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We apply a new quantitative method for investigating how children’s
exploration changes across age in order to gain insight into how exploration
unfolds over the course of a human life from a life-history perspective. In
this study, different facets of exploratory play were quantified using a
novel touchscreen environment across a large sample and wide age range
of children in the USA (n = 105, ages = 1 year and 10 months to 12 years
and 2 months). In contrast with previous theories that have suggested
humans transition from more exploratory to less throughout maturation,
we see children transition from less broadly exploratory as toddlers to
more efficient and broad as adolescents. Our data cast doubt on the picture
of human life history as involving a linear transition from more curious in
early childhood to less curious with age. Instead, exploration appears to
become more elaborate throughout human childhood.

This article is part of the theme issue ‘Life history and learning: how
childhood, caregiving and old age shape cognition and culture in humans
and other animals’.
1. Introduction
Exploration is a behaviour that agents employ to reduce uncertainty about
their environments (e.g. [1–5]). The act of exploration trades new information
in exchange for certain costs. First, there is the opportunity cost owing to the
limited nature of space and time. For example, a monkey who decides to
search previously unexplored foliage for fruit is necessarily missing out on
the opportunity to exploit known food sources (i.e. the ‘explore/exploit
dilemma’). Second, given that dangers exist in the world, there is a risk associ-
ated with novelty. Exploring new terrain or trying new things comes with new,
unknown risks.

Despite these costs, animals broadly exhibit an array of curiosity-driven
behaviours, including play, exploration, reinforcement learning, latent learning
and neophilia (e.g. [6–8]). Empirical work has documented exploratory behav-
iour extensively in mammals [9–12], and also birds [13], crabs [14], bees [15,16],
ants [17], moths [18] and even the humble roundworm Caenorhabditis elegans
([19]; see [20] for review).

Human curiosity, however, is singular. Humans explore more, and are will-
ing to pay more for the opportunity, than other species [1]. The strength of this
drive is apparent even in infancy [21–25]. By contrast, other primates exhibit far
less curiosity and far greater neophobia in the wild (e.g. lemurs as in [26]),
including those with comparatively long life histories like orangutans [27].
Even under ideal circumstances, in which the normal risks associated with
exploration are virtually eliminated from the context, most primate species do
not engage in anywhere near human rates of neophilia, independent explora-
tion or innovation [11,28,29]. While we know that human levels of curiosity
make our species unique, we still do not understand how this distinctively
human attribute impacts the life history of the species. We suspect, however,
understanding this facet of human life history is a part of the key to
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understanding why humans are such outliers in terms of
both our intelligence, but also our rich cultural heritage [30].

The hyper-curiosity of humans, coupled with our pro-
tracted life history, has been popularly suggested to
benefit members of the species by creating extra opportu-
nities for both new innovation and the cross-generational
transmission of cultural information, thereby saving indi-
viduals the time and energy that would be required to
discover every innovation they employ to their advantage
by themselves from scratch [31,32]. Further, the protracted
life history of humans could serve to balance the delicate
trade-off between exploring and exploiting by allowing
members of the species to both explore broadly during
childhood, while under the protective care of adults, and
exploit after maturity, with the benefit of updated environ-
mental information courtesy of a long, protected
exploratory phase preceding the exploitation phase [33,34].
Data in line with this theory include those which show chil-
dren entertain unusual hypotheses more readily than adults
[34]. This theory represents one reasonable strategy for
exploring the vast space of all possible information sources
available in the world: an agent might explore broadly
before focusing (e.g. [35,36]).

However, other contradictory theories have suggested
that young children’s behaviour does not resemble the pre-
dictions of rational explore/exploit theories. For example,
Piaget and many other developmental psychologists have
noted that young children engage in repetitive, perseverative
play (e.g. [37]). Past research on exploration during play has
largely favoured descriptive measures over controlled exper-
imental designs (e.g. see [38] for a review). Further, past
attempts to quantify exploration typically employed hand-
coding specific exploratory behaviours for interacting with
objects, thus converting inherently rich and complex inter-
actions to a comparatively coarse, somewhat arbitrary set of
behaviours before analysis. For example, Caruso [2] recorded
each time a child performed actions such as ‘squeeze’,
‘shake’, ‘bang’ or ‘twist’ as she explored a novel object.
These coarse, time-consuming measures made it difficult
for researchers to expand beyond assessing the way in
which a child explores only one novel object that has been
separated from any causal structure or relationship to its
environment. Coarse quantitative metrics also limited what
researchers could understand about how exploration might
change with age, or what purpose any changes might serve
under a rational framework.

Several recent studies have also taken quantitative
approaches to studying exploration. These studies have
focused on contexts in which the agent had a simple, specific
learning task—for example, to discover a correct answer in a
question-asking task [39,40], a correct label of items in a cat-
egorization task [41] or a choice that offers the highest reward
in a k-arm bandit task [42]. These studies help to elucidate
how school-age children narrow down and weigh evidence
in order to arrive at a correct answer. They are, however, lim-
ited in how much they can reveal about exploration in
unconstrained contexts, such as during free play. They
are also uninformative about age-related changes in
exploration strategies, as well as how developmentally
related changes in resources, priorities and pressures
impact behaviour. The majority of children’s learning
(about language, objects, categories and social structures
in the world) occurs through free rather than forced
exploration; thus, it is important to study exploration in
less constrained contexts such as free play.

Here, we present, to our knowledge, the first quantitative
assessment of changes in exploration across childhood, from
toddlerhood to adolescence, in order to investigate age-
related changes in exploration strategies. Our work quantitat-
ively charts how exploration develops across distinctly
human development. Thus, it forms the crucial foundation
necessary for future comparisons to other species. This
work aims to understand how distinctive features of human
life history may relate to exploratory pressures in learning
in general. To do this, we introduce an information-theoretic
quantification of the breadth and complexity of a child’s play
behaviour using a compression scheme in order to see how
concisely their sequence of chosen exploratory actions can
be described. Before we present our new empirical data,
we begin by outlining what previous work tells us about
curiosity and exploration in human childhood.

(a) Uncertainty prompts exploration
Previous work has shown that children explore in order to
understand the properties of objects themselves, as well as
how they relate to or interact with other animate or inanimate
entities in the environment. In contrast with Piaget’s ‘trial
and error’ description of exploratory play [37], we now
know that children can and do explore in order to engage
in hypothesis testing about causal structures [35,43–46]. In
this way, exploration leads to a deeper understanding of a
child’s current surroundings as well as the construction of
object categories used to predict the properties that might
govern future objects or environments [47,48]. Exploration
allows learners to go beyond simple observation in order to
discover causal relationships and latent intermediate vari-
ables through direct intervention [38,47,49–51]. Exploration
is selective, flexible and is driven by the goal of disambiguat-
ing the causal structure of the environment.

Uncertainty motivates exploration [52]. Learners preferen-
tially explore things that are more highly confusable or go
against previously held beliefs [53]. For example, children
selectively explore objects that go against their explanations
of the laws of balance, and explore objects that violate differ-
ent laws of physics (e.g. defying gravity versus passing
through a solid object) in different ways [38,54].

(b) Developmental changes in exploration are poorly
understood

It is likely that children explore in different ways across devel-
opment. Recent work suggests that children explore broadly
across a wide range of potential hypotheses (e.g. [35,35]),
while older observational studies suggest children’s explora-
tion to be less broad and more repetitive in nature [37].
We know of no previous work aiming to reconcile these
two seemingly contradictory theoretical accounts. However,
understanding how these dynamics change across develop-
ment is an important step to revealing more about the
impact of exploratory behaviour on learning outcomes and
the function of different phases in human life history.

(c) Approach
Here, we aim to quantify the complexity and efficiency of
exploration across development in a rich, flexible



Table 1. Measures.

variable calculation

touch rate total number of touches/length of play

(300 s)

ratio of static

touches

number of touches to inactive screen

locations/number of total touches

discoveries per

touch

number of unique objects found/total number

of touches

play complexity compressed size of file containing actions
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environment that engages children of vastly different ages.
Children learn more when they are able to interact with
and test their own hypotheses within an environment
rather than simply observing demonstrations of causal
relationships [55]. Touchscreens allow for young children
to confidently control on-screen objects, and thus they
enable more intuitive play than is possible with a traditional
mouse or physical objects (which are difficult for young chil-
dren to manipulate owing to underdeveloped fine-motor
abilities).

In this study, we assessed exploration in the context of the
touchscreen app called Toca Kitchen Monsters, developed by
Stockholm-based Toca Boca. To collect these data, we used a
custom-made build constructed to allow us to collect detailed
action data on our devices in the laboratory. The digital
environment of Toca Kitchen Monsters offers children
many different possible objects and actions to explore, in an
environment that the designers at Toca Boca intentionally
created to emulate physical-world freeplay opportunities.
The basic structure of the digital environment is that there
are different monsters (two: brown or blue) who have differ-
ent food preferences that children can discover. The child can
select from a range of food ingredient options (eight: mush-
room, tomato, broccoli, lemon, carrot, sausage, steak or
monsterfood), preparation methods (six: chopping, blending,
boiling, frying, microwaving or raw) and spicing options
(three: salt, pepper or nothing) in order to prepare meals to
feed to the monsters. A meal consists of only one food
item, but it can be prepared using multiple preparation
methods and a range of preparation and spicing options
(e.g. lots of salt, a little salt and pepper, a little pepper only,
none of either, chopped and boiled, boiled and blended,
blended a lot or very little, etc.). Also, multiple meals can
be prepared and set on a plate. They can be served one at a
time, with preparation of each new meal between ‘feedings’,
or in a row, for a kind of serial feasting-style feeding. Meals
can also be prepared and never fed to the monster at all,
just as a child could make a pretend meal with toys or phys-
ical objects and opt to not serve it to a friend or caretaker. If
the food is offered to the monster, the monsters express a
range of deterministic reactions to the meals (five: love, like,
dislike, reject and spitting out), depending upon the combi-
nation of ingredients and preparation methods. For
example, the brown monster expresses dislike for raw
lemons, love for blended lemons and disgust for highly
salted blended lemons. There are no explicit points awarded
for finding new objects or cooking methods, no assigned
goals, and no link between how elaborate the food is and
the monsters’ reactions. Players can determine their own sub-
goals within free play, which can be as simple as just taking
foods out of the refrigerator and tossing them around to
play with the relatively lifelike physics engine. Here, we inves-
tigate the complexity and efficiency of exploration by
quantifying the engagement with different objects and actions
within the digital environment, using the metrics detailed in
table 1. These metrics quantify not just how many objects
and actions are explored, but how efficiently they are discov-
ered, and how much variety exists in exploration pattern
sequences for each child.

In addition to their ease of use, touchscreens also allow
for the collection of easily quantified data on exploratory be-
haviour in order to test theories about how exploration
changes across development.
2. Methods
(a) Participants
We tested a total of 132 children (ages 1 year and 10 months to
12 years and 2 months, mean (M) = 56.2, 45% female) who par-
ticipated in the study in Rochester, NY, at the Rochester Baby
Laboratory. We recruited them via mailings and in-person
recruitment at community events. The participants were 81%
White, 6% African American, 5% Asian, 4% other and 4% did
not report. Our sample came from highly educated homes
according to self-reports of the highest maternal educational
achievements: 3% obtained a high school diploma, 2% completed
less than 2 years of college, 12% obtained an associate’s degree,
23% obtained a bachelor’s degree, 37% obtained Master’s
degree, 3% obtained a Doctoral degree and 20% declined to
respond. The children were all healthy and had normal or cor-
rected-to-normal vision, and had no reported vision or hearing
loss, according to parental report. Participating families received
a small gift for the child and $10 to the parents for travel
reimbursement.
(b) Exclusion criteria
We excluded children if they did not play until the criterion time
of 5 min (n = 21),1 had played Toca Kitchen Monsters before (n =
3) or whose parents were present during testing (n = 3). The final
sample was 105 children (ages 22–146 months, M = 62.0). The
food-only repetitive play analysis additionally excluded four
children because they did not interact with any food items
during their session (n = 101, 22–146 months, M = 62.7). Two
additional children were not included in the touchscreen experi-
ence analysis because their caretakers did not complete the
questionnaire, leaving that sample with an n = 103, 22–146
months, M = 62.4.
(c) Materials
All participants played Toca Kitchen Monsters on a first-gener-
ation iPad Mini with the home button locked in order to
prevent participants from exiting the app. We used a modified
version of Toca Kitchen Monsters that saved touch action data
(time, location, duration and object name) directly onto our
tablets. We note that the publicly available Web-based version
of this app does not store any touch data from users.

The app consists of two monster characters, a refrigerator
containing eight food items (mushroom, tomato, broccoli,
lemon, carrot, sausage, steak and monsterfood) and a kitchen
containing five appliances (a knife and cutting board for chop-
ping, a blender for blending, a pot for boiling, a pan for frying
and a microwave for microwaving), as well as salt and pepper.
The food can be chosen and prepared using the appliances,
and then fed to the monster in order to get feedback on his or



Figure 1. Screenshot from Toca Kitchen Monsters of the food item selection screen, which follows the monster selection screen.

Figure 2. Two-year-old demonstrating play by considering food options in the refrigerator pane (upper left), selecting the broccoli by clicking and dragging (upper
right), considering food preparation methods (lower left) and feeding the food to the monster by dragging it to his mouth (lower right).
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her likes and dislikes, as described above. Figure 1 shows an
example of the screen during play.

(d) Procedure
Children played with toys in the waiting room of the laboratory in
order to become comfortable with the researcher in a new environ-
ment before the experiment began. After the parent was briefed
and consented to the study in the waiting room, a researcher
accompanied the child to a testing room adjoining the main
space. After the child was seated, the researcher demonstrated
one touch on the tablet and then handed it to the child so that
she could play freely (figure 2). Other than demonstrating the
first touch, the researcher did not provide any instruction or gui-
dance. The researcher also did not touch the tablet unless the
participant minimized the app with an accidental touchscreen ges-
ture. Play continued as long as the child was interested, for a
maximum of 10 min. After the session, the researcher accompanied
the participant back to the waiting room.

(e) Data analysis
Data consisting of the location, timing, target object and duration
of each touch were automatically recorded and saved directly
onto the tablet. Analyses were performed on the first 5 min
(300 s) of data collected from each participant. This cut-off was
established a priori, based on piloting work with an independent
group of children of the same age range as those included in this
sample. Most participants reached this threshold.

(i) Play complexity
In order to assess the complexity of each child’s play, we devel-
oped a method for computing how much redundancy a child’s
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play patterns contained by computing the compressibility of the
sequential list of the actions they selected during play, controlling
for length of the sequence. This method is akin to inferring that
one digital text file contains more lexical and phrase-level
repetitions than another of the same length because it reduces
down to a smaller file size when it is converted to a ZIP archive
file format. Higher values indicate both broader and more
complex patterns of exploration.

Before compression, the names of the objects chosen were
replaced with binary codes so that the string referencing each
object was of the same length. The python gzip package was then
used to output a compressed file using Lempel–Ziv compression.
Behavioural sequences that compress to a higher degree suggest
that behaviour was more repetitive, while those that are less com-
pressed suggest stronger exploratory behaviour. Importantly, the
compression measure incorporates the fact that ‘repetitive play’
may be non-trivial. For instance, a child who selects objects A, B
and C in sequence ABCABCABC…. will appear maximally
random to a model that tracks only unigram statistics, as A, B and
C are equally frequent. This sequence will be very predictable to a
compression scheme, like the one we use, that can capture inter-
action dependencies. If past observations of perseveration in
younger children ring true in our dataset, we would expect to see
children to become less ‘sticky’ as they mature [37]. Total touches
(as reflected in the lengthof the list tobecompressed)were regressed
out during analysis. This was done becausewewant to characterize
the redundancy in the pattern of exploration, not simply the rate at
which children are capable of making selections on a screen. Touch
rate was also computed and assessed independently.

(ii) Touchscreen experience
Experience with touchscreens was calculated using a parental-
report survey collected at the time of the study. The surveys
were used to calculate average minutes per day of touchscreen
use across different contexts (home, school, travel, etc.). By using
a rate measure rather than a cumulative measure of touchscreen
experience, the value is not necessarily confounded with age.

Four linear mixed-effects models were run to assess each of the
measures described in table 1: one with age as the predictor, one
with touchscreen experience as the predictor, one in which both
age and experience were included as independent predictors and
one that includes the interaction between age and experience as
a predictor in addition to both age and experience as main effects.

3. Results
Results from comparing the four potential models using
Akaike information criterion appear in the electronic sup-
plementary material, appendix SII, and we report the
results from the best-performing model below. Socioeco-
nomic status as measured by maternal education was not a
significant predictor of any of the following measures of
touchscreen interaction and exploration.

(a) Touchscreen interaction metrics
(i) Touch rate
Predicting touch rate from age (figure 3). The rate of touchscreen
interactions increased significantly with children’s age (β= 0.054,
t= 5.511, R2 = 0.228, p< 0.0001).

(b) Static touches
Predicting proportion of static touches from age (figure 4). The
number of touches to inactive screen locations (static touches)
decreases with age, with older children making more success-
ful actions than younger children (β =−0.018, t =−2.679, R2 =
0.065, p = 0.009).
(c) Efficiency of search metrics
(i) Discoveries per touch
Predicting discoveries per touch from age (figure 5). The number
of novel items discovered per touch was calculated as a way
to measure the efficiency of each participant’s exploration of
the touchscreen environment. This metric increases with age,
suggesting that older children explore the breadth of options
in the environment more efficiently (β = 0.0093, t = 2.20, R2 =
0.045, p = 0.03).

(ii) Play complexity
Predicting play complexity from age (figure 6). We measured
play complexity (breadth and non-repetitive play patterns)
using the previously described compression algorithm.
Total touches (as reflected in the length of the list to be com-
pressed) were regressed out, as we wish to characterize the
redundancy in the pattern of exploration, not simply the
rate at which children are capable of making selections on a
screen. The best-fitting model predicting the degree of play
complexity (compressed file size of touches) to the eight
food objects includes the number of total touches, the
child’s age, and touchscreen experience (R2 = 0.169). Repeti-
tive play decreased with age, with younger children
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showing more perseverative behaviours (β = 2.31, t = 3.92, p =
0.0002). Experience was not a significant predictor (β = 0.03,
t = 1.37, p = 0.175). These findings are also robust for analyses
of all objects in the environment beyond just the food items
(R2 = 0.670), with play complexity increasing with age
(β = 11.82, t = 5.68, p < 0.0001) and experience remaining
non-significant (β = 0.01, t = 0.12, p = 0.9) (see the electronic
supplementary material, appendix SI).
4. Discussion
(a) Elaboration of exploratory play with age
Analysis of children’s exploration in the modified Toca
Kitchen Monsters environment allowed us to quantitatively
examine changes in exploration across age. Toca Kitchen
Monsters gave us a rich environment that was engaging to
a wide age range, while controlling for differences in task
structure that may have led to seemingly contradictory
observations in the past. Older children completed more
successful actions on the touchscreen, discovered more
unique objects in the environment, showed increased effi-
ciency of exploration and less repetitive play behaviour. In
other words, children’s play became more elaborate and
efficient with maturation. This evidence suggests that chil-
dren become more broadly exploratory over time, in line
with older theories of exploration such as those espoused
by Piaget [37].

In the current study, older children explored more widely,
while younger children repeated their actions and limited the
scope of exploration to a smaller subset of what was available
to explore. Increasing play complexity (enabled by decreasing
repetitive play) could allow the child to create new food prep-
arations or combinations that would otherwise be left
undiscovered.

(b) Ecological validity and implications of task choice
We chose our task because it enabled us to understand chil-
dren’s default mode of exploration, by which we mean
exploration in a context devoid of explicit goals and rewards
(e.g. ‘points’). This is important in a life-history context
because unstructured time is a hallmark of human childhood
[56]. Our results suggest that, in the absence of explicit goals
or rewards, children explore more broadly and in more com-
plex patterns as they age, at least up until 12 years of age.
While the digital toy environment cannot replicate some
aspects of physical play (e.g. rotating objects to view them at
all angles, as is common practice for young children [57]), it
makes other exploratory actions possible. For example,
younger children’s exploration is hindered by their limited
fine-motor abilities in real-world play. This prerequisite to
physical exploration is greatly reduced for touchscreen play,
because all that is required is a touch-and-drag action.

The use of tablets also offered us numerous methodologi-
cal benefits. The greatest benefit was the ability to offer
children many varied objects to explore and ways to explore
them, free from the practical coding considerations that
would restrict the set-up to a limited pool of offered options.
Our task was engaging, as evidenced by the relatively long
playtimes across all children of all ages who completed the
task. For contrast, while we used a 5 min minimum play cri-
terion window (and most children played for far longer),
most typical physical play exploration tasks are able to
elicit only a few minutes of free play (e.g. 0–2 min in [58–
60]). This higher degree of engagement was made possible
by the richness of the play environment and would have
been difficult to achieve with a physical toy set-up that
allowed coding to remain feasible.

(c) Exploration across the lifespan
This study showed a stable trend towards elaboration of
exploration during free play for young children through
early adolescence. But we do not yet know how exploration
might change from adolescence through to adulthood. Exist-
ing work on curiosity across the lifespan generally tends to
focus on the stability of curiosity as a trait, and over-
whelmingly employs survey-based methods over actual
observations of exploratory behaviour. Previous studies
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typically report modest declines in subjective feelings of curi-
osity with increased age in adults (e.g. [61–63]), but these
declines are often limited to certain aspects of curiosity (e.g.
interpersonal curiosity) and do not always apply across the
board (e.g. [61]; the trend is driven only by women reporting
interpersonal curiosity and, even then, they note that the
change is ‘modest’). The trait literature suggests that ‘open-
ness to new experiences’ may decline with age (e.g. [64–
66]). If these data were to indicate that curiosity declined
with age, it could suggest that we should expect to see an
inverted-U-shaped trend in exploration across the lifespan.
However, we do not have nearly enough evidence to con-
clude any such thing at this point. Subjective reports of
curiosity are not the same thing as actual exploration in
the world. What we would ideally want is access to some-
thing like Internet search histories for individuals across
their lifespan, presuming the ethics of gathering such a data-
set were well managed. We are not aware of any dataset at
this time appropriate for comparing across ages for the
entire lifespan.

Under a rational life-history framework, we should
understand that the precise way in which an agent should
explore should change as their abilities, needs and priorities
change across their lifespan; and changes in abilities, needs
and priorities are inextricably linked to environmental factors
(e.g. [67]). For example, food scarcity leads to lower levels of
parental care provided by adult mice [68], and mice pups
leave the nest earlier and go through puberty sooner in
response to lower levels of parental care [69,70]. Young
mice also undergo puberty sooner in these conditions [71].
These impacts are consistent with the stress acceleration hypoth-
esis (e.g. [72]), by which environmental hardships trigger
young offspring to ‘gear up’ early in ontogeny for an exist-
ence of fewer resources and less support. Under these
circumstances, these offspring have shorter protected periods
for exploration available to them. Thus, it would be an over-
simplification to expect for general trends in changes to
change only with age, as opposed to a complex interaction
of a number of different factors and pressures across the life-
span. Further work on this area would promote a better
understanding of age-related changes in exploratory behav-
iour from an evolutionary and life-history perspective,
though there remain some practical and technical challenges
in collecting such a dataset.

(d) Safe environments enable neophillia
An important caveat of this work is that the touchscreen
environment we employed allowed children to explore in
context with no real penalties or real-world risks. While our
intention was to explore age-related changes in exploration
patterns and the situation was kept constant in this way
across the ages, future work will examine the degree to
which our results generalize to real-world environments in
which safety is not guaranteed.

(e) What developmental change is responsible for this
behavioural shift?

While the age-related elaboration of exploration is apparent
in our data, identification of which of many possible develop-
mental changes is most responsible for the observed
behavioural shift requires further inference. Most likely, it is
not one aspect of development that is entirely responsible
for the observed shift, but multiple aspects and interactions.
The possibilities can be described as falling into at least
three categories: age-related changes in core cognitive capabilities
(like working memory, response inhibition and attention), age-
related changes in goals or priorities, and age-related differences
in learning.

The first possibility is that increased efficiency in explora-
tion hinges on changes in a child’s core capabilities, such as
working memory, which increases over the course of child-
hood (e.g. [73–75]). The increase in working memory could
directly result in more efficient exploration. While older chil-
dren could hold more information in their working memory
and learn relationships between objects more quickly,
younger children might rely on more repetitive evidence to
establish and encode causality, leading to a less broad
scope of exploration. Similarly, age-related increases in execu-
tive function could be required to enable children to
disengage more readily from particular sets of actions.

A second possibility is that the increased efficiency stems
from an age-related shift in priorities. For example, older chil-
dren may be more motivated to explore for the purpose of
understanding the causal relationships in the scene, or per-
haps some shift in social motivation like finding options
that please the monsters. While this is a theoretical possibility,
we believe this to be less likely. Nothing in our data suggests
that younger children are less interested in the causal struc-
ture of the set-up. If we did, we might expect that they
would engage in feeding the monster less, perhaps favouring
just exploring the food options and preparation methods
themselves, which we do not. Further, and more convincingly,
existing studies suggest that even very young children can dis-
ambiguate causal relationships and that their drive to do so
motivates exploration (e.g. [38,47,50,55,58]). Likewise, even
toddlers much younger than the children tested here exhibit
the ability to represent what other agents want and a desire
to accommodate them accordingly [76], suggesting that
children in our age range would all be motivated to appease
the monster and, perhaps to some degree, the experimenter
who introduced the touchscreen toy.

A more likely possibility might be that working memory
and the desire to discover causal structures interact to result
in the observed age-related differences. For example, older
children with increased working memory capacity are able
to test multiple hypotheses at once using a discriminative
strategy, while younger children are restricted to single
hypothesis testing [77]. It is also possible that these differ-
ences in working memory and causal understanding limit
younger children from understanding the overarching struc-
ture of the digital environment and cause them to play
within a subset of options, while older children may be
able to grasp the concept of the different food and
preparation combinations available.

Finally, the third possibility is age-related variation in
learning. Perhaps, younger children appear to explore less
because of failures to learn the structure of the digital play
environment. While this is a theoretical possibility, and we
note that we do not directly test learning outcomes here,
we do not think lack of learning is likely as an explanation
because of the vast existing literature demonstrating that
much younger children can learn large quantities of statistical
associations between events in the world very quickly, even
during passive paradigms (e.g. [78,79]).
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( f ) Experiential differences
In contrast with its many benefits, incorporating touchsc-
reens into study designs also carries a possible confound
owing to children’s previous touchscreen experience.
Every participant in the current study reported some level
of touchscreen experience, and although the measure we
used was explicitly not cumulative, there is still the possi-
bility that older children have built up experience over
time. This leaves the possibility that some of the effects
that we attributed to maturation might be influenced by
compounded experience; thus, it would be interesting to
replicate this experiment in a population with limited
prior access to touchscreen technology.
Phil.Trans.R.Soc.B
375:20190503
(g) Trait-level differences
It is worth noting that there is more variance within ages
than one might expect, with especially the youngest age
ranges showing a wide range of exploration efficiency
(with only 14% of the overall variance in our exploratory
complexity measure accounted for by age). The degree to
which individual children would demonstrate variance
in their exploratory behaviour across different contexts or
whether exploratory efficiency is a fixed trait remains an
interesting open question. In this task, we used a cohort
design in order to measure changes in exploration across
development, so additional follow-ups could include
assessing individual children’s exploratory behaviour
over time to further explore the individual variance in
exploration efficiency. Follow-up work should include
longitudinal data and intervention studies to explore
causality.

It is very possible that different exploratory behavioural
patterns early in life could give rise to what would appear
to be a trait-level difference. Cross-species work may be help-
ful in testing this idea. For example, Freund et al. [80,81] used
a measurement of spatial exploration patterns that they called
roaming entropy, and demonstrated that laboratory-bred
genetically identical mice developed increasingly different
levels of spatial exploration with experience. The same
might be true of humans’ exploration, but further work
would be required to determine whether this was in fact
the case.
5. Conclusion
We observe that children become more broadly exploratory
between their toddlerhood and adolescence, as assessed in
a digital play environment. These findings cast doubt on
the picture of human life history as involving a linear tran-
sition from highly exploratory in infancy to more
specialized in adulthood as a solution for solving the tensions
between exploring the environment and exploiting known
resources. Instead, the changes we see throughout childhood
suggest that if such a tendency exists, it is part of a more com-
plex system that interacts with other aspects of development,
such as age-related changes in working memory and
response inhibition.
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Endnote
1Seven of these children were under the age of 22 months—none of
the participants under that age made it to criterion, so no further chil-
dren in that age group were tested. This lower age bound is probably
owing to the design and goals of this specific app rather than the
limitations of the touchscreen device itself.
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