number of interactions of the corresponding gene, was exam-

ined by the CentiScaPe plugin [36] in Cytoscape. Nodes with a degree of connectivity�15

were labelled as hub genes. Moreover, protein complex analysis was carried out by the Molecu-

lar Complex Detection plugin (MCODE) [37], to identify significant primary clusters of this

large PPI network. The advanced options were set as follows: degree cutoff = 2, node score cut-

off = 0.2, and K-Core = 2. A complex of protein with a score�5 was selected as significant

sub-networks. Moreover, to identify which clusters may be co-regulated to other clusters, we

performed co-expression analysis via STRING database to all genes of clusters. Then, the

results of co-expression analysis were merged to clusters to find out which clusters have con-

nections with other clusters via co-expression genes. This could be helpful in understanding

and predicting the clusters that are co-regulated via co-expression genes in network analysis.

Subsequently, the BP and KEGG pathway enrichment analyses of the DEGs in all clusters were

performed using the Enrichr tool [31].

Cancer dependency map (DepMap)

Since all the analysis of the current study was performed on MDA-MB-231 cell lines, it was

necessary to evaluate the dependency score of selected hub genes for the MDA-MB-231 cell

line. Genetic dependencies of hub genes for MDA-MB-231 were surveyed using DepMap, an

online platform accessible at https://depmap.org/portal/download. DepMap is a cancer depen-

dency map that identifies the effect of gene knockdown viability for cancer cell lines [38]. Two

downloaded databases from DepMap were used in this study: the combined RNAi (D2_com-

bined_gene_dep_scores.csv) [39] and the CRISPR (Avana) Public 20Q2 (Achilles_gene_effect.

csv) [40]. In both databases, a lower score represents a higher dependency of hub genes for the

viability of the MDA-MB-231 cell line and zero indicates no dependency [38].
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Survival analysis of hub genes

Clinical outcome analysis of the hub genes in breast cancer was carried out by the Kaplan-

Meier plotter database (http://kmplot.com/analysis/), which enabled us to assess the effect of

54 000 genes on survival in 21 cancer types. These cover 6234 breast, 2190 ovarian, 3452 lung,

and 1440 gastric cancer patients’ overall survival information. In this database, the gene

expression data and overall survival information are based on GEO, EGA, and TCGA. The

survival analysis was carried out for all breast cancer subtypes, not just TNBC. Patients were

categorized into two groups based on the median of each hub gene expression in the Kaplan-

Meier plotter in order to perform overall survival analysis. The results from this tool can assist

us in cancer biomarker assessment in order to improve clinical decisions and health care

policies.

Results

Differentially expressed gene (DEG) analysis in brain and lungs metastatic

breast cancer cells

The gene expression profile of brain metastatic breast cancer (BrM2) and lung metastatic

breast cancer (LM2) cell lines of human breast cancer patients were obtained from RNA

sequencing analysis (S1 Table). As shown in Fig 1 and S2 Table, we obtained 981 DEGs (525

up-regulated and 456 down-regulated) for primary breast cancer to the BrM2 cell line (S3

Table) and 662 DEGs (328 up-regulated and 334 down-regulated) for primary breast cancer to

the LM2 cell lines using log2 fold change� -2 and� +2 and adjusted p-value� 0.05 (S4

Table). The Venn diagrams of these DEGs depicted in Fig 2 indicate that 171 up-regulated

genes (S5A Table) and 151 down-regulated genes (S5B Table) were shared between the two

metastatic cell lines, i.e. BrM2 and LM2.

Protein-protein interaction (PPI) network construction

We used the STRING and BioPlex proteins databases to construct a PPI network. To calculate

the interaction confidence in the network, each edge is assigned a score as the edge weight.

This score represents the estimated probability that a given interaction is biologically meaning-

ful. PPIs with a confidence score higher than 0.7 were selected to ensure the quality of interac-

tions and minimize false-positive results. The PPI data for DEGs in the breast cancer

metastases from the BrM2 cell line revealed 429 nodes and 1072 edges in the STRING database

and 230 nodes and 247 edges in the BioPlex database. Merging these two networks resulted in

a new network with 529 nodes and 1319 edges (Fig 3). For the brain metastasis cell line, 34

genes are reported as the hub genes by screening the nodes with a degree of connectivity

higher than 15 (Table 1A). The degree of connectivity for G protein subunit gamma 2 (GNG2)

and G protein subunit gamma transduction 2 (GNGT2) were> 40 in the brain metastases.

Also, 27 nodes were reported as unique for the BrM2 cell line that was not found among DEGs

of the lung metastasis LM2 cell line. We identified 240 nodes and 500 edges from the STRING

database with a confident score�0.7 and 108 nodes and 81 edges from the BioPlex database,

which were merged to form 300 nodes and 581 edges for the LM2 cell line (Fig 4). Analysis of

the protein connectivity showed that the formyl peptide receptor 2 (FPR2), CXC motif chemo-

kine receptor 4 (CXCR4), serum amyloid A 1 (SAA1), C-C motif chemokine receptor 5

(CCR5), formyl peptide receptor 1 (FPR1), C-C motif chemokine receptor 3 (CCR3), C-X3-C

Motif Chemokine Ligand 1 (CX3CL1), C-X-C Motif Chemokine Ligand 11(CXCL11), G Pro-

tein-Coupled Receptor 37 (GPR37), Gamma-Aminobutyric Acid Type B Receptor Subunit 2

(GABBR2) and phospholipase C beta 1 (PLCB1) were hub nodes with degrees of�15 in breast
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cancer LM2 cell line (Table 1B). Notably, four hub genes (SAA1, CCR3, CCR5 and CXCL11)

were unique among the breast cancer LM2 cell line; they were not identified among DEGs

from the metastatic BrM2 cell line. There were seven shared hub nodes (FPR2, CXCR4, FPR1,

CX3CL1, GPR37, GABBR2 and PLCB1) between metastatic breast cancer cell lines.

Functional analysis of protein network. The genes in the top eight subnet complexes

were input into the Enrichr database for BP and KEGG pathway enrichment analysis (Figs 5

and 6 and S7 and S8 Tables). The most significantly enriched BPs in brain metastasis were the

poly-N-acetyllactosamine biosynthetic process, O-glycan processing, and sialylation (Fig 5).

The most outstanding KEGG pathways that were enriched in the brain metastasis were the

mucin-type o-glycan biosynthesis pathway, endocrine and other factor-regulated calcium

reabsorption pathways, and protein digestion and absorption pathway (Fig 6). Enrichment

analysis showed that the most significant BPs in lung metastasis were T cell chemotaxis and

dendritic cell chemotaxis (Fig 5). Complement receptor-mediated signalling pathway,

Fig 1. Dispersion patterns of differential expression genes (DEGs): (A) Volcano plot of DEGs in brain metastasis from

breast cancer. (B) Volcano plot of DEGs in lung metastasis from breast cancer. The x-axis represents the log2 fold

change and the y-axis represents the negative base 10 logarithm base 10 of the adjusted P-value. The cutoff criteria

were the adjusted P-value�0.05 and log2 fold change higher than +2 and less than -2. The red dashed lines indicate

log2 fold change� -2 and� +2 for the down-regulated and up-regulated genes, respectively.

https://doi.org/10.1371/journal.pone.0260584.g001

Fig 2. Venn diagram that shows the overlap of differentially expressed genes (DEGs) between the brain and lung

metastases from breast cancer: (A) A total of 456 and 334 down-regulated DEGs were identified for brain and lung

metastases, respectively, among which there were 151 common DEGs. (B) A total of 525 and 328 up-regulated DEGs

were explored for brain and lung metastases, respectively, among which 171 DEGs were shared.

https://doi.org/10.1371/journal.pone.0260584.g002
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acetylcholine receptor signalling pathway, and immune response-activating cell surface recep-

tor signalling pathway were the most important shared BPs between the lung and brain metas-

tases (Fig 5). Moreover, the gastric acid secretion pathway, insulin secretion pathway, and

salivary secretion pathway were common KEGG pathways between the brain and lung metas-

tases (Fig 6).

Protein complex analysis. We used the MCODE plugin in the Cytoscape environment to

analyze sub-network clustering. Eight clusters with a score� 5 from the PPI network were

screened for breast cancer brain metastatic cell line, BrM2 (Fig 7A and S6A Table). To indicate

which clusters are co-regulated, we performed co-expression analysis on all eight clusters

using minimum cut-off > = 4 (Fig 7A) and 12 proteins with 10 co-expression interactions

were identified (Fig 7B). The eight clusters shown in Fig 7A were merged with the co-expres-

sion network in Fig 7B to illustrate co-expression connections between different clusters and

predict which clusters were possibly co-regulated (Fig 7C). Hence, the 10 co-expressed edges

between 12 nodes shown in Fig 7B reveal that out of eight total clusters, five are possibly co-

regulated as seen in Fig 7C. Cluster 8 circled in Fig 7C includes 8 out of 10 co-expressed edges,

indicating the importance of this cluster as it interacts with four other clusters (1, 3, 6, 7). The

down expressed gene COL1A2 is shown to be responsible for five co-expressed interactions,

three of which connect cluster 8 to other clusters (3, 6, 7). Besides, two further interactions of

Fig 3. The Constructed PPI network with the DEGs for brain metastasis from breast cancer. Disconnected nodes are hidden in the network. The

size of each node represents the degree of connectivity for identifying the key hub genes. The red nodes are up-regulated genes, while the blue nodes

represent the down-regulated genes.

https://doi.org/10.1371/journal.pone.0260584.g003
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COL1A2 are inside cluster eight (Fig 7C). The LUM protein is co-expressed with COL1A2,

SPARC from cluster eight and THBS2 from cluster three. Therefore, the LUM is a candidate

that can co-regulate clusters 7 and 8 as well as clusters 3 and 8. Also, the THBS2 node repre-

sented two interactions with LUM and COL1A2 from cluster seven and eight, respectively.

The THY1 and CXXL8 proteins are co-expressed with COL1A1 and IL1B, connecting cluster

8 to clusters 6 and 1, respectively. Clusters 6 and 8 are presumably co-regulated with THY1

and COL1A2 connection. Similarly, clusters 3 and 8 are co-regulated with THBS2 and

COL1A2 interaction. Cluster 1 and 8 are also co-regulated with CXCL8 and IL1B interaction.

Table 1. Nodes with the highest degree of connectivity in the PPI network (degree�15). (A) Hub nodes extracted from the brain metastatic breast cancer PPI network.

(B) Hub nodes obtained from the lung metastatic breast cancer PPI network.

A. Hub genes in the brain metastatic breast cancer B. Hub genes in the lung metastatic breast cancer

Gene symbol Degree Expression alteration Gene symbol Degree Expression alteration

GNG2 43 Down-regulated FPR2� 24 Down-regulated

GNGT2 40 Up-regulated CXCR4� 24 Down-regulated

CXCR4� 35 Up-regulated SAA1 24 Down-regulated

FPR2� 34 Down-regulated CCR5 19 Down-regulated

C3 34 Down-regulated FPR1� 18 Down-regulated

EGF 33 Down-regulated CCR3 17 Down-regulated

CXCL8 31 Up-regulated CX3CL1� 15 Down-regulated

MMP9 27 Up-regulated CXCL11 15 Down-regulated

CX3CL1� 23 Down-regulated GPR37� 15 Up-regulated

FPR1� 22 Down-regulated GABBR2� 15 Up-regulated

CXCL16 22 Down-regulated PLCB1� 15 Up-regulated

GPR55 21 Down-regulated

WNT5A 21 Up-regulated

GABBR2� 21 Up-regulated

S1PR5 20 Up-regulated

ADRA2C 19 Down-regulated

DRD2 19 Down-regulated

TIMP1 19 Down-regulated

GPR37� 19 Up-regulated

S1PR3 19 Up-regulated

ACKR3 18 Down-regulated

PLCB2 18 Up-regulated

AVPR2 18 Up-regulated

PLCB4 18 Up-regulated

GRM8 18 Up-regulated

PLCB1� 18 Up-regulated

HTR1F 18 Up-regulated

COL18A1 17 Down-regulated

PTPN6 16 Down-regulated

GNAO1 16 Down-regulated

ITGB2 16 Up-regulated

HTR2C 16 Up-regulated

CFP 15 Down-regulated

LRP2 15 Up-regulated

(�) indicates the hub genes that are shared between the two types of metastases.

https://doi.org/10.1371/journal.pone.0260584.t001
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Cluster 7 and 3 are also co-regulated by THBS2 and LUM interaction. Cluster 8 and 7 co-regu-

lated with LUM-COL1A2 and LUM-SPARC interactions. Some interactions are co-expressed

inside the cluster such as FPR1-FPR2, MMP3-MMP1, COL1A2-COL5A1, and COL1A2-S-

PARC interactions. These intracluster interactions maintain the connectivity of the network.

In the case of lung metastasis cell line from breast cancer, we identified four clusters with a

score of�5 (S6B Table), revealing only one co-expression connection inside of cluster 1 (S1

Fig).

Cancer dependency map (DepMap)

To evaluate the dependency of breast cancer MDA-MB-231 cell line on identified hub genes,

gene knockout analysis by CRISPR and RNA interference (RNAi) was carried out. We exam-

ined the necessity of identified hub genes involved in brain and lung metastasis of breast can-

cer to determine the viability of the MDA-MB-231 cell line. In total, the results of gene

knockout by RNAi and CRISPR revealed that 21 and 16 hub genes are essential for the

MDA-MB-231 cell line, respectively. Eight genes CXCL8, C3, MMP9, GABBR2, WNT5A,

Fig 4. The Constructed PPI network with the DEGs for lung metastasis from breast cancer. Disconnected nodes were hidden in the network. Key

hub nodes were highlighted with a larger size based on the degree of connectivity. Red and blue circles indicate up-regulated and down-regulated genes,

respectively.

https://doi.org/10.1371/journal.pone.0260584.g004
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Fig 5. Biological process (BP) enrichment analysis for all function clusters of the brain and lung metastases network. The size of the circles

indicates the gene numbers enriched in each BP. The adjusted P-value�0.05 was set as the threshold.

https://doi.org/10.1371/journal.pone.0260584.g005

Fig 6. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis for all function clusters of the brain and lung metastases network.

The size of the circles represents the number of genes enriched in each pathway. The adjusted P-value�0.05 was set as the cutoff.

https://doi.org/10.1371/journal.pone.0260584.g006
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Fig 7. Subnetwork analysis from PPI network. A) Sub-network analysis of PPI network shows eight clusters in brain metastasis tumours. The colours

represent differentially expressed values while the node size represents the count of interactions(degree) in the PPI network. B) Results of co-expression

analysis obtained from eight clusters. C) The result of merging the clusters in A with co-expression in B to identify which clusters are co-regulated. To

this end, co-expression genes were merged with eight clusters sub-networks to indicate a possibly co-regulated sub-network. Finally, co-expression

edges showed with red sine waves indicate possible co-regulation between five clusters.

https://doi.org/10.1371/journal.pone.0260584.g007
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S1PR5, CXCL16, and GNAO1 were affected by both CRISPR and RNAi gene knockout meth-

ods (S9 Table).

Survival analysis of hub genes

We used overall survival analysis with the Kaplan-Meier plotter database to analyze the prog-

nostic value of seven differentially expressed hub genes (FPR2, CXCR4, FPR1, CX3CL1,

GPR37, GABBR2 and PLCB1) that were common in both the lung and brain metastases from

breast cancer, but only GPR37 and FPR1 genes represent significantly (log-rank P =< 0.05)

values (Fig 8A, S10 Table), as well as four specific hub genes of lung cell line (SAA1, CCR5,

CCR3 and CXCL11) were significantly resulted with only two SAA1 and CCR5 genes (Fig 8B,

S10 Table). Herein, the results of 27 specific hub genes of brain cell line were shown via seven

significant values in survival analysis (Fig 8C, S10 Table).

Moreover, Up-regulation of GPR37 (HR 1.31, P = 0.0044) and CXCL8 (HR 1.47, P = 6.6e-

05) and down-regulation of FPR1 (HR 0.64, P = 0.0074), SAA1 (HR 0.66, P = 0.0017), CCR5

(HR 0.56, P = 4.9e-05), GNG2 (HR 0.56, P = 0.3.7e-05), C3 (HR 0.67, P = 3.2e-05) and PTPN6

(HR 0.7, P = 0.00023) were significantly associated with an unfavorable overall survival in

breast cancer patients (Fig 8, S2 Fig).

Discussion

Metastasis is the main cause of mortality in breast cancer, with an overwhelming burden on

the health system, especially in low and middle-income countries [41]. Therefore, a compre-

hensive investigation aiming reduction of the mortality rate must be conducted. In this study,

we used bioinformatics approaches to examine the differences and similarities among gene

expression profiles between LM2 and BrM2 metastases cell line obtained from breast cancer

patients. A panel of 981 and 662 DEGs were identified to have an association with breast can-

cer metastasis to the brain and lungs, respectively (Fig 1 and S3 and S4 Tables). Among these,

we identified seven hub genes (FPR2, CXCR4, FPR1, CX3CL1, GPR37, GABBR2 and PLCB1)

that overlapped between the brain and lung metastases (Table 1). Survival analysis showed that

the over-expression of GPR37 and the down-regulation of FPR1 were associated with poor

overall survival in breast cancer patients (Fig 8), indicating that these hub genes may poten-

tially be a driver for breast cancer development.

PLCB is an enzyme that plays a key role in the cell cycle and proliferation, both of which are

important in tumour initiation and development [42]. Sengelaub et al. demonstrated the up-

regulation of PLCB1 in extremely metastatic breast cancer cells [43]. Formyl-peptide receptors

(FPRs) belong to the chemotactic G-protein-coupled receptor (GPCRs) family have an impor-

tant role in inflammation, immune responses, and cancer progression [44]. Vacchelli et al.

reported that poor patient outcome and metastasis-free in breast and colorectal cancer patients

who underwent adjuvant chemotherapy was linked to a loss-of-function allele of the gene that

encodes FPR1 [45]. Moreover, the ALX/FPR2 axis, a main stop signal of inflammation, was

shown to be down-regulated in MDA-MB-231 cancer cell lines [46].

Previous studies have revealed that the chemokine CXCL12 can bind to the CXCR4 recep-

tor and lead to cell chemotaxis, proliferation, and gene transcription. CXCR4 overexpression

in cancer cells is associated with tumour growth, angiogenesis, and metastasis [47]. Interest-

ingly, we found that the CXCR4 gene had a different pattern of expression in the BrM2 cell

line compared to LM2 (Table 1). This gene was over-expressed in the brain metastatic cell line,

but down-regulated in the LM2 cell line. Nobutani et al. demonstrated that the expression

level of CXCR4 was highly dependent on the change of the tumour environment. They showed

that the expression level of CXCR4 was attenuated in lung metastasis from breast cancer
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compared to cancer cells in orthotopic tumours because the orthotopic tumours were sub-

jected to harsher stress-promoting factors (e.g. hypoxia and shortage of nutrients) than the

metastatic cells in the lungs [48]. Nevertheless, it has been shown that CXCR4 expression was

agumented in both lung and brain metastases induced by breast cancer [49]. Therefore, the

Fig 8. Prognostic values of four specific and two shared hub genes in the brain and lung metastases from breast

cancer patients (Kaplan Meier-plotter database). (A) GPR37 and FPR1 which shared between brain and lung

metastasis (B) SAA1 and CCR5 were specifically indicated in lung metastasis. (C) GNG2 and CXCL8 were specifically

represented among brain metastasis samples. The red line implies the high-expression group and the black line

represents the low-expression group. The high- and low-expression cohorts were divided by the median survival time.

https://doi.org/10.1371/journal.pone.0260584.g008
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difference in the tumour environment of the lungs and brain may be the possible reason for

the different expression level of CXCR4. Taken together, we assume that the different patterns

of CXCR4 expression determine which tissue is to be metastasized, suggesting that CXCR4

could be a prognostic biomarker for metastasis classification in breast cancer.

G protein-coupled receptors (GPRs) are located on the cell’s surface and are involved in

many biological and physiological processes. Cancer cells dysregulate their normal physiologi-

cal functions, leading to tumour growth and metastasis [50]. Our analysis demonstrated that

GPR37, as a hub gene, was up-regulated in both brain and lung metastatic breast cancer cell

lines. In line with this, Kubler et al. showed that GPR37 is a receptor for prosaptide ligand and

over-expressed in breast cancer tissues [51]. Considering the aforementioned reports, these

genes might be potential biomarkers for the diagnosis of breast cancer and its metastasis.

In addition, we identified 34 hub genes for the brain metastatic breast cancer cell line.

Among them, 27 hub genes were specific in the BrM2 cell line: GNG2, GNGT2, C3, EGF,

CXCL8, MMP9, CXCL16, GPR55, WNT5A, S1PR5, ADRA2C, DRD2, TIMP1, S1PR3,

ACKR3, PLCB2, AVPR2, PLCB4, GRM8, HTR1F, COL18A1, PTPN6, GNAO1, ITGB2,

HTR2C, CFP, LRP2 (Table 1). Among these genes, we conducted a more thorough investiga-

tion of the GNG2, CXCL8, C3, and PTPN6 genes, because they were associated with poor

patients outcome (Fig 8, S2 Fig).

GNG2 is involved in the structure of the heterotrimeric G protein [52] and affects the devel-

opment and localization of metastases [53]. Although previous studies confirmed the down-

expression of GNG2 in malignant melanoma [54] and pancreatic ductal adenocarcinoma

(PDAC) [55] cancers, there has been no discussion so far about the role of GNG2 in breast

cancer and its metastasis to the brain. Interestingly, we found that the down-expression of

GNG2 is associated with breast cancer metastasis to the brain. This gene can be of interest to

clinical researchers due to the provided therapeutic insights.

Brysse et al. reported that the mRNA expression of CXCL8 was decreased upon siRNA

transfection against ZO-1 in invasive breast cancer cells, but not in non-invasive breast cancer

cells, suggesting that the CXCL8 plays a key role in breast cancer progression [56]. Comple-

ment component C3 (C3) is a protein that plays an important role in innate immunity. Dowl-

ing et al. demonstrated that this gene is among the best candidate biomarkers in breast cancer

[57], as we discussed in this research. Several studies have shown that the DNA methylation-

mediated down-regulation of protein tyrosin phosphatase non-receptor type 6 (PTPN6) was

linked with the progression of esophageal squamous cell carcinoma [58] and gastric cancer

[59]. Therefore, it seems down-regulation of this gene could potentially be a prognostic bio-

marker in breast cancer brain metastasis as well.

We also identified 11 hub genes related to the LM2 cell line, of which four genes including

SAA1, CCR3, CCR5, and CXCL11 were specific to lungs metastasis. Among them, down-regu-

lation of SAA1 and CCR5 was associated with poor overall survival in breast cancer patients

(Fig 8). In an effort, Ni et al. showed the prognostic value of SAA in patients with hepatocellu-

lar carcinoma [60]. Moreover, Stange et al. identified 15 genes including SAA1 that were

down-regulated in colorectal metastasis to the liver [61]. We thus propose that the SAA1 gene

may potentially be a prognostic candidate for breast cancer metastasis to the lungs. Previous

studies have reported that the CCR5 over-expression reinforced the CRC metastasis to distant

organs [62, 63]. However, the CCR5 status in breast cancer lung metastasis has not been

reported yet. We, therefore, propose that the down-regulation of CCR5 could be a diagnostic

biomarker for breast cancer progression to the lungs.

Gene knockout analysis using RNAi on the hub genes was shown to be associated with

brain metastasis in the MDA-MB-231 cell line in which the GNGT2 gene has a major role in

decreased viability. By contrast, among the common hub genes between brain and lung
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metastases, only RNAi knockout of the FPR2 gene affected the cell line viability. Overall, gene

knockout results show that most of the identified hub genes could be critical for the

MDA-MB-231 cell line (S9 Table).

In the current study, eight sub-networks were identified by the MCODE plugin for brain

metastasis and four sub-networks for lung metastasis from breast cancer (S6 Table). We postu-

late that cluster 8 with eight co-expression connections to clusters 1, 3, 6, and 7 may be linked

to each other and act as a system in brain tumour metastasis. (Fig 7C). We demonstrated that

COL1A2 is an important gene with five co-expression interactions with the other three clus-

ters. Evaluation of differentially expressed genes between primary breast cancer and brain met-

astatic tissues showed that the COL1A2 gene is down-regulated in brain metastatic compared

with primary pairs, indicating that this gene is critical to breast cancer progression to the brain

[64]. Lumican, also known as LUM, is another significant co-regulated gene that connects clus-

ter 7 to clusters 8 and 3 with three co-expression interactions (Fig 7C). Karamanou et al. have

reported that the invasion and proliferation index of the MDA-MB-231 cell line is inversely

associated with the down-regulation of the LUM gene, supporting our findings that down-reg-

ulation of this gene could be an essential factor involved in breast cancer brain metastasis [65].

THBS2 gene is also responsible for a co-regulation between cluster 3 and clusters 7–8. Gene

expression analysis between ductal carcinoma in situ (DCIS) and invasive breast carcinoma

(IBC) tissues has indicated that the THBS2 gene is up-regulated during the transition between

non-invasive to invasive breast cancer [66]. Furthermore, four other candidate genes SPARC,

THY1, IL1B and CXCL8 are reported in this study as the key regulatory genes which can mod-

ulate co-regulatory between different clusters in the PPI network of the brain metastasis

tumours from breast cancers (Fig 7C). Accordingly, special attention to these genes in transla-

tional oncology settings may lead to the discovery of novel important biomarkers in the spread

pathway of breast cancer to the brain.

Sub-network analysis significantly indicated that the genes involved in clusters 1 and 2 of

the PPI for brain metastasis, as well as the results from GO and KEGG, were largely similar to

those in clusters 1 and 2 of PPI analysis of the lung metastasis (Figs 5 and 6 and S6 and S7

Tables), which indicates that these two clusters are significantly shared between brain and lung

metastases. The most significantly shared BP between brain and lung metastases was the com-

plement receptor-mediated signalling pathway (Fig 5). Vadrevu et al. showed that the comple-

ment anaphylatoxin C5a receptor (C5aR) promotes lungs metastasis of breast cancer in a pre-

clinical mouse model of breast cancer by abolishing CD8+ and CD4+ T-cell responses [67].

Therefore, complement receptors can serve as potential targets of immunotherapy drugs in

breast cancer metastasis.

However, some BPs were identified as unique BPs in either the brain or lung metastasis.

The most important BP which dysregulated only in brain metastasis was the poly-N-acetyllac-

tosamine biosynthetic process (Fig 5). It has been reported that cell-cell interaction and meta-

static potential of tumour cells are facilitated by stably synthesizing the poly-N-

acetyllactosamine chain on the extracellular side of cancer cells. In the breast cancer cells,

poly-N-acetyllactosamine branching promotes further glycan modification, increasing its met-

astatic potential significantly [68]. These data suggest that this BP may have a specific driver

function in brain metastasis from breast cancer.

In addition, T cell chemotaxis was the main BP that was correlated with lung metastasis

from breast cancer (Fig 5). Olkhanud et al. showed that breast cancer lung metastasis is medi-

ated by chemokine receptor-induced chemotaxis, but this process is not adequate to promote

metastasis due to the elimination of tumour cells in the lung by natural killer (NK) cells. They

explained that lung metastasis needed chemokine receptor regulatory T cells (Treg) to elimi-

nate NK cells; thereby, tumour cells become highly colonized in the lungs [69]. All in all, our
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results support the previous report, demonstrating the involvement of this BP in the progres-

sion of breast cancer.

KEGG pathway analysis of the DEGs from all sub-networks revealed that the most promi-

nent shared pathways between the lung and brain metastases were the gastric acid secretion

and insulin secretion signalling pathways (Fig 6). Numerous pieces of evidence are supporting

the role of gastrin-releasing peptide (GRP) in the initiation and progression of breast cancer.

Miyazaki et al. have demonstrated that the growth of MDA-MB-231 human breast cancer

xenografts in nude mice is inhibited by utilizing antagonist molecules such as RC-3940-II and

RC-3095 that target GRP growth factor [70]. Moreover, the effect of gastrin-releasing peptides

in lymph node metastasis of breast cancer has been investigated [71]. These data indicate that

the gastric secretion track may be considered as a useful way of diagnosing brain and lung

metastasis from breast cancer. Additionally, it has been shown that high levels of insulin

caused by abnormal insulin secretion kinetics are positively correlated with breast cancer pro-

gression [72].

Fig 6 shows that the most significant pathways associated with brain metastasis breast can-

cer were mucin-type O-glycan biosynthesis, and endocrine and other factor-regulated calcium

reabsorption. Mayoral et al. have demonstrated that biosynthesis of mucin-type O-glycans is

dysregulated in breast cancer metastasis to the brain [73]; which is an agreement with our

observation in this study. It has been demonstrated that in the MDA-MB-231 breast cancer

cell line, the secretion of PTH-related peptide (PTHrP) is increased in response to elevated

extracellular calcium. Subsequently, Ca2+-sensing receptor (CaR) is over-expressed in this cell

line, suggesting that reabsorption of calcium by the MDA-MB-231 cell line is of importance

for its further growth [74]. Collectively, we predict that these two pathways determine the inva-

sion and metastasis of breast cancer to specific target tissues.

Several studies in the literature have used gene expression profiling to identify differentially

expressed genes and functional pathways in brain and lung metastases from breast cancer. For

instance, Massaque et al. identified 18 differentially expressed genes, including IL13Ra2, that

mediate breast cancer metastasis to the lungs. These findings support our observations (S3 and

S4 Tables). They reported that the IL13Ra2 expression level was highly associated with aggres-

sive lung metastatic populations [15]. Engin et al. have identified seven hub genes, including

MMP1, that were associated with brain metastasis from breast cancer and seven key nodes,

including CXCR4 and MMP1, for lung metastasis from breast cancer [17]. As shown in

Table 1, we also identified CXCR4 as a hub gene in both metastases. Moreover, we identified

that the MMP1 gene is over-expressed in both metastases cell lines (S3 and S4 Tables), as a pre-

vious study reported. Tang et al. used PPI network analysis and hub gene identification

approaches to identify 10 hub genes, including VCAM1, that were associated with brain

metastasis from breast cancer [75]. It has been demonstrated that down-expression of the

VCAM1 gene supports tumour growth in brain metastasis from breast cancer [16], which is in

agreement with our findings (S3 Table).

Zhang et al. developed a predictive computational method named DryNetMC to distin-

guish gene regulatory networks of drug-resistance and drug-sensitive glioma cell lines [76].

They utilized time-course RNA-seq data from glioma cells to identify key genes as predictors

for drug-sensitivities of some glioma cell lines. The top-ranked genes that they identified to be

associated with targeted therapy response were KIF2C, CCNA2, NDC80, KIF11, KIF23 [76].

Zaman et al. integrated the exome-sequencing data (mutation and copy number variations)

with functional RNAi screening data aiming at identifying subtype-specific signalling net-

works for breast cancer cell lines. Based on their findings, AKT1, mTOR, MET, MDM2,

HSP90AA1, RAF1, SFN, and ESR1 were the most significant luminal-specific drug targets,

whereas TGF-β, IGF1R, MAPK3, GRB2, SRC, TUBB, JAK2, and EGFR were introduced as
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powerful basal-specific biomarkers [77]. A plethora of studies discussed the pivotal role of

somatic mutations in tumorigenesis and paid less attention to the role of germline variations.

However, Milanese et al. provided a new notion into the predictive role of germline variants

associated with patients ‘outcome in ER+ breast cancer patients. Using the eTumorMetastasis

method, they found that patients with tumour recurrence harbour a higher rate of germline

variants; more specifically in leukocyte genes including T cells and APCs, indicating that

immune response impairing may be the cause of tumour relapse in breast cancer patients [78].

In the present study, we comprehensively analyzed DEGs that may provide new insights

regarding genes that mediate brain and lung metastases from breast cancer.

Conclusions

In conclusion, we have some candidates into three levels of content. During the metastasis pro-

cess for the first time, we identified two candidate hub genes FPR1 and GPR37 were shared

between brain and lung tumours that have likely been associated with the metastases process.

To the pathways analysis, we showed in the present study two pathways that were shared

between brain and lung metastasis tumours. In the second level, we try to define specific fea-

tures from each tumour separately to this end, we are indicating four hub genes only in the

brain tumours that included GNG2, CXCL8, C3, and PTPN6 with also report three pathways

poly-N-acetyllactosamine biosynthetic process, mucin-type O-glycan biosynthesis pathway,

and calcium reabsorption pathway specifically for the brain metastasis tumours. Furthermore,

to the lung-specific tumours, two hub genes were reported as a specific prognosis biomarker

SAA1 and CCR5 with also T cell chemotaxis pathway This finding indicates that some path-

ways specifically determine the organ breast cancer metastasizes to. The benefits of the specific

features in the second level of this study are around the potential diagnostic and prognostic

and therapeutic targets for breast cancers tumours that are metastasized into brain and lung

tissues, respectively. To the third level. we have reported five co-regulated clusters via seven

important co-expression genes (COL1A2, LUM, SPARC, THBS2, IL1B, CXCL8, THY1) inter-

acting between five clusters of the brain tumours. These seven genes (especially COL1A2,

LUM, and THBS2 genes) can be utilized as therapeutic targets to inhibit connection between

each clusters in breast cancer metastasis to the brain. Thoroughly, further studies are needed

to validate these observations and determine their clinical utility in the therapeutic manage-

ment of breast cancer metastasis. Taken together, by using RNA sequencing analysis, we have

explored breast cancer metastasis signatures that may pave the way for better metastatic diag-

nosis and tissue-specific genes to tissue-specific therapy for breast cancer metastasis.
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S1 Fig. The four clusters of lung protein-protein interactions. Sub-network analysis from

the PPI network showed four clusters in lung metastasis tumours. The colours represent differ-

entially expressed genes and also the sizes of nodes were indicating the count of interactions

(degree) in the PPI network.

(JPG)

S2 Fig. The survival analysis of the brain hub genes. Prognostic values of two specific hub

genes in the brain metastases from breast cancer patients (Kaplan Meier-plotter database). (A)

C3 and (B) PTPN6 were specifically dysregulated in brain metastasis. The red line implies the

high-expression group and the black line represents the low-expression group. The high- and

low-expression cohorts were divided by the median survival time.

(TIF)
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Which are represented A) Common up-regulated genes between brain and lung metastasis

cell line from breast cancer. B) Common down-regulated genes between brain and lung metas-

tasis cell line from breast cancer.
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S6 Table. Ranked clusters of PPI networks analyzed by MCODE. Which are represented

(A) Clusters obtained from brain metastatic breast cancer PPI network. (B) Clusters obtained

from lung metastatic breast cancer PPI network.
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brain and lung DEG network.
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S9 Table. CRISPR and RNAi represent the gene knockout methods. Which are imple-

mented on the identified hub genes in the MDA-MB-231 cell line. (�) indicates the genes that
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S10 Table. The survival analysis to three types of hub genes. The Type column represents

where genes are differentially expressed as specific which is expressed in the brain and doesn’t

express in Lung and which are differentially expressed in both Lung and Brain tumours that
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