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Macrophage metabolic reprogramming during chronic lung
disease
Patricia P. Ogger1 and Adam J. Byrne 1

Airway macrophages (AMs) play key roles in the maintenance of lung immune tolerance. Tissue tailored, highly specialised and
strategically positioned, AMs are critical sentinels of lung homoeostasis. In the last decade, there has been a revolution in our
understanding of how metabolism underlies key macrophage functions. While these initial observations were made during steady
state or using in vitro polarised macrophages, recent studies have indicated that during many chronic lung diseases (CLDs), AMs
adapt their metabolic profile to fit their local niche. By generating reactive oxygen species (ROS) for pathogen defence, utilising
aerobic glycolysis to rapidly generate cytokines, and employing mitochondrial respiration to fuel inflammatory responses, AMs
utilise metabolic reprogramming for host defence, although these changes may also support chronic pathology. This review
focuses on how metabolic alterations underlie AM phenotype and function during CLDs. Particular emphasis is given to how our
new understanding of AM metabolic plasticity may be exploited to develop AM-focused therapies.
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INTRODUCTION
The respiratory mucosa is a unique site, as our airways are
continually exposed to particulates, viruses, bacteria, and fungi,
which challenge the pulmonary immune system1. To maintain
pulmonary homoeostasis and ensure efficient gas exchange, a
complex regulatory system is in place, of which airway macro-
phages (AMs) are a core component. AMs are the most numerous
immune cell type present in healthy lungs, are strategically
positioned at the interface of airways and environment2, and
critical sentinels of barrier immunity. AMs form the first line of
defence against inhaled particles, pathogens and antigens3.
Although inherently suppressive, AMs exhibit significant func-
tional and phenotypical specialisation, allowing efficient responses
to environmental signals and rapid alterations in phenotype.
Increasing evidence suggests that metabolic alterations provide
an additional layer of functional plasticity to AM populations.
Activation of macrophages in vitro with a range of inflammatory
stimuli, induce profound metabolic adaptations, such as the
switch from oxidative phosphorylation (OXPHOS) to glycolysis in
oxygen-sufficient conditions, similar to the “Warburg effect” seen
in some cancers4. It is now clear that how macrophages utilise
energy dictates immune responses, and that manipulating cellular
metabolism can alter the inflammatory response5. However
in vivo, the unique oxygen rich environment of the airways
coupled with specific local nutrient availabilities, shapes AM
phenotype and function. Indeed, many recent studies have
indicated that in chronic lung diseases (CLDs), such as asthma,
chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF),
idiopathic pulmonary fibrosis (IPF), and during infection such as
with Mycobacterium Tuberculosis (Mtb), there are significant
alterations in AM metabolic processes and that targeting these
pathways could represent an exciting therapeutic approach6,7.
This review focuses on how metabolic adaptations underlie AM

phenotype and function during CLDs. Particular emphasis is given
to how our new understanding of AM metabolic plasticity may be
exploited to develop AM-focused therapies.

Airway macrophages: guardians of the lung environment
To maintain gas exchange, it is critical that AMs sustain a naturally
hyporesponsive state whilst also reserving the ability to rapidly
mount effective inflammatory responses. This balance is achieved
through complex AM-airway epithelial cell (AEC) interactions via
cell surface-expressed receptors and secreted products. AMs
express transforming growth factor beta receptor (TGF-βR),
interleukin (IL)-10 receptor (IL-10R), CD200 receptor (CD200R)
and signal regulatory protein-α, key components mediating AM:
AEC crosstalk and in turn, regulating AM activation8. For example,
AM-AEC contact decreases AM phagocytosis and cytokine
production in a TGF-β-dependent manner9. Conversely, loss of
the integrin αvβ6 such as through loss of contact of AMs with AEC
upon toll-like receptor (TLR) activation leads to initiation of the AM
pro-inflammatory phenotype and inflammatory response10.
AMs are characterised by a distinct cellular phenotype. Human

AMs highly express the lectin-binding transmembrane glycopro-
tein CD68, the adhesion molecule CD169, the integrin CD11c and
mannose receptor CD20611 (Fig. 1). In mice, expression of the
CD68+CD206+CD11chiCD11blo cell surface phenotype is con-
served at steady state12–14, while murine AMs also express the
Mer tyrosine kinase (MerTK), sialic acid dependent adhesion
molecule SiglecF, hormone receptor F4/8, glycoprotein CD64 and
the CD200 receptor15 (Fig. 1). Recent work in mice has indicated
that many tissue resident macrophages, including those in the
airways, are foetally derived and self-maintain locally with minimal
contribution from circulating monocytes, during steady state
conditions16–20. During murine prenatal development, foetal liver
or yolk sac macrophages are the major contributing pool to AM
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populations21 and AM colonization of the lung occurs in
sequential waves in the first week of life22. Furthermore, post
birth and during maturation, circulating monocytes do not
significantly contribute to lung macrophage populations at
homoeostasis18. During pulmonary inflammatory responses how-
ever, monocytes are recruited to the lung23,24 and subsequently
develop into AM-like cells18,25. Thus, post-injury murine airways
contain at least two ontologically distinct AM populations, tissue
resident AMs (TR-AM) which are prenatally derived and monocyte-
derived AMs (Mo-AMs). Several groups have studied samples from
lung transplant patients to investigate the origins of AMs in the
human lung26–30. Utilizing bronchoalveolar lavage (BAL) from sex-
mismatched lung transplant patients our group recently demon-
strated that the majority of AMs in human lung post-transplant are
derived from peripheral classical monocytes31. Thus, the unique
airway niche combined with distinct ontological origins, age and
environmental exposures results in remarkable AM plasticity and
adaptability32–34. While the recruitment of monocytes to the lungs
to replenish the TR-AM pool is relatively well understood in mice,
the origins of AMs in the human lung during healthy aging or
CLDs requires further investigation; in particular clear markers
which distinguish Mo-AMs and TR-AM are not well established.

Airway macrophage metabolic phenotype at homoeostasis
Beyond delineation of macrophage populations based on
anatomical location or ontological origin, macrophage popula-
tions are also classified according to their activation status.
Analogous to the Th1/Th2 paradigm, in vitro cultured human
monocyte derived macrophages (MDMs) or murine bone marrow
derived macrophages (BMDMs) are categorised as M1 or M2
macrophages, respectively. Seminal studies have demonstrated
that pro-wound healing M2 (IL-4 stimulated) macrophages in vitro

rely on fatty acid oxidation (FAO), an intact tricarboxylic acid cycle
(TCA) cycle, high rates of OXPHOS and increased expression of
arginase 1 (Arg1), which catalyses the production of ornithine
from arginine as precursor for collagen to facilitate wound
healing5,35–37. Conversely, pro-inflammatory M1-macrophages rely
on glycolysis and breaks in the TCA cycle lead to accumulation of
metabolites, many of which have signalling functions such as
citrate, succinate, fumarate and α-ketoglutarate35,38,39. However,
although useful in defining the range of potential macrophage
responses, in vitro derived cells do not recapitulate the core
aspects of AM phenotypes which are shaped by the local niche11.
As AMs are highly adapted to the unique environment of the
airway lumen, it is perhaps unsurprising that the metabolic state
of AMs is also distinct. Glucose concentrations in the alveolar
lumen are less than 10% of blood glucose concentrations and AMs
exhibit extremely low levels of glycolysis20; in stark contrast to
BMDMs, AMs do not undergo glycolytic reprogramming in
response to LPS40. Consequently, AMs readily engage OXPHOS
and highly express the peroxisome proliferator-activated receptor
gamma (PPARγ)41, which regulates lipid accumulation and
promotes FAO to sustain OXPHOS.
AMs also play a major role in the catabolism of pulmonary

surfactant, a monolayer composed mainly of phosphocholine-
based lipids, phospholipids and cholesterol which lines the alveoli,
lowers surface tension and prevents alveolar collapse during
expiration42. Mice lacking GM-CSF and thus the AM compartment,
develop pulmonary alveolar proteinosis (PAP), an inflammatory
lung syndrome caused by the defective clearance of surfactant43–45.
In humans, mutations in genes encoding for GM-CSF receptors,
result in hereditary PAP as a result of progressive alveolar
surfactant accumulation46–49. AM phenotype and behaviour are
influenced by surfactant exposure, which has major implications
for AM-mediated immune responses in pulmonary tissue. There
are four principle surfactant proteins (SP-A-D) and SP-A and SP-D
have been shown to directly influence AM functions such as cell
migration, phagocytosis and activation phenotypes42. Both SP-A
and SP-D bind carbohydrates, lipids, and nucleic acids and initiate
phagocytosis of inhaled pathogens and apoptotic cells50. Further-
more, SP-A blocks the binding of TLR ligands to TLR2, TLR4 and
TLR co-receptors and furthermore inhibits complement
activation51,52.
Whilst the alveoli are covered with a monolayer of surfactant, a

thin layer of mucus produced by goblet cells and ciliated
epithelium protects the airways. Mucus serves as a barrier and
facilitates clearance of microbes and pollutants. A major
component of mucus are mucin glycoproteins, which may be
categorized as polymerizing, nonpolymerizing and cell-surface
associated. Of the cell-surface associated mucins, MUC1 is
expressed in AMs and contributes to the resolution of inflamma-
tion by decreasing phagocytic potential and pro-inflammatory
cytokine production53. The polymerizing mucins include MUC5AC
and MUC5B; in particular, MUC5B deficiency has been linked to
particle accumulation in the lung, mucus obstruction and
impaired macrophage phagocytosis54. Pro-inflammatory macro-
phages induce MUC5B expression to aid mucociliary clearance55.
Furthermore, a single nucleotide polymorphism in the MUC5B
promotor has been strongly associated with the risk of developing
IPF, highlighting the importance of mucins for the pulmonary
environment56.
In addition to low glucose and a lipid rich environment, the

airways also have a unique distribution of amino acids and central
carbon metabolites. Surowiec et al. showed that whilst several
glucogenic and ketogenic amino acids were present in the
bronchial wash, only alanine is present in BAL57 (Fig. 2). In
addition, the central airways contained key glycolytic and OXPHOS
metabolites such as fructose, glucose-6-phosphate, fumarate and
malate as well as oxidised gluthathione (GSSG, indicating
oxidative stress, Fig. 2); interestingly, these could not be detected

Fig. 1 Human and murine airway macrophage surface receptors.
Murine AMs express the lectin-binding transmembrane glycoprotein
CD68, the Mer tyrosine kinase (MERTK), the integrin alpha X chain
protein CD11c, the type I membrane glycoprotein CD200 receptor,
the mannose receptor CD206, the EGF-like module-containing
mucin-like hormone receptor-like 1 (F4/80), the sialic acid binding
lectin Siglec-F and the Fc receptor CD64. Human AMs express CD68,
the adhesion molecule CD169, CD11c, CD206 as well as MHC class II
receptor HLA-DR.
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in the periphery, suggesting either minimal secretion, high
utilisation or as a result of anatomical location (i.e. close proximity
to nutrient rich pulmonary capillaries)57. Recently the lung
microbiome has gained attention as a factor which modifies the
pulmonary environment and directs immune responses by
producing short chain fatty acids (SCFA). Whilst the airways and
alveoli are colonised mainly by proteobacteria, bacteroidetes and
firmicutes58,59, the nasal mucosa additionally hosts
actinobacteria60,61 (Fig. 2). Proteobacteria, bacteroidetes and
firmicutes produce large amounts of SCFA, including acetate,
propionate and butyrate, which influence barrier function by
regulating epithelial tight junctions62 and anti-inflammatory
immune responses63. Recent advances in understanding the
pulmonary microbiome during homoeostasis and CLDs are
described in detail elsewhere58,59,64. Thus, at homoeostasis AMs
are exposed to a unique environment, with minimal glucose
availability and a distinct distribution of nutrients and SCFA, which
depend on anatomical location (Fig. 2). However, despite the
profound influence that local substrate availabilities may exert on
macrophage development, activation and function, this is an
understudied area. New knowledge, which further defines
especially human AM substrate dependencies at homoeostasis is
required in order to fully understand how local metabolic
perturbations during CLDs may contribute to pathology. This is
particularly relevant as already slight changes in nutrient
availability during inflammation, such as succinate or citrate, can
alter macrophage phenotypes through stabilization of Hif1α, post-

translational modification of proteins and production of NO and
ROS65, thereby contributing to a pathological development.

AM metabolism during CLDs
Chronic lung diseases affect a significant proportion of the world’s
population, killing more than 100,000 people in the UK alone, each
year66. Persistent inflammation, impaired repair processes and
pulmonary remodelling are cardinal features of CLDs67–69. There
are multiple overlaps in environmental exposures driving CLDs,
such as smoking, pollution and environmental exposures; viral
infection can also exacerbate symptoms in each disease2,70,71.
Interestingly, AM metabolic adaptation may play a central role in
dictating pathology during CLDs and present novel therapeutic
opportunities (Fig. 3).

Asthma. Asthma is a heterogeneous disease of the airways
characterized by airway remodelling, mucus production, airway
hyperresponsiveness (AHR), and inflammation72. Although most
patients have good control with standard medication, a proportion
experience life-threatening, severe disease73. AMs are central to
mediating type-2 inflammation against allergens and parasitic
worms2. In vitro, macrophages respond to type-2 cytokines such as
IL-4 that drive an ‘alternative’ M2 activation phenotype, linked to
wound repair and type-2 pathology74,75. Manipulation of AM
phenotype via genetic deletion of the transcription factor
interferon regulatory factor 5 (Irf5), a master regulator of
macrophage activation74, promoted pulmonary remodelling, AHR

Fig. 2 Nutrient environment at respiratory mucosal sites. The respiratory mucosa stretches from the nasal cavity to the alveoli and its
pseudostratified epithelium in the upper respiratory tract consists of mucus producing goblet cells, ciliated cells and progenitor basal cells on
top of a basement membrane, covered with a layer of mucus. The alveoli are lined with type I alveolar epithelial cells (AEC) interspersed with
surfactant producing type II AEC. Distinct metabolites of the key metabolic pathways have been detected in nasal secretions, bronchial
washes and bronchoalveolar lavage (BAL) at the different respiratory mucosal sites. These key metabolic pathways are schematically
represented here. Varying reactive oxygen species (ROS) and commensal bacteria have been detected in the nasal cavity, conducting airway
and parenchyma, contributing to the unique environment in each compartment. The principal microbial phyla colonising the airway and
alveoli are proteobacteria, bacteroidetes and firmicutes, while the nasal mucosa additionally hosts actinobacteria.
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and mucus secretion in mice, in an IL-13 dependent manner76.
Indeed, a recent study has shown that both CD206+ AM (activated
by IL-4 and IL-13) and pro-inflammatory Irf5+ AM are increased in
asthmatic patients77, highlighting the plasticity of macrophages
and heterogeneity of human asthma. Roles of AMs during antigen
induced airway inflammation include phagocytosis of apoptotic
cells and eosinophils as well as triggering anti-inflammatory
pathways to regulate airway hyper responsiveness, mucus secre-
tion and matrix deposition76. In severe asthma however, this
protective function is impaired, resulting in the loss of phagocytic
ability and anti-inflammatory programme78, which can contribute
to airway remodelling79. Thus, AMs are uniquely involved in
responses to allergen and type-2 inflammation, and aberrant AM-
phenotypes can directly influence respiratory pathology.
Numerous lines of evidence suggest that metabolic stress

leading to the production of reactive oxygen species (ROS) plays a
role in asthma. Increased ROS have been detected in AMs of
asthmatic patients80, and contributes to lung injury81 and pro-
inflammatory tumour necrosis factor-alpha (TNF-α) and IL-1β
secretion by macrophages82. Furthermore, heme-oxygenase-1
(HO-1), which mediates ROS production in response to chemical
and physical agents, is increased in AMs in asthmatics83. In addition
to these pro-inflammatory characteristics, AMs show key features
of a more anti-inflammatory phenotype in studies using ovalbumin
to model allergic asthma. Using this model, Al-Khami et al. show
that expression of carnitine palmitoyltransferase (CPT) is increased
in AMs, shuttling fatty acids into the mitochondria, as well as
increased gene expression of FAO related genes84.
Another functional pathway that is altered in asthmatic AMs and

links to the underlying metabolic phenotype is the eicosanoid
pathway, which is induced by Th2 cytokines IL-4 and IL-13.

Eicosanoids, including prostaglandins and leukotrienes, are pro-
duced from the poly-unsaturated fatty acid arachidonic acid, which
is released during asthma85. Increased production of the eicosa-
noid 5-HETE and leukotrienes B4 (LTB4) and E4 (LTE4) has been
detected in AMs from asthmatic patients stimulated ex vivo86. This
contributed to bronchial constriction and pro-inflammatory
phenotype and failure to generate the anti-inflammatory eicosa-
noid 15-HETE and prostaglandin E2 (PGE2), which is associated with
reduced AM phagocytosis78. LTE4 has been shown to cause AHR in
subjects with aspirin-induced asthma87 and can be produced in
AMs by γ-glutamyl transpeptidase85,88. IL-13 furthermore induces
Arg1, which may further contribute to the asthmatic phenotype via
metabolism of collagen precursors ornithine and proline to
collagen and airway remodelling89,90.
Several of these observed alterations have been targeted

therapeutically, attempting to rewire AM phenotype. These include
the eicosanoid pathway, ROS, glycolysis and FAO. Administration of
the anti-inflammatory eicosanoid 15-HETE inhibited leukotriene
synthesis and reduced AHR in asthmatics91. Ex vivo, the corticoster-
oid dexamethasone decreased levels of thromboxane B2 and LTB4
in macrophages and asthmatic AMs92, while prednisone decreased
LTB4 production in AMs93. Treatment with the antioxidant AD4
improved AHR and airway inflammation by decreasing ROS in the
OVA-sensitised mouse model of allergic airway disease (AAD)94.
Inhibiting glycolysis with 2-DG, Zhao et al. show altered AMs
phenotype ameliorated AAD, while Al-Khami et al. reported
improvements in AHR after treatment with FAO inhibitor
etomoxir84,95.
Together, these studies indicate that there is significant

disruption of AM metabolism during asthma and AAD, notably
via dysfunction in eicosanoid, glycolysis and fatty acid pathways. In

Fig. 3 Altered metabolic pathways in AMs drive key features of chronic lung disease. Several metabolic pathways are rewired during
chronic lung disease. While this response exists to clear invading pathogens and launch an inflammatory response, long-term activation of
these pathways has negative implications. The glycolysis pathway supports inflammatory responses of AM, while iron and metabolites
produced in the TCA cycle can function as bacterial substrates and contribute to pathogen survival. While fatty acid synthesis and oxidation is
useful as a way of storing energy and alternative energy source during times of macrophage activation, fatty acid synthesis can also
contribute to mucus production. Leukotrienes contribute to the AM pro-inflammatory phenotype but also cause bronchial constriction and
contribute to airway remodelling in asthmatics by causing smooth muscle thickening. The amino acid arginine is a proliferator for collagen via
ornithine and proline and can thereby contribute to extracellular matrix deposition.
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order to evaluate candidate therapies, it is crucial that studies utilise
relevant preclinical models and ex vivo patient samples to
understand disease. Models which more closely recapitulate the
complex immune response to allergens, are more likely to reveal
viable targets for intervention; in particular the ovalbumin model of
AAD, which requires an adjuvant and a sensitization phase96, is a
poor murine model of asthma. Furthermore, our new under-
standing of asthma heterogeneity has allowed the development of
biologics which target “type-2 high” asthma97; delineation of how
metabolic changes underlie distinct asthma phenotypes could lead
to new treatments for other phenotypes, such as neutrophilic and
paucigranulocytic asthma.

COPD. COPD is the 5th leading cause of death in high income
countries98, affecting over 200 million people worldwide99. COPD
is a heterogeneous disease, characterised by destruction of the
parenchyma and emphysema, narrowing of the airways, remodel-
ling and chronic inflammation driven by chronic exposure to
cigarette smoke and particular matter100. AM numbers are
increased in COPD BAL101 and contribute to COPD pathology
through numerous pathways. During COPD, AMs are found in
areas of lung destruction and produce pro-inflammatory cyto-
kines102, chemokines100 and matrix metalloproteases (MMPs) with
elastolytic properties103,104. At the same time, tissue inhibitor of
metalloproteases (TIMP)-1 is decreased in AMs in COPD105 and
furthermore, decreased phagocytic capacity and impaired bacter-
ial killing have been described in COPD-AMs106–108.
AMs of COPD patients experience a high level of oxidant

burden induced through cigarette smoke and subsequent
increased ROS production is a key feature109. Compared to
controls, COPD-AMs secrete increased levels of mitochondrial ROS
(mtROS)110, superoxide and hydrogen peroxide81,108 whilst
glutamyl cysteine ligase for GSH synthesis is downregulated111.
Cigarette smoking also alters iron homoeostasis112 and AMs in
COPD show increased sequestering of iron113, which can
furthermore contribute to ROS production. Bewley et al. showed
recently that increased generation of mtROS in COPD AMs results
in impaired bacterial clearance108. This study also reported a
decrease in the mitochondrial membrane potential114, which has
recently been linked to AM exposure to particulate matter110. This
may explain the impaired phagocytic capacity of AMs in COPD as
decreased mitochondrial membrane potential results in energy
failure in the cell, proton leakage and increased mtROS115.
Another study by O’Beirne et al. further investigated the metabolic
profile of AMs from healthy smokers, non-smokers and COPD
patients. While all groups had similar baseline glycolysis rates,
there was a decrease in coupling efficiency, maximal respiration
and spare respiratory capacity in COPD-AMs, while proton leak
was significantly increased116. In addition, expression of genes
related to glutathione metabolism, mitochondrial transport,
pyruvate metabolism, TCA cycle and electron transport chain
were altered in smokers and COPD patients, compared to non-
smoking healthy controls116.
Other metabolic alterations in COPD AMs include increased

expression of inducible nitric oxide synthase (iNOS) contributing
to increased levels of nitric oxide (NO)117 and increased levels of
the adenosine receptor A2BR118, suggesting increased adenosine
metabolism, which might be linked to the increased levels of
Hif1α in COPD AMs119. While excessive ROS production through
oxidant burden and iron accumulation has been identified as an
important regulator of AM phenotype in COPD, it has only recently
been linked to mitochondrial dysfunction and metabolic repro-
gramming. It would be interesting to follow up on these
transcriptomic and metabolic alterations to understand their
underlying disease driving role and to identify ways to rewire AM
metabolism.
As corticosteroids have been found to be particularly ineffective

in COPD, more specific pathways involved in AM function and

metabolism have been investigated recently, such as the ROS
pathway and iron accumulation. A study by Harvey et al. showed
that treatment with sulforaphane in COPD AMs ex vivo improved
bacterial clearance by activating the antioxidant and anti-
inflammatory NRF2 pathway120, while Cloonan et al. found that
treatment with an iron chelator or a low iron diet protected mice
from cigarette smoke induced COPD121. Furthermore, procysteine,
a precursor of GSH, increased AM efferocytosis in a mouse model
of COPD122.
Overall, COPD is marked by distinct iron sequestration, ROS, NO

production and energetic dysfunction in AMs; further delineation
of how mitochondrial phenotype links to inflammatory processes
and pathology in COPD will allow the identification of molecular
targets for modulating mitochondria during the disease.

Cystic fibrosis. Cystic fibrosis (CF) is caused by mutation of the CF
transmembrane conductance regulator (CFTR), a chloride channel,
which regulates fluid homoeostasis in mucosal surfaces. In the
lung, CFTR mutation and subsequent loss of function results in a
reduced aqueous film covering the epithelium and mucus
thickening, leading to impaired mucociliary clearance and
frequent bacterial infection123. CF is furthermore characterised
by hyper-inflammation of the lungs, airway obstruction, structural
damage and progressive reduction of lung function124. During
recurring airway inflammation, large numbers of neutrophils,
macrophages and T lymphocytes infiltrate the lungs and secrete
pro-inflammatory cytokines, while anti-inflammatory IL-10 is
reduced125,126. Although AM numbers are increased in CF
patients127,128, pathogen clearance is attenuated, leading to
colonisation of the airways and chronic inflammation106,128. Meyer
et al. report a more pro-inflammatory phenotype of AMs in a
murine model of CF, even in the absence of infection129 and
MDMs differentiated from CF patients show an increased
inflammatory profile130, while others have shown that monocytes
from CF patients had an impairment in activation upon IL-13
stimulation131. CF-AM phenotype can be heterogenous, depend-
ing on infection status and local environment. While AMs from P.
Aeruginosa infected CF patients showed increased expression of
mannose receptor CD206 and augmented arginase activity132, in
CF sputum AMs a decrease in expression of CD206 and scavenger
receptor MARCO was detected133. Furthermore, AMs are involved
in the structural damage in CF airways by secreting serine- and
metalloproteases, which subsequently degrade connective tissue
components134. The lower volume of airway surface liquid in CF
airways activates AMs to increase their release of MMP12, resulting
in the cleavage of elastin and degradation of the airway and
parenchyma135.
In CF airways, GSH is depleted136,137, while levels of iron,

transferrin, haem and haemoglobin are increased138, resulting in
high oxidative stress and ROS production. ROS in turn can induce
TGF-β1139, which has recently been shown to be increased in CF-
BAL and AMs and inhibits CFTR biogenesis and cellular trafficking
to the surface of epithelial cells134, while also contributing to
airway remodelling by recruitment and differentiation of myofi-
broblasts140. However, during infection with bacteria from the
Burkholderia family, both MDMs and AMs from CF patients showed
reduced superoxide production as well as decreased phosphor-
ylation of NADPH oxidase (NOX) components p47phox and p40phox,
suggesting an inherent deficit in CF-AMs generating oxidative
bursts for pathogen defence141.
P. Aeruginosa is one of the most common pathogens to cause

recurrent pulmonary infection in CF patients and exploits the host
to maintain infection by inducing production of the TCA cycle
metabolite itaconate in AMs. Itaconate exerts antimicrobial
properties via inhibition of bacterial isocitrate lyase in the
glyoxylate shunt142 and to evade this mechanism P. Aeruginosa
has developed a way to use itaconate as an energy source143.
Similarly succinate, which is secreted in high levels during CF and
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especially during bacterial infection144, can be utilised by P.
Aeruginosa and S. Aureus as a substrate to generate oxidative
stress.
Changes in lipid metabolism are a hallmark of CF and increased

FAO, lipid turnover in cell membranes and eicosanoid production
in AMs have been reported. Furthermore, sterol regulatory-
element binding protein (SREBP), a regulator of lipid homoeos-
tasis, has been linked to CFTR loss of function124. This results in
altered plasma and tissue fatty acid profiles, and while levels of
the omega-3 fatty acid docosahexaenoic acid (DHA) were
unchanged in AMs upon loss of CFTR145, ex vivo treatment with
DHA decreased TNF-α levels146. Furthermore, in CF AMs the anti-
inflammatory lipoxin A4 (LXA4), which is synthesised from the fatty
acid arachidonic acid, is reduced and the LXA4/LTB4 ratio in CF BAL
is decreased147, while the fatty acid metabolite resolvin D1 (RvD1)
has been suggested as a biomarker148.
Increased energy demand by AMs in CF, either by manipulation

through bacterial pathogens or to fight sustained infection, results
in increased utilization of all available metabolic pathways.
Recently, Lara-Reyna et al. reported increased glycolysis, mito-
chondrial function, and production of TNF-α in CF macrophages is
due to an alteration in the serine/threonine-protein kinase/
endoribonuclease IRE1α pathway and this supports exacerbated
inflammation149. While this study used PBMCs and monocyte-
derived M1 macrophages from CF patients, it would be important
to detect such a mechanism in AMs and to target this pathway
specifically.
Several of the above described pathways have been identified

as potential drug targets in CF, however yet there are no
treatments targeting AMs. Delivery of GSH to the lower respiratory
tract improves the antioxidant barrier of CF epithelium150, while
treatment with cysteamine and restoration of MicroRNA 17
(MiR17) and MiR20 expression improves disease by restoring
autophagy151,152. Several studies administered omega-3 fatty
acids (DHA/EPA) to CF patients153–156, although only one trial
reported improved FEV1 after 8 months treatment with DHA157.
Treatment with DHA in a murine model of CF decreased liver
inflammation but did not improve lung morphology158.
In conclusion, AM metabolic phenotype during CF is marked by

increased energy expenditure to support exacerbated inflamma-
tion and is readily exploited by bacterial pathogens, leaving AMs
deficient of oxidative burst capability during infection. It will be
important to clarify the role of fatty acids in CF and furthermore, to
target metabolic changes in AMs such as increased glycolysis,
OXPHOS and FAO specifically to rewire AM phenotype and
prevent exploitation through bacterial pathogens.

Idiopathic pulmonary fibrosis (IPF). IPF is a chronic interstitial lung
disease characterised by excessive extracellular matrix deposition
in the lung parenchyma and has a particularly poor prognosis159.
Repetitive alveolar injury in genetically susceptible individuals
causes activation of mesenchymal cells, recruitment of fibroblasts
and differentiation into myofibroblasts to replace damaged
alveolar epithelial cells and provide a matrix for wound healing
and tissue repair160. During IPF, the wound healing process is
dysregulated, leading to fibrotic plaque formation and excessive
build-up of extracellular matrix, resulting in impaired gas
exchange. AMs have been identified as key contributors to the
dysregulated wound healing process, by secreting large amounts
of ROS and TGF-β161. Furthermore, AMs can shape the extra-
cellular matrix by secreting factors contributing to the matrix
(proline, collagen) and breaking down the matrix (plasmin,
MMPs)162–164.
Several changes to the central carbon metabolism pathways

have been identified recently in AMs of IPF patients, including
dysmorphic mitochondria165. In murine models of pulmonary
fibrosis, increased glucose consumption, glycolysis and enhanced
expression of key glycolytic mediators was detected166, while in

IPF AMs, expression of the pulmonary glucose transporter GLUT1
was increased167, which enabled augmented glucose uptake166.
The increased glucose uptake via GLUT1 can furthermore sustain
NADPH production in the pentose phosphate pathway and TCA
cycle168 and is therefore a key substrate for ROS production via
NOX169. Activation of macrophages results in the accumulation of
endogenous metabolites capable of adopting immunomodulatory
roles such as succinate170 and itaconate171–173. Recently, our
laboratory identified itaconate as an endogenous anti-fibrotic in
the human and murine lung. In patients with IPF, there were
reduced levels of airway itaconate, and decreased expression of
ACOD1 (which controls the synthesis of itaconate) in AMs
compared to healthy controls. Acod1 deficiency in mice leads to
more severe disease pathology and exogenous itaconate limits
fibroblast activity174. These data indicate that AM metabolites may
play a key role in the pathogenesis of lung fibrosis and may be
exploited for the development of anti-fibrotic therapies.
ROS production is a key feature of AMs in IPF175 and can occur

during OXPHOS, by the membrane bound NOX or by reaction of
hydrogen peroxide with intracellular iron176. NOX, and subsequent
superoxide production, is activated by binding GTP-bound
Rac1177, which is secreted from AMs in IPF178 and can also
activate the mTOR signalling hub179. Superoxide produced by
NOX can further react with NO to form peroxynitrite (OONO-),
another type of ROS. At the expense of NADPH, NO is produced in
the mitochondria by iNOS, which is upregulated in pro-
inflammatory macrophages180 and in IPF-AMs leading to
increased levels of the cytotoxic OONO- in IPF AMs181. In the
bleomycin mouse model of pulmonary fibrosis, increased levels of
superoxide, NO and OONO- were measured in AMs182. MtROS is
furthermore linked to expression of PPAR-γ coactivator 1-alpha
(PGC-1α), which induces metabolic reprogramming to FAO and is
regulated by the mitochondrial calcium uniporter (MCU), which is
increased in IPF AMs183. MCU has furthermore been shown to
regulate expression of the fatty acid transporter CPT-1, which is
increased in AMs from IPF patients and bleomycin exposed
mice183. While human IPF-AMs have increased levels of MCU,
mitochondrial calcium and expression of PGC-1a, bleomycin
exposed mice utilise increased FAO166, which is reduced in mice
expressing dominant-negative MCU183. Furthermore, these mice
were protected from bleomycin induced pulmonary fibrosis. These
findings highlight calcium transport and FAO as pathways to
target in IPF AMs; however, a better understanding of the linking
mechanism will be necessary.
IPF AMs have also been shown to be iron laden184, which

further induces oxidative stress and ROS production185. Using
RNA-sequencing, Lee et al. show furthermore, that macrophage
activation is increased in iron laden AMs in IPF, suggesting that
iron accumulation plays a role in macrophage activation185. The
proportion of AMs expressing transferrin receptor (CD71), import-
ing transferrin bound iron into the cell, are decreased in IPF AMs,
leading to an extracellular accumulation of transferrin. Further-
more, numbers of CD71-negative macrophages are an indepen-
dent predictor of survival in IPF186. Iron metabolism is therefore
likely a key pathway in IPF-AMs and targeting it would be a viable
option to decrease ROS, oxidative stress and macrophage
activation.
Recently, therapies targeting metabolic processes in IPF are of

considerable interest. While antioxidant therapy in IPF was
promising in vivo, the double-blind placebo controlled PANTHER
trial, administering either N-acetylcysteine or placebo to IPF
patients for 60 weeks did not show a change in lung function
parameters187. Another arm of this study investigated the
combined potential of corticosteroid prednisone, immunosuppres-
sant azathioprine and N-acetylcysteine but was stopped prema-
turely due to increased mortality and adverse effects without
evidence of benefit188. Another randomized, double-blind clinical
trial assessed the safety and tolerability of N-acetylcysteine in
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patients already receiving pirfenidone anti-fibrotic therapy. While
this trial showed that N-acetylcysteine in combination with
pirfenidone was safe, no change in FVC, 6-minute walk test or
occurrence of adverse effects was detected189. Another promising
therapeutic avenue was the use of metformin, a potent metabolic
remodelling drug often prescribed for type II diabetes. While on a
global level metformin lowers the amount of blood sugar in
diabetic patients, on a cellular level metformin activates AMP-
activated protein kinase (AMPK) leading to inhibition of TGF-β
induced NOX activity190. Sato et al., have shown that metformin
inhibited TGF-β induced NOX activity via AMPK leading to
inhibition of myo-fibroblast differentiation in vitro and reduced
bleomycin induced collagen deposition in vivo191. Consistent with
this, Rangarajan et al. showed that metformin treatment reversed
bleomycin induced pulmonary fibrosis via AMPK activation, while
in IPF patients AMPK phosphorylation was decreased192. A posthoc
analysis study of the effect of metformin in IPF patients however
showed no change in clinically outcomes193, once again showing
the difficulty of translating in vitro and in vivo findings into the
clinic. Another study investigating the NOX-NRF2 imbalance as a
therapeutic target showed that in vivo knockdown of NOX4 and
NOX1/4 inhibition restored the capacity of fibrosis resolution in
aged mice194. Furthermore, treatment with nitrated fatty acids,
reversed pulmonary fibrosis in a mouse model by promoting
collagen uptake by AMs and dedifferentiating myofibroblasts195.
While these treatment approaches targeted metabolic changes

during pulmonary fibrosis, none was specific to AMs. Targeting
macrophage specific metabolic reprogramming, which sustains
ROS and TGF-β production and contributes to dysregulated wound
healing in IPF would therefore be a promising approach.

Respiratory tract infections
During respiratory tract infections, activation of pattern recogni-
tion receptors expressed by AM can elicit a variety of pro-
inflammatory host responses2. For example, severe Coronavirus
disease-19 (COVID-19) associated pneumonia patients may exhibit
features of systemic hyper-inflammation also known as macro-
phage activation syndrome or “cytokine storm” which is
associated with sustained elevation of macrophage/monocyte-
derived pro-inflammatory cytokines (e.g., IL-6, IL-8, TNF-α, IL-1β)
leading to acute respiratory distress syndrome (ARDS)196–198.
Using single cell approaches a recent study demonstrated that
highly inflammatory, monocyte recruited AMs, rather than
quiescent pulmonary resident AMs, predominate in the BAL in
COVID-19 patients with severe pathology, implicating these cells
in COVID-19-associated ARDS199. Rather than direct infection of
AMs, AM:AEC cross-talk has been identified as a major mechanism
for control of many respiratory viral infections200 and AEC have
been shown to be a key source of pro-inflammatory cytokines,
modulating AM phenotype198,201. For example, Rhinovirus (RV),
the causative agent of the common cold, primarily infects the
upper airways, however prior infection with RV attenuates
subsequent AM antibacterial responses202. Although AMs are
susceptible to influenza A viral infection (IAV), replication within
AMs has been shown to be minimal with the exception of several
highly virulent strains203–205. Here, we will focus on Mycobacterium
tuberculosis (Mtb) infection, as AMs are the primary infected cell
type and metabolic changes in response to Mtb infection are well
studied.

Tuberculosis. Tuberculosis (TB) is a contagious, chronic disease
and one-third of the world’s population is infected with Mtb, the
causative agent of TB, resulting in ~2 million deaths per year (2009
World Health Organization Report)206. During infection, Mtb
colonises AMs intracellularly and disables innate intracellular
defence mechanisms such as the phagolysosome and inflamma-
some and accesses macrophage intracellular nutrients207. AM host
defence mechanisms against Mtb include production of ROS and

reactive nitrogen species (RNS) for bacterial killing and fusing
mycobacteria-containing phagosomes with lysosomes as well as
autophagy and apoptosis208. However, virulent or multi-drug
resistant strains can evade these host responses e.g. by preventing
phagolysosome fusion and surviving ROS/RNS209.
During Mtb infection, AMs shift their metabolic programme

from OXPHOS to aerobic glycolysis, which is regulated by HIF1α
and interferon-gamma (IFN-γ). This metabolic shift and subse-
quent enhanced glycolytic flux in infected AMs is crucial to control
infection. Mice lacking HIF1α in the myeloid lineage are more
susceptible to infection and show decreased cytokine and
antimicrobial effector production210. To support this metabolic
reprogramming, key glycolysis genes are upregulated in the early
stages of granuloma formation in mice, supporting the shift
towards aerobic glycolysis211. Blocking this shift on the other hand
results in decreased levels of IL-1β, increased IL-10 and
subsequent increased bacterial survival212. Gleeson et al. suggest
furthermore that infection-induced glycolysis limits Mtb survival
through the induction of IL-1β during infection with drug
susceptible Mtb, as absence or inhibition of the IL-1 receptor (IL-
1R) negated the effect of aerobic glycolysis212. In contrast, during
infection with multi-drug resistant Mtb, AM metabolic reprogram-
ming and induction of glycolysis is regulated through IFN-β as
overexpression of Mtb cell wall lipids blocks the IL-1 receptor type
1 pathway213. These findings suggest that infection-induced
glycolysis is necessary for control of bacterial intracellular
replication though it remains to be investigated whether
glycolytic reprogramming could be further induced to support
AM defence.
M. Tuberculosis has developed several mechanisms to evade

host defence. Using mice deficient of cystathionine-gamma-lyase
(CSE), which catalyses the synthesis of hydrogen sulphide (H2S),
H2S has been identified as a regulator for central carbon
metabolism during Mtb infection in AM. CSE−/− mice had
increased flux through the glycolysis and pentose phosphate
pathway in AM, while Mtb infected WT mice produced increased
levels of H2S, reducing HIF1α levels, glycolysis and host
defence214. Howard et al. show that multi-drug resistant Mtb can
drive augmented cell wall lipids synthesis, thereby bypassing the
IL-1 receptor pathway and resulting in induction of IFN-β
signalling, reprogramming host metabolism213. Furthermore,
increased expression of MiR-21 in BMDMs and human MDMs
upon exposure with Mtb, resulted in decreased glycolytic response
and facilitated bacterial survival by targeting phosphofructokinase
isoform M (PFK-M) and limiting IL-1β production. IFN-γ however
inhibits MiR-21, forcing an isozyme switch in the PFK-M complex
and rescuing glycolysis and host defence215.
Several signalling metabolites have been identified to be

important for host defence in AMs during Mtb infection.
Decreased levels of fumarase result in accumulation of bactericidal
fumarate, which can modify metabolites and proteins through
succination216. Furthermore, the antimicrobial metabolite itaco-
nate is increased during Mtb infection, although it can be disabled
by β-hydroxylacyl CoA lyase in Mtb and used as a nutrient. Wang
et al. show that deletion of this enzyme resulted in attenuated Mtb
infection in mice217. Similarly, Mtb exploit intracellular iron as a
nutrient. This is highlighted by worse TB outcome with increased
dietary ingestion of iron and inhibition of Mtb growth when iron is
unavailable218,219. Abreu et al. show that heparin reduced
hepcidin expression in macrophages infected with Mtb while
heparin-treated macrophages had increased expression of ferro-
portin and subsequent iron export, limiting iron availability for
intracellular bacilli206. Mtb furthermore induce ferroptosis, asso-
ciated with reduced levels of GSH, superoxide and increased free
iron. The ferroptosis inhibitor ferrostatin-1 (Fer-1) as well as iron
chelation decreased necrotic cell death of Mtb-infected macro-
phages in vitro, while in vivo treatment with Fer-1 reduced
bacterial load220. Mtb can cope in low iron environments however
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Table 1. Specific metabolic alterations in AMs during chronic lung diseasea.

Disease Metabolic change Functional change Ref.

Asthma ↑ HO-1 ROS production 83

↑ ROS Lung injury, TNF-α, IL-1β production 80,82

↑ 15-LOX 5-HETE and leukotrienes 239

↑ Leukotriene B4/E4 Bronchial constriction, AHR 85–87

↑ Prostaglandin E2 ↓ AM phagocytosis 78

↑ FAO gene expression (CPT) ↑ FAO metabolism 84

↑ Glycolysis function PKM2 HIF1a dependent gene expression

↑ Arg1, ↓ NOS2 Ornithine and proline 89,90

COPD ↑ ROS, ↑ mtROS, ↑ Superoxide Oxidative stress 108–110

↓ mtROS after challenge Impaired bacterial clearance 108

↓ Glutamyl cysteine ligase Loss of GSH synthesis 111

↑ iNOS NO production 117

↓ Mt membrane potential Impaired phagocytosis 114

↑ Iron sequestration ROS generation 113

↑ HIF1α ↑ Glycolysis 119

↓ Compensatory glycolysis Unmet energetic demand 7

↓ Coupling efficiency, ↓ OXPHOS
↑ Proton leak

Dysfunctional metabolism and macrophage phenotype 7

↑ A2BR ↑ Adenosine metabolism 118

CF ↑ Arginase Impaired phagocytosis & efferocytosis 132

↑ ROS release, ↓ GSH Oxidative stress 136,137

↓ Superoxide, ↓ NOX phos. ↓ Oxidative burst 141

↓ Lipoxin A4 ↓ Anti-inflammatory potential 147

↑ Acod11 Persistent P. Aeruginosa infection 143

↓ CFTR-PTEN complex ROS production, succinate release 144

↑ Iron ↑ ROS production 138

↑ IRE-a pathway Increased glycolysis & Mt. function 149

IPF ↑ ROS Oxidative stress 175

↑ Secreted Rac1 NOX, superoxide, mTOR activation 178,179

↑ iNOS NO and OONO- production 181,182

↓ HO-1 Loss of oxidative response 240

↑ Iron uptake Oxidative stress & ROS 184,185

↓ % of CD71+ AM Accumulation of transferrin 186

↑ AKT Activation of HIF1α 241

↑ GLUT-1, ↑ Glucose uptake NADPH production, superoxide 166–168

↑ Glycolysis, glycolysis genes M2-like AM profile 166

↑ FAO 166

↑ MCU, ↑ Calcium, ↑ PGC-1α FAO reprogramming, mtROS

TB ↑ ROS/RNS production Bacterial killing 208

↑ HIF1a Aerobic glycolysis, IFN-γ host defence 210

Warburg shift, ↑ glycolysis genes ↑ IL-1β and bacterial killing 211,215

↑ Host MiR-21 ↓ Glycolytic response, ↑ bacterial survival 215

↑ Host MiR-33 ↓ autophagy, FAO, ↓ host defence 224

↓ Hydrogen sulphide ↑ Glycolysis & PPP 214

↑ fumarate Bactericidal 216

↑ itaconate Antimicrobial, modulates host response 217

Heparin ↓ Hepcidin Decreased iron availability to bacilli 206

↑ Iron, superoxide, lipid perox. Ferroptosis, bacterial spread 220

↑ FAO, ↑ Lipid accumulation ↑Host response, ↓ Bacterial burden 223,242

PPAR-α activation FAO, autophagy & host defence 222

↑ IDO, ↑ tryptophan ↓ host defence 225

↑ Glutaminolysis ↑ cytokine profile 243

↑ Arg1 NO production 244

↑ NAD+, creatine, GSH Host defence 245

aUpward arrow represents increased expression, downward arrow represents decreased expression.
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by downregulating their non-essential protein content via specific
sRNA221.
Several changes in fatty acid metabolism of Mtb infected AMs

were identified recently. Compared to interstitial macrophages
during Mtb infection, which are reliant on glycolysis, AMs utilise
FA, which is induced by PPAR-α222 and have a lower burden of
Mtb infection223. To escape host defence, Mtb has developed a
mechanism inhibiting pathways related to autophagy, lysosomal
function and FAO in support of replication by inducing microRNA-
33 (MiR-33) in the host cell. Silencing of MiR-33 however induced
AM lipid catabolism and autophagy and rescued host defence224.
Furthermore, amino acid metabolism is altered during Mtb
infection. In mice and macaque lungs, indoleamine 2,3-dioxygen-
ase (IDO), which is involved in tryptophan catabolism, was
increased during Mtb infection, while inhibition of IDO in a
macaque model of TB decreased bacterial burden and pathology,
as tryptophan metabolites suppress host immunity225.
While Mtb relies on host lipids as energy source, existing

therapies such as targeting PPAR transcription factors or
cholesterol synthesis have been successful mainly in animal
models226–229, whereas retrospective human studies, which
investigated the effect of statins in diabetic TB patients did not
show any results230. As Mtb can also utilise iron as a substrate,
another approach is to prevent iron accumulation. Treatment of
Mtb infected human MDMs and primary AM with iron chelator
Desferrioxamine (DFX) ex vivo induced the expression of glycolytic
enzymes and enhanced glycolysis, as well as IL-1βα, thereby
supporting host defence231 and offers a novel therapeutic
approach, which will need to be investigated in clinical trials.
Together, these findings highlight the distinct phenotype of AMs
during Mtb infection, which counteracts intracellular infection
through aerobic glycolysis, but is also heavily exploited by Mtb
bacteria feeding on host lipids and iron.

Targeting metabolism during chronic lung disease
Many potential targets have been identified recently that could
rewire macrophage metabolic and phenotypic changes driving
chronic lung disease. Since all cells depend on oxidative
phosphorylation or cytoplasmic glycolysis to synthesize ATP, there
is the potential for unwanted side effects by targeting specific
metabolic processes. However, it is becoming increasingly
apparent that it is possible to safely target metabolic pathways
in patients. For example, dimethyl fumarate, a known regulator of
macrophage phenotype, is a first-line-treatment for relapsing-
remitting multiple sclerosis232. Indeed, metabolic processes are
highly plastic with significant redundancy, modulation of these
processes may have the added benefit of selectively targeting
cells with high metabolic demands233. Targeted delivery to AMs
may add another layer of selectivity, improving efficacy, sustained
drug release and evading capture by mucus234. Systems for
inhaled AM targeted drug delivery include the use of micro- and
nanocarriers, including liposomes, which are phagocytosed by
AMs. Rifampicin-loaded microspheres as a therapeutic approach
for Mtb have been described235, and have been further refined to
allow a one-step assembly for rifampicin containing micro-
spheres236. Recently, aerosolised delivery of siRNA, which post-
translationally downregulates gene expression, has been devel-
oped to target AMs specifically237, whilst mannose coated
microspheres have been developed which exploit the phagocy-
totic activity of AMs238. Many of these delivery vehicles have been
developed to transport antibiotics targeting intracellular AM
bacterial infections, which are helpful for treating TB, however
other drugs could be incorporated into aerosolised micro- or nano
delivery systems. Specifically, treatment with iron chelators,
antioxidants and nitrated fatty acids has shown to rewire AM
phenotype and improve diverse chronic lung disease; these may
be ideal candidates to develop novel, aerosolised vehicle-assisted
drug delivery to AMs during chronic lung disease.

CONCLUSION
In the last decade enormous strides have been made regarding
our understanding of how adaptations in metabolic pathways
underlie macrophage phenotype and function. AMs are remark-
ably plastic cells, orchestrating not only pathogen defence and
efferocytosis, but also pulmonary tolerance and resolution. It has
become increasingly clear that AMs tailor their metabolic profile to
fit their local niche generating ROS for pathogen defence, utilising
aerobic glycolysis to rapidly generate cytokines, employing the
TCA cycle to fuel inflammatory responses and generating
metabolites with secondary signalling functions such as citrate,
itaconate, succinate and fumarate. Work elucidating the complex-
ities of AM metabolic alterations in the context of CLDs has
highlighted many potential therapeutic targets (summarized in
Table 1). Indeed, a lack of understanding of shared cellular
mechanisms, which underlie CLDs has been a major obstacle in
respiratory biology; identification of common AM-metabolic
pathways/metabolites which directly influence core features of
CLDs would be a significant advance on the route to devising new
AM-directed strategies to treat pulmonary diseases which affect
millions worldwide.
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