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Simple Summary: Neurodegenerative disorders are complex disorders that display a variety of
clinical manifestations. The second-most common neurodegenerative disorder is Parkinson’s disease,
and the leading pathological protein of the disorder is considered to be α-synuclein. Nonetheless,
α-synuclein accumulation also seems to result in multiple system atrophy and dementia with Lewy
bodies. In order to obtain a more proficient understanding in the pathological progression of these
synucleinopathies, it is crucial to observe the post-translational modifications of α-synuclein and the
conformations of α-synuclein, as well as its role in the dysfunction of cellular pathways.

Abstract: α-synuclein is considered the main pathological protein in a variety of neurodegenerative
disorders, such as Parkinson’s disease, multiple system atrophy, and dementia with Lewy bodies.
As of now, numerous studies have been aimed at examining the post-translational modifications of
α-synuclein to determine their effects on α-synuclein aggregation, propagation, and oligomerization,
as well as the potential cellular pathway dysfunctions caused by α-synuclein, to determine the role
of the protein in disease progression. Furthermore, α-synuclein also appears to contribute to the
fibrilization of tau and amyloid beta, which are crucial proteins in Alzheimer’s disease, advocating
for α-synuclein’s preeminent role in neurodegeneration. Due to this, investigating the mechanisms
of toxicity of α-synuclein in neurodegeneration may lead to a more proficient understanding of
the timeline progression in neurodegenerative synucleinopathies and could thereby lead to the
development of potent targeted therapies.

Keywords: Parkinson’s disease; Lewy body; dopamine; substantia nigra; synucleinopathy; post-
translational modifications

1. Introduction

Neurodegenerative disorders are heterogenous perplexing assemblages with disparate
etiology and intermittently coinciding clinical manifestations [1]. Moreover, Parkinson’s dis-
ease (PD) is the second-most prevalent neurodegenerative disorder, causing over 6 million
cases and 100,000 deaths at a global level annually [2]. In terms of pathology, PD is distin-
guished by an advancing reduction of dopaminergic neurons in the substantia nigra pars
compacta (Figure 1) [3]. This leads to a striatal diminishing of dopamine in a location of
the brain that is accountable for regulating fine motor control, eventually resulting in the
tremors, bradykinesia, and rigidity often visualized in PD patients [4].

Over a century ago, Alois Alzheimer, Friedrich Lewy, and Oskar Fischer all made
significant contributions to the descriptions of PD and AD pathological characteristics,
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which included neuritic plaques, Lewy neurites, and Lewy bodies, among others [5]. This
is paramount when considering α-synuclein was determined to constitute Lewy neurites
and Lewy bodies in the 1990s [6]. Even more, in 1997, an SNCA missense mutation, which
is the gene for α-synuclein, was considered a familial PD causative factor [7]. Nevertheless,
α-synuclein additionally accrues in differing synucleinopathies, such as multiple system
atrophy (MSA), Lewy body dementia, and numerous lysosomal storage disorders [4,8].
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Figure 1. Gross picture of a midbrain section from a PD patient (lower) along with a normal control
brain (upper), showing the PD patient’s substantia nigra with a loss of pigmented dopamine neurons.

The accumulation of α-synuclein has also been witnessed in sporadic PD and pro-
ceeds towards the formation of Lewy bodies (Figure 2). Furthermore, α-synuclein point
mutations, genomic duplications, and triplications in the locus of α-synuclein have been
implicated in the dominant autosomal types of familial PD [9,10]. Similarly, α-synuclein
has been determined to undergo a plethora of post-translational modifications that af-
fect its function and structure and could potentially be associated with oligomeric or
aggregated α-synuclein [11]. As such, this review aims to examine the functions, the
post-translational modifications, the conformations, and the pathways implicated in the
toxicity of α-synuclein.
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Figure 2. Microscopic pictures of a Lewy body. (A) Cytoplasmic inclusion body in pigmented
dopamine neurons in the SN. (B) Lewy bodies in two neurons. (C) Immunohistochemical stain
against α-synuclein demonstrates a positive stain for the Lewy body.
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2. Properties, Functions, and History of α-Synuclein

Synucleins include various groups of soluble proteins found in vertebrates, and
synucleins gained prominence when mutated α-synuclein, which is coded by SNCA, was
commonly found in numerous families that had the autosomal dominant pattern of PD [7].
The name “synuclein” derives from the fact that it is expressed at the nuclear envelope and
was first located with synapses [12]. Although α-synuclein is relatively abundant in the
brain within as much as 1% of all cytosolic brain cell proteins, its specific function remains
relatively unknown [13].

The first evidence of α-synuclein’s presynaptic role derived from the utilization of
an antibody to cholinergic vesicles of the Torpedo electric organ [14]. Nonetheless, due
to α-synuclein’s small size of 140 amino acid residues, it was suggested that cytoplasmic
or nuclear proteins had an impact on α-synuclein’s effect on the nucleus [15]. When
visualizing neural degeneration, the aggregation of synuclein into a β-sheet results from
misfolding, which advocates for a prion model of propagation [16–18].

Even though the function of α-synuclein is not completely understood, it has been
suggested that it is involved in modulating neurotransmitters due to their elevated presy-
naptic concentrations [8]. Often, this manifests in hindered synaptic vesicle mobility, which
thereby reduces the release of neurotransmitters and the recycling of synaptic vesicles [19].
On the other hand, a differing perspective is that the binding of vesicle-associated mem-
brane protein 2 (VAMP2) to α-synuclein contributes to SNARE complex stability [20].
VAMP2 and α-synuclein binding is crucial for the α-synuclein-mediated attenuation of
the recycling of synaptic vesicles [21]. Similarly, α-synuclein was found to inhibit the
synthesis of dopamine by serving as a tyrosine hydroxylase inhibitor [22]. This is critical
in the case of PD, since dopaminergic neuronal loss in the substantia nigra is a significant
manifestation of the disease [4].

Consequently, synuclein was found to be a phospholipase D2 (PLD2) inhibitor af-
ter purification, which distinguished a particular protein function via an experimental
method [23]. The phosphatidylcholine headgroup is subsequently cleaved by phospho-
lipase D (PLD), which thereby liberates phosphatidic acid and choline, which have been
involved in regulated exocytosis via trafficking in the membrane [24]. Nevertheless, this
function has not been entirely proven by consequential studies [25]. This yields a func-
tion with slight biological applicability, because the biochemical activity suggested by
purified synuclein as a PLD inhibitor could be useful but has not yet been elucidated in
further studies.

The ability of α-synuclein to be secreted has also been established in a plethora of
cell models in vitro, in human body fluids, and in a mouse brain in vivo [26–29]. El-
Agnaf et al. demonstrated that α-synuclein species could be detected in CSF and human
plasma and also secreted into mediums of cultured neurons [27,28]. Subsequently, another
study elucidated that oligomeric and monomeric α-synuclein were demonstrated to be
secreted from primary cortical neurons and differentiated neuroblastoma human cells [30].
Utilizing a comparable model, Sung et al. showed that α-synuclein secreted from SK-N-BE
cells minimizes the cell viability and can be cleaved by the matrix metalloproteases [31].
Although the pathway of secretion is currently not defined, it appears to involve exosome
externalization [26]. Exosomes are vesicles that have the ability to interact with recipient
cells in a plethora of ways, such as attachment, endocytosis, receptor–ligand binding, or
fusion with the plasma membrane [32–34]. Consequently, the extracellular degradation of
exosomal membranes by lipases or proteases could thereby allow protein release into the
extracellular matrix from the exosomal lumen [35,36]. In general, α-synuclein exportation
from the cell via exosomal pathways postulates a prevailing pathway for possibly toxic
protein delivery in the extracellular space, leading to the spread of pathogenic effects in
healthy neighboring cells [26].

An autosomal dominant type of PD that caused the usual bradykinesia, rigidity,
impaired posture, and tremors was also discovered to be caused by an α-synuclein point
mutation [37]. Some point mutations include A30P, G51D, E46K, A53T, and A53E [9,10]. In
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this case, the pathology revealed inclusions of Lewy bodies typical for PD [38]. Although
α-synuclein point mutations account for a small percentage of PD, the dystrophic neurites
and Lewy bodies seen in the most common type of PD, idiopathic PD, greatly imply
α-synuclein [8,37]. This is further demonstrated with a plethora of monoclonal antibodies
recognizing α-synuclein when they were formerly made against Lewy bodies [39]. This
upholds the belief that, even though various proteins compile in PD inclusion, the α-
synuclein protein preponderates [40].

3. Post-translational Modifications of α-Synuclein in PD

Although the definite role of α-synuclein is currently undetermined, the formation
of α-synuclein oligomers, as well as aggregation, have been exhibited to go through an
array of differing post-translational modifications, which are postulated to be vital in
PD pathogenesis [11,13].

3.1. Phosphorylation

Although numerous post-translational modifications are affiliated with α-synuclein,
phosphorylation is the modification that is most researched. Consequently, S129 phospho-
rylation, as well as the truncation of α-synuclein, are determined to be pivotal to Lewy
inclusion pathogenesis [41,42]. Furthermore, α-synuclein detected in the soluble nonfib-
rillar portions of PD patient tissue were found to be phosphorylated at S129 [43]. Due to
this, α-synuclein post-translational modification was determined to potentially reform the
disposition to transform into oligomers or even aggregate, thereby impacting PD inception
or advancement [44]. Nevertheless, alternative residues can undergo post-translational
modifications in α-synuclein, such as residues Y125, Y133, Y136, or S87 [44]. However, out
of the discovered phosphorylated residues, S129 is extensively studied more than the others
and also manifests as more pathologically relevant than the others in the case of PD [45,46].
Nonetheless, the specific outcome of S129 phosphorylation is currently undergoing further
investigation. As of now, research has revealed alternative outcomes pointing to potential
protection or toxicity based on the model utilized [47]. For example, some studies have
revealed that S129 phosphorylation yields protection in rat and yeast models [48,49]. More-
over, a number of research studies have illustrated that phosphorylated S129 stimulates the
creation of Lewy body inclusions and induces toxic effects [50]. Similarly, Drosophila models
have revealed that phosphorylated S129 is associated with a more rapid loss of neurons
when examined in comparison to wild-type (WT) or non-phosphorylated mutants, thereby
leading to the phosphorylation of S129 to be associated with the pathology of PD [50,51].

Furthermore, α-synuclein also appears to be affected by phosphorylation-related post-
translational modifications via the debilitated function of the mitochondria in PD [52]. In fact,
various studies have deduced that phosphorylation events are essential for mitochondrial-
targeting proteins [53,54]. However, subsequent research studies are necessitated in the
field to further establish the influence of the phosphorylation of α-synuclein on debilitated
mitochondrial functions and how they affect PD pathology.

3.2. Nitration

When examining PD patient brains, their dopaminergic neurons have shown elevated
oxidative stress, as revealed by optimized marker detections for DNA, lipid, and oxidized
proteins [55]. In general, injuries of an oxidative nature take place after the brain’s antiox-
idant capacity has been overpowered and, hence, cannot handle the produced reactive
oxygen species (ROS) [56]. To illustrate, a prevalent consequence of elevated oxidative
stress unfolds with tyrosine residue nitration by peroxynitrite, which is a product of ni-
tric oxide and oxygen reacting. In the Lewy bodies, similar to phosphorylation, distinct
antibodies have been utilized to distinguish numerous types of 3-nitrotyrosine-modified
α-synuclein [57]. Subsequent investigations have revealed tyrosine nitrations at four other
positions, which include residues Y39, Y125, Y133, and Y136 [58].
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Research on the nitration of α-synuclein has elucidated numerous clues on the aggre-
gation of the protein. In general, tyrosine nitration has been shown to affect α-synuclein
by promoting dimer and oligomer formations due to the crosslinking of dityrosine [44,59].
However, research has also shown that nitrated α-synuclein can prevent the formation
of fibrils, and this was identified when unmodified α-synuclein was incubated with the
nitrated version of α-synuclein, and this coincubation yielded nitrated α-synuclein that
was embodied into unmodified α-synuclein fibrils [60]. Furthermore, nitrated Y39 has
demonstrated the ability to impede α-synuclein lipid binding [61]. When considering both
of these potential effects, it could be indicated that the nitration of α-synuclein could act
analogous to mutated A30P, which has been shown to cause the early onset of PD [62].

Numerous elements are involved in the elevation of oxidative stress in dopaminergic
neurons [63]. Consequently, nigral neurons have been found to be more prone towards
oxidative stress and the production of ROS [63,64]. Even more, senility has been associated
with declined mitochondrial function and antioxidative defense while also increasing
the prospect of oxidative injuries, which encompasses post-translational nitration of the
proteins [65,66]. As such, this brings into question whether the nitration of α-synuclein
is a byproduct of PD pathogenesis or if it is a critical post-translational modification that
occurs antecedently to the disease and is toxic. Nevertheless, the nitration of tyrosine has
the potential to mimic certain aspects of mutated A30P, which could aid in the progression
or initiation of PD [67].

3.3. Dopamine Modification

In the substantia nigra, dopamine is usually found and concentrated within dopamin-
ergic neurons, where it is located in synaptic vesicles [68]. Dopamine has the ability to
auto-oxidize at a neutral pH into the toxic dopamine-quinone, because it is immensely
reactive [69]. Similarly, it can also produce hydrogen peroxide, as well as superoxide radi-
cals [63]. The production of the toxic species, along with the declining levels of antioxidants
like glutathione, which is witnessed in PD and aging, has the potential to induce oxidative
stress, which can lead to adverse effects in cells [70,71]. Furthermore, elevated cytoplasmic
dopamine has also been seen in PD [72]. Typically, dopamine is usually found in synaptic
vesicles, which averts the formation of dopamine-quinone because of its low pH [73].
Nonetheless, earlier research has associated the elevated permeability of synaptic vesicles
to mutated A30P and A53T and even oligomeric α-synuclein, possibly associating elevated
dopamine levels of the cytoplasm in PD patients with α-synuclein toxic activity [74,75]. To
illustrate, mutated A53T α-synuclein has been shown to cause a decline in the vesicular
monoamine transporter 2 levels, which is a protein that is involved in the vesicular uptake
of dopamine [72]. The decline of vesicular monoamine transporter 2 may similarly lead to
the surge of dopamine found in the cytoplasm [76]. Surprisingly, a heightened tyrosine hy-
droxylase expression has demonstrated the ability to hinder the aggregation of α-synuclein,
as well as cause elevated toxic effects in SH-SY5Y cell lines [77,78]. This associates ele-
vated levels of dopamine with changes in the aggregation of α-synuclein, because tyrosine
hydroxylase is involved in the generation of dopamine as the rate-limiting enzyme [79].

Nevertheless, the gravity of elevated dopamine levels in the cytoplasm is not lim-
ited to the adverse products generated by oxidized dopamine [68]. In fact, it has been
hypothesized that dopamine has the potential to modify α-synuclein, thereby altering its
disposition to aggregate [80,81]. Early studies conducted by Conway et al. demonstrated
that dopamine-quinone stabilizes α-synuclein protofibrils in a kinetic manner while also
preventing the aggregation of α-synuclein into considerable fibrils [5]. These research
findings were subsequently backed by Li et al., who similarly identified that α-synuclein
modified by dopamine had the ability to de-aggregate fibrils, potentially by debilitating
the intermolecular forces encountered in the fibrils, generating species of oligomers that
were relatively stable [82]. Consequently, further research elucidated that dopamine modi-
fication was usually covalent, since dopamine modification generates oligomers that were
insusceptible to sodium dodecyl sulfate (SDS) [83]. Nonetheless, a counterpoint raised
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by other studies suggested that this interaction was transient and transpired within the
C-terminal domain in the Y125EMPS129 region, but the research that ensued showed that
this region was not crucial for dopamine modification, since truncation research elucidated
the inhibited formation of fibrils [84]. Currently, there is increasing evidence that dopamine
modification eventuates as a crosslinking of dopamine in a stoichiometric manner amidst
polymers of dopamine at residues of tyrosine and lysine and α-synuclein [85]. This reaction
leads to a steady generation of α-synuclein-dopamine trimers that have been examined via
the small angle X-ray scattering technique and has shown a “worm-like” structure devoid
of the usual beta-sheet structures typically affiliated with the fibrils of α-synuclein [86].
Furthermore, the α-synuclein-dopamine trimers also lacked certain structural aspects, such
as helical elements, implying that oligomers stabilized by dopamine could differ from
those examined in earlier research [86].

Nonetheless, it is challenging to deduce whether the dopamine modifications of
α-synuclein are causative or if it is promoted by PD pathogenesis [87]. In general, it
seems that the dopamine modification of α-synuclein materializes only in circumstances of
elevated dopamine levels in the cytoplasm or oxidative stress [88,89].

3.4. Sumoylation, O-GlcNAcylation, Ubiquitination, and Truncation

In essence, α-synuclein usually experiences a vast array of post-translational modifi-
cation and in itself is a protein with substantially unidentified functions (Table 1) [13,44].
Although phosphorylation, nitration, and dopamine modifications are typically correlated
with PD, they are not the only post-translational modifications that ensue [44]. However,
out of the most commonly correlated post-translational modifications, there appears to be
an evident association of the modifications and oligomerization that can be deduced [90].
Similar to inherited α-synuclein mutations, phosphorylation, nitration, and dopamine
modifications seem to stabilize and sustain the protofibril state of α-synuclein while si-
multaneously disaggregating the extensive insoluble fibrils encountered in Lewy body
pathological conditions [74,91]. Nevertheless, as previously discussed, there is contradict-
ing and conflicting research in the field, so it is currently unclear if oligomeric species
display elevated toxicity and are liable for PD progression and pathogenesis [91,92].

As of now, one of the main challenges remaining is deducing what role the other
post-translational modifications have in oxidative stress and mitochondrial dysfunction
in PD pathology. Phosphorylation, nitration, and dopamine modifications have all been
associated with mitochondrial dysfunction, and accumulating data advocates that these
modifications have a direct role [11,44]. Furthermore, the current research also suggests a
bidirectional interaction between protein aggregation and dysfunction of the mitochon-
dria [93]. To illustrate, inhibiting mitochondrial complex I has been shown to cause the
oligomerization and accumulation of α-synuclein [44]. Due to this, data associating α-
synuclein with dysfunction of the mitochondria might be crucial to obtaining insight on
the commencement of events that lead to the onset of PD.

Consequently, O-GlcNAcylation and sumoylation have also been examined as post-
translational modifications [94,95]. O-GlcNAcylation has been identified at T72, T75, T81,
and S87 and has been found to inhibit the aggregation of α-synuclein [94]. In general,
O-GlcNAcylation occurs when N-acetylglucosamine is transferred to the threonine and
serine residues of proteins via O-GlcNAc transferase and subsequently excised by O-
GlcNAcase [94]. On the other hand, sumoylations have been recognized at K96 and K102
and have been determined to elevate aggregated levels of α-synuclein via the promotion of
PIAS2 and the impairment of α-synuclein degradation via the defected ubiquitination of
the protein [95,96]. However, there have been contrasting reports that revealed that sumoy-
lation actually inhibits the aggregation of α-synuclein [95]. As for ubiquitination, K10, K12,
K21, K23, K34, K43, and K96 have been identified [11]. In terms of ubiquitination, in vitro
and in vivo studies have elucidated that α-synuclein ubiquitination boosts the production
of inclusions via the seven in absentia homolog (SIAH) protein [11,97]. Further experiments
also revealed that the in vitro ubiquitination of α-synuclein boosts the production of an
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α-synuclein form with a larger molecular weight, and electron microscopy further showed
that ubiquitinated α-synuclein produced more aggregated forms via SIAH [97,98].

Other than full-length α-synuclein, there are minute amounts of numerous truncated
α-synuclein species with molecular masses of approximately 10-15 kDa in the Lewy Bod-
ies [99,100]. As for truncation, K58, V74, K80, and K97 have been identified [101]. The
enzymes neurosin, Matrix metalloproteinase 3, calpain I, and Cathepsin D have been
determined as implicit in the truncation of α-synuclein [101,102]. Since the localization of
α-synuclein is generally determined to be the presynaptic terminal, it could be a substrate
for membrane-associated proteases like calpain I [102]. Mishizen-Eberz et al. showed that
calpain I cleaves WT α-synuclein after amino acid 57, as well as within the NAC region at
amino acids 73, 74, and 83 [102]. The calpain-mediated processing of soluble α-synuclein
was determined to inhibit fibrillization [102]. On the other hand, the processing of fibrillar
α-synuclein appeared to stimulate aggregation [11]. Consequently, neurosin, which is a
serine protease mainly expressed in the central nervous system (CNS), is presupposed to
have a crucial role in α-synuclein’s degradation [103]. Neurosin cleaves α-synuclein subse-
quent to amino acids 80, which potentially inhibits polymerization, and 97, which has a
more robust propensity to polymerize when compared to non-processed α-synuclein [101].

Table 1. Post-translational modifications of α-synuclein.

Post-Translational Modification Amino Acid Residues

Phosphorylation S129 [43]
Nitration Y39, Y125, Y133, Y136 [60]

Ubiquitination K10, K12, K21, K23, K34, K43, K96 [97]
Sumoylation K96, K102 [98]

O-GlcNAcylation T72, T75, T81, S87 [94]
Truncation K58, K80, K97, V74 [104]
Dopamine E83, Y125EMPS129 [105]

4. Conformations of α-Synuclein

The native conformations of α-synuclein include monomers and tetramers, with
α-synuclein having the ability to transition between various differing conformations,
ranging from monomers and tetramers to soluble oligomers and insoluble fibrils and
aggregates [80,106]. The initial research showed that α-synuclein is typically found as a
monomer in its native form, and the current evidence has demonstrated that α-synuclein
may adopt a compact monomeric nature in its native state [107]. This compact monomeric
form allows α-synuclein to protect the non-amyloid-beta component area from aggregating
spontaneously [107]. Furthermore, α-synuclein has similarly been found to occupy a
relatively stable monomeric form and a metastable form while still having the ability to
occupy a tetramer conformation that is arbitrated by the repeating sequence of the KTKEGV
segment [107,108]. Consequently, α-synuclein mutations such as E46K and A53T, which
are commonly associated with PD, have been shown to elevate their monomeric form while
reducing the tetrameric conformation, advocating for the unfolded monomer potentially
being an element in the toxicity of α-synuclein [109,110]. As such, α-synuclein may have a
plethora of native conformations based on the specific membrane interactions and locations
within the cell.

Fibrils and oligomers are considered to be toxic conformations of α-synuclein [111].
There is currently a great amount of research examining the factors that encourage the
initiatory formation of α-synuclein oligomers, and various factors have been found to
elevate the oligomeric α-synuclein levels, such as polyunsaturated fatty acids and the
moderately acidic environment of the lysosomes and endosomes [8,112]. However, cer-
tain factors, such as saturated fatty acids, cause a decline in the oligomeric α-synuclein
levels [113]. Nevertheless, in order to adopt a stable form, oligomeric α-synuclein must
go through changes in their conformation that stabilize and consolidate oligomers that
are resistant to proteinase-K, which generate inflated oxidative stress prior to fibril for-
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mation [114]. Consequently, α-synuclein demonstrates a high affinity to a wide variety
of cellular membranes, thereby leading to the potential contribution of membrane lipid
constituents to synuclein dysfunction on the surface of the membrane [115]. Furthermore,
as previously mentioned, fatty acids drastically alter the conformation of α-synuclein. To
further elucidate, saturated fatty acids have been shown to decrease the oligomeric levels
of α-synuclein, while polyunsaturated fatty acids have been demonstrated to increase
the α-synuclein oligomeric levels [112,113,116]. Even more, a low quantity of negatively
charged lipids, lipid vesicles, and mildly acidic environments, such as those encountered
in lysosomes and endosomes, all appear to stimulate oligomerization [117–119].

There have been studies aimed at investigating which form, oligomers or fibrils, is
the most toxic conformation of α-synuclein [111,120,121]. Some studies indicated that
the oligomeric form may exhibit a higher toxicity, since α-synuclein transgenic mice,
as well as PD and dementia with Lewy bodies patients, demonstrated elevated levels
of soluble, lipid-dependent oligomers of α-synuclein in the brain in comparison to the
controls [113]. Furthermore, α-synuclein PD-associated A30P and A53T mutations further
seem to expedite oligomerization, although not fibrillization [7,122]. Likewise, α-synuclein
variant injections boost oligomerization, but not fibril formation, in the brains of rats, which
has been shown to lead to a more drastic loss of dopaminergic neurons [121].

On the other hand, recent studies have elucidated that α-synuclein fibrils may be up
to 1000 times more toxic than their precursors, with different human α-synuclein assembly
injections into the substantia pars nigra compacta (SNC) of rats, having demonstrated
that fibrils may induce and influence a more preeminent motor impairment, synaptic
impairment, and loss of dopaminergic neurons than oligomers or ribbons [123,124]. As
such, it is crucial to continue exploring the roles of the differing conformations of α-
synuclein, such as fibrils, oligomers, and even ribbons, since it would aid in the discernment
of α-synuclein toxicity [125–127].

α-synuclein has also been noted to have at least three varying strains that show dif-
fering properties, such as toxicity, ability to propagate, structural differentiations, and
cross-seeding tau fibrillization [128,129]. Even more, when observing synucleinopathies
in MSA and PD, there have also been noted differences in the α-synuclein strains [6,130].
To illustrate, the brain extracts of MSA patients, not PD patients, showed increased neu-
ral atrophy and functional loss once injected into the transgenic mice, implying that the
α-synuclein strains obtained from MSA patients may exhibit a higher toxicity [17]. Con-
sequently, MSA brain extracts from various patients also revealed differing α-synuclein
transmission rates, propounding that, within MSA, there appears to be varying α-synuclein
strains even in patient-to-patient scenarios [18]. Due to these reasons, the variability in
α-synuclein strains may lead to differing conditions in patients, including the rate of
pathological progression, age of onset, and severity of disease [8].

5. Pathways Implicated in α-Synuclein Toxicity

In general, α-synuclein manifests with various conformations and is relatively intrin-
sically disordered, encompassing amyloidogenic oligomeric forms [107]. Furthermore,
α-synuclein also has three differing parts: a hydrophobic non-amyloid-beta component
that has been recently crystallized, which supplements the oligomer formation, a carboxy-
terminal that is intrinsically disordered, and an amino region that binds lipids [131]. Even
though α-synuclein is typically located at the presynaptic terminal, the oligomeric forms
and aggregates are usually found dispersed in the neurites and cell body, implying that
α-synuclein has the potential to disturb the cellular function further away from the presy-
naptic terminals [8]. Consequently, a plethora of organelles are involved in the toxicity of
α-synuclein, inclusive of Golgi, lysosomes, nuclei, autophagosomes, synaptic vesicles, mi-
tochondria, and ER [8,132]. Even more, α-synuclein also disturbs the axonal transportation
of organelles and the inter-organelle contacts [133,134].

α-synuclein’s presynaptic localization allows it to be affiliated with the synaptic vehi-
cles, which thereby participate in the binding of membranes and causes a curvature of the
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membrane [135,136]. In general, α-synuclein functions in the regulation of the NSF attach-
ment protein receptor (SNARE) soluble complex by encouraging the fusion of the synaptic
vesicles at the presynaptic terminal via SNARE synaptobrevin-2/vesicle-associated mem-
brane protein 2 (VAMP2) binding [136,137]. Furthermore, it also possibly functions in the
regulation of the trafficking of synaptic vesicles [19,138]. Nonetheless, larger oligomeric
forms of α-synuclein seem to be inclined towards VAMP2 binding, thereby disrupting the
complex formation of SNARE and leading to the release of dopamine, as well as the motil-
ity of the synaptic vesicles [21]. Even more, elevated α-synuclein might also disturb the
release of neurotransmitters via the reduced recycling of synaptic vesicles in the circulation
and mobility [21]. Similarly, increased α-synuclein also has the potential to disturb the
neurotransmission of dopamine, which has been witnessed in α-synuclein-deficient mice,
since they revealed elevated levels of dopamine discharge from the nigrostriatal dopamine
system, even though deletion of the α-synuclein protein should not affect the quantity of
dopamine in the cytosol [139]. Furthermore, transgenic mice with an upregulation of hu-
man α-synuclein have demonstrated a loss of dopaminergic neurons, decreased release of
dopamine, and modified distribution of the synaptic vesicles [140]. Likewise, the elevated
expression of α-synuclein has also been correlated with defective activity of the dopamine
transporter, as well as a decline in the reuptake of dopamine, thereby indicating that there
are numerous possible processes in which α-synuclein has the potential to disrupt the
dopamine levels [140–143].

Mitochondria, which are critical for the synthesis of ATP, the metabolism of lipids,
the storage of calcium, and the survival of neurons, are potentially disrupted by α-
synuclein [144]. In general, α-synuclein toxicity has been shown to disturb mitochondrial
homeostasis, since A53T-mutated mice have shown elevated levels of mitophagy and
mitochondrial DNA damage [144]. Furthermore, elevated levels of α-synuclein seem
to boost dynamin-related protein 1 (DRP1)-independent mitochondrial fission in mouse
models with α-synuclein upregulation, as well as in cell lines [145]. Subsequently, mice
that lack α-synuclein appear to have prevented dopaminergic neuron degeneration caused
by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), potentially due to mitochon-
drial dysfunction by oligomeric α-synuclein occurring due to an elevated calcium absorp-
tion [146,147]. α-synuclein that has undergone post-translation modifications has also
been noted to disrupt the functions of the mitochondria by impairing the mitochondrial
importance of proteins [147]. Nevertheless, dysfunction of the mitochondria could also
potentially be indirectly instigated by toxic α-synuclein due to reduced amounts of the
PGC-1α factor, which mediates mitochondrial biogenesis via the regulation of numerous
transcriptional factors, as well as nuclear receptors [148]. Inhibition of the MEF2C-PGC-1α
transcriptional network of the mitochondria has been seen in PD models of pluripotent
stem cells that were induced by dopaminergic α-synuclein [149]. The mechanism seems to
be related to the elevation of myocyte enhancer factor 2 (MEF2) S-nitrosylation [149].

In regard to the endocytic pathway, α-synuclein seems to disturb the endoplasmic
reticulum function of trafficking to the Golgi in yeast, as well as actuate endoplasmic
reticulum stress [132,150]. Even more, it also has the potential to disrupt the initial stages of
the secretory pathway, which is aided by the RAB1, RAB3A, and RAB8A GTPases, among
others [151]. Elevated levels of α-synuclein also appear to disturb endosomal transports
by interfering with the E3 ubiquitin ligase of RSP5 in yeast, as well as NEDD4, which is
the homolog found in mammals [150]. Nevertheless, endosomal transport is improved
by treatment with N-aryl benzimidazole, which also has shown neuronal protection in
various animal models [152]. Subsequently, inflated levels of α-synuclein also appear
to disturb dopamine transporter trafficking, as well as increase the calcium found in
the cytoplasm, which thereby causes incitement of the noxious cascade of calmodulin-
calcineurin [153]. This alludes that α-synuclein potentially disturbs the buffering of calcium
in the endoplasmic reticulum [154]. Furthermore, α-synuclein has also been considered to
adhere to the GRP78 endoplasmic reticulum chaperone and hinder the folding machinery
of the endoplasmic reticulum [155].
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Autophagy is a crucial process that degrades organelles once damaged and even
aggregates proteins [156]. In this case, upregulated α-synuclein disturbs the endoplasmic
reticulum to Golgi apparatus trafficking by potentially focusing on the transmembrane
ATG9 protein, thereby reducing the production of omegasomes, which are a precursor
for the generation of autophagosomes [157]. When observing autophagy that is mediated
by chaperones, the A30P and A53T-mutated α-synuclein seem to adhere to the LAMP2A
receptors in the lysosome more securely than WT α-synuclein, effectively averting the de-
terioration [158]. Subsequently, α-synuclein that contains dopamine modifications appears
to obstruct autophagy mediated by chaperones, potentially assisting in PD discriminatory
dopaminergic susceptibility [159]. When examining neuronal models that were incubated
with pre-established fibrils of α-synuclein, autophagosomal generation occurred as typi-
cally expected but seemed to have abnormal autophagic cargo accumulation, as well as
lysosomal fusion, possibly attributable to faulty axonal transportation of the autophago-
somes [133]. Consequently, since productive autophagic degradation depends on the
proper enzymatic function of the lysosome, the activity of the lysosome in differing en-
zymes, such as cathepsin B, hexosaminidase, and Gcase, seems to decline in α-synuclein PD-
induced pluripotent stem cells in comparison to control-induced pluripotent stem cells, po-
tentially due to faulty endoplasmic reticulum to Golgi apparatus trafficking [156,160,161].

Despite the fact that α-synuclein was initially localized at the nucleus, this deter-
mination has since been contested, possibly because of the antibody utilization against
cleaved α-synuclein [8,12]. To elucidate, α-synuclein targeted in the nucleus has been
suggested to be regulated by tripartite motif-containing 28 (TRIM28), which is a nuclear
protein, and the inhibition of histone acetylation has also been seen [162,163]. Furthermore,
the α-synuclein G51D, A30P, and A53T mutations that are affiliated with PD have also
shown heightened nuclear localization in comparison to the WT α-synuclein [163,164].
Consequently, the modified activation of a plethora of transcription factors has similarly
been noticed, inclusive of a reduced activation of PGC-1 alpha in α-synuclein-mutated
A53T PD-induced pluripotent stem cells of a patient, specifically of transcription factor
EB (TFEB), which regulates the autophagy–lysosomal pathway in rats with heightened
α-synuclein expression via adeno-associated virus [165]. The heightened activation of
nuclear factor activated T cells from cell lines with activated calcineurin with upregulated
WT or mutated α-synuclein (A53T) was also seen in the brains of PD patients, as well as
transgenic mice [153].

Previously, various inter-organelle contacts have emanated as locations of cellular
homeostatic regulation, including the mitochondria-associated endoplasmic reticulum
membrane. This is a subdomain of the endoplasmic reticulum manacled to the mitochon-
dria by an assemblage of adaptor proteins, which act as critical locations for the biogenesis
of autophagosomes, the homeostasis of calcium, the transport of phospholipids, and the
fission of the mitochondria [166]. Recently, two conflicting studies have suspected that
the mitochondria-associated endoplasmic reticulum membrane has a role in α-synuclein
toxicity, with one study finding that the membrane elevates the contact locations, thereby
leading to a heightened uptake of mitochondrial calcium from the endoplasmic reticu-
lum during the upregulation of α-synuclein, and the other study recognized α-synuclein
in membrane fractions and reported reduced amounts of the membrane contact sites in
WT, A30P, and A53T-mutated α-synuclein [167,168]. Nonetheless, both studies reported
the fragmentation of the mitochondria [169]. As such, additional research is required to
account for the discrepancies, including neuronal experiments, which are critical for the
apprehension of α-synuclein interactions with the mitochondria-associated endoplasmic
reticulum membrane, along with the actions of the numerous inter-organelle contacts in
relation to α-synuclein’s toxic effects [8].

Furthermore, the propagation capacity of α-synuclein is a crucial molecular mecha-
nism that contributes to the advancement of PD. Even though the dopaminergic neurons of
the substantia nigra appear to be notably vulnerable in PD, the observation of PD advance-
ment elucidates that α-synuclein pathology is not limited to this region. Consequently, in
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2003, Braak et al. postulated the hypothesis that the advancement of α-synuclein pathology
pursues a particular caudo-rostral pattern through the CNS [170,171]. Subsequently, Braak
et al. presupposed that the two PD starting points were the enteric nerves and the olfac-
tory bulb, with damage occurring via the vagus nerve or the olfactory tract, respectively,
to the other regions of the brain [170,171]. This theory divides PD into six stages, with
each stage being distinguished by the development of α-synuclein inclusions in particular
brain areas, such as magnocellular portions of reticular formation, substantia nigra, cortex,
dorsal motor nucleus of the vagus nerve, locus coeruleus, and raphe nuclei [171,172]. The
existence of these α-synuclein inclusions generates dysfunctionalities in the cells, which
have been determined to be responsible for the development of clinical PD pathology
and symptoms [170].

Numerous researchers have examined the cellular toxicity of α-synuclein at a steady
state [8]. Nonetheless, organelles are exceptionally dynamic structures that go through
fusion, fission, axonal transport, and maturation [173]. Even more, they are elaborately
regulated by a plethora of signaling pathways that are arbitrated by electrical and calcium
signaling, phosphorylation, and Rab GTPases [8]. Furthermore, in recent times, the fibrils
of α-synuclein have been discovered to induce an impairment in the axonal transport of
TrkB and RAB7-positive endosomes [133]. However, this effect was not observed in the
transport of mitochondria or even synaptophysin, implying that α-synuclein does not
induce irregularities in axonal transport [133]. In general, this could partly be attributed
due to reduced levels of the axonal transport proteins seen in sporadic PD patients in
comparison to the controls that were matched by age or even the reduced stability of
microtubules and kinesin-dependent mobility, as seen in oligomeric α-synuclein cellular
studies [174,175]. Defections in the transportation systems could also be arbitrated by
tau interactions with α-synuclein, a protein that stabilizes and bolsters the assembly of
microtubules [129]. Subsequently, exposure of the neurons to extracellular α-synuclein has
also been found to disturb the actin waves along the axons, as well as the turnover of the
actin protein, due to the inactivation of cofilin [176]. On the other hand, α-synuclein’s role
in vesicle fusion and fission regulation, as well as the dynamics of maturation in neurons,
is an area that warrants additional research contributions, since there is a lack of data [8].
Thus, expanding our knowledge in these processes could potentially further elucidate
α-synuclein’s neurodegenerative actions.

There have been various studies that have depicted numerous cellular dysfunction
pathways when modeling the toxicity of α-synuclein [127,177]. In general, it is plausible
that the differing pathways could be afflicted in distinctive synucleinopathies. To illustrate,
the familial PD pathway that is caused by mutated α-synuclein may not be indistinguish-
able from those disturbed by alternative genes that are associated with PD and may also
differ from those concerning Lewy body dementia and MSA [8]. The disparities could then
be due to discrepancies in the characteristics of α-synuclein strains, diversified interactions
of the protein, and even explicit types of affected cells.

Subsequently, a plethora of pathways may be afflicted at differing points on the disease
progression timelines of synucleinopathies [178]. Furthermore, certain pathways could be
disturbed earlier in the pre-symptomatic stage in contrast to the later post-symptomatic
states, while alternative pathways may atone for the defects in other pathways [8]. As
such, varying pathways could have varied dysfunctional rates that might originally be
the subthreshold for detection, until the degeneration of the cell has already occurred [8].
Nonetheless, subsequent factors, such as genetics and aging, may also alter the timing and
specificity of pathway dysfunction [3,133,179].

The discrepancies in the alternative defective pathways examined in various studies
could also be related to distinctions in α-synuclein’s experimental toxicity model [8]. To
illustrate, the toxicity of α-synuclein is frequently modeled by upregulated WT α-synuclein
or incubated or injected with preformed α-synuclein fibrils or oligomers, targeting α-
synuclein expression utilizing adeno-associated virus vectors or PD-associated mutated
α-synuclein [180,181]. The research studies are subsequently intricated due to the varying
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cell types chosen, such as neuronal, non-neuronal, or glial; the timeline of analysis; and
even the animal model [180,181]. Certainly, utilizing differing models to elucidate the
toxicity of α-synuclein, the varying steps in the production of autophagosomes, the fusion
of the autophagosomes with lysosomes, and the degradative abilities of the mitochondria
all possibly contribute to discrepancies [133,152,157,158]. Consequently, slight variabilities
in the experimental preparation of oligomeric or fibrillated α-synuclein could generate
strain disparities with differing propagation, seeding, and toxicity, further augmenting
the possible variations noted in the observed cellular defects [129]. In further elucidation,
α-synuclein mice models of toxicity allow for the analysis of operative neuromelanin,
which is a crepuscular pigment encompassed by oxidized catecholamines like dopamine,
which is a pivotal component of human dopaminergic substantia nigra pars compacta
neurons [182,183]. Alternatively, dopaminergic neurons that were differentiated from
human-derived induced pluripotent stem cells permit for a longer duration of human
patient obtained cells with endogenous α-synuclein but are deficient in the intricate connec-
tions of the basal ganglia circuitry [149]. As such, further considerations and understanding
of the capacities of the differing models and features are critical for the experimental design
of the toxicity of α-synuclein, because they could reveal which synucleinopathies and what
stages are the most appropriate for accurate reflections [8].

When examining the advancement of α-synuclein toxicity, although a plethora of
pathways have been suspected in the downstream toxicity of α-synuclein (Figure 3),
various supplementary variables may be critical for the extent, onset, and spread of the
toxicity of α-synuclein [8]. To elucidate, post-mortem studies of humans have revealed
that approximately 10–20% of the population displays incidental Lewy bodies without any
clinically relevant neurological demonstration [184]. As such, contributing factors such as
age could be critical for symptomatic determination, as well as severity and progression [62].
Nonetheless, it must be noted that the varying α-synuclein conformations, as well as strains,
could subsequently affect α-synuclein toxicity [128]. Furthermore, alternate pathways have
also been intricated in the boosting of the toxicity of α-synuclein in mouse and Drosophila
melanogaster models, which incorporate the HSP70 deprivation, histone deacetylase sirtuin
2 incitement, and S129 phosphorylation of α-synuclein [50,185–187].

All things considered, aging seems to be the most critical variable for various neurode-
generative disorders, partly due to diminished functions of the organelles [188]. Neurons
in the substantia nigra exhibit elevated deletion levels of mitochondrial DNA with age
progression, leading to dysfunction of the mitochondria due to insufficiency of the respi-
ratory chain [189]. Furthermore, the neuronal dysfunction of proteasomes also escalates
with age progression due to the reduced expression of the proteasome subunits, as well
as disassembly [190]. Even more, autophagy shows a reduced efficiency with age pro-
gression due to reduced levels of ATG5, ATG7, and beclin 1 autophagy proteins in the
brains of humans [191]. As such, those defects could potentially aggravate the toxicity of
α-synuclein, because dysfunctions in protein degradation could expedite the accumula-
tion of α-synuclein. Evidently, the levels of α-synuclein are heightened in the substantia
nigra of humans with the progression of age [188]. Furthermore, another factor that ele-
vates with aging is oxidative stress, which leads to modifications of α-synuclein that are
pathogenic, like nitration of the tyrosine residues, which have been seen in PD, MSA, and
dementia with Lewy body-afflicted brains [58,192]. It is critical to note that the nitration
of α-synuclein boosts its aggregation and reduces its lipid-binding capabilities [60]. Fur-
thermore, autophagic vesicles in the dopaminergic neurons that contain neuromelanin and
lipofuscin produced by oxidized catecholamines and iron-catalyzed oxidations also accrue
with age progression [193].
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Consequently, the actions of glia (microglia, oligodendrocytes, and astrocytes) have
recently been studied more heavily in relation to neurodegeneration [8,194]. Nonetheless,
even though α-synuclein accrues in the oligodendrocytes in MSA, where it is identified
as the primary component of the glial cytoplasmic inclusions found in the disorder, it is
uncharacterized if this occurs in differing synucleinopathies [130,195]. In general, glial
cytoplasmic inclusions are critical microscopic hallmarks of MSA, along with α-synuclein
aggregates that can also seemingly be detected in the neurons [196]. Likewise, involvement
of the astrocytes in the toxicity of α-synuclein has also not been evidently decoded, even
though astrocytes have the potential to obtain neuronally released α-synuclein through
endocytosis, which causes changes in the genetic expression suggestive of inflammatory
responses [194]. Consequently, the activation of microglial cells has also been witnessed in
PD and MSA patients, implying that neuroinflammation could contribute to α-synuclein
toxicity and pathogenesis [197]. Evidently, neuroinflammation has been detected in a
plethora of α-synuclein animal models of toxicity and could be arbitrated by the microglial
cell expression of MHC II, a prominent regulator of immune responses [198]. In general,
MHC II depletion diminishes the activation of microglial cells, as well as the neurode-
generation of dopaminergic neurons in the mice models of α-synuclein toxicity [199].
Furthermore, the elevated expression of α-synuclein also has the potential to augment
TLR4 immunoreactivity in mice models of MSA [197].

Numerous mechanisms have been suggested for the actuated neuroinflammatory re-
sponse brought about by α-synuclein [8]. For example, extracellular endogenous α-synuclein
discharged from neurons has been determined to serve as an agonist for TLR2, thereby
activating microglial cells, while α-synuclein oligomers have been suggested to precisely
bind TLR1/2 heterodimers to the cell membrane to potentiate an inflammatory response
reliant on MyD88, which is a myeloid differentiation gene [200,201]. α-synuclein has
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likewise been proposed to serve as a chemoattractant that encourages the migration of
microglial cells, and the inflammatory response derived from toxic α-synuclein could
be arbitrated by miR-155 [202,203]. Consequently, dopaminergic neurons in PD patients
could also be especially vulnerable to immune modulations, since mice that lack the IFN-
cytokine generate a spontaneous degeneration of dopaminergic neurons [204]. Similarly,
this also leads to Lewy body pathology, as well as cognitive and motor impairment. When
observing MHC II, genetic polymorphisms have also been observed in HLA-DR, and this
has been associated with a late onset of sporadic PD [205]. Thus, subsequent research on
microglial cell activation and neuroinflammation in the toxicity of α-synuclein are then
critical to establishing a clearer understanding of the pathophysiology of the protein that
could further lead to the production of forthcoming synucleinopathy therapeutics.

6. Examining the Interplay of α-Synuclein with Tau and Aβ

When observing AD patients, the reciprocity of amyloid beta (Aβ), tau, and α-
synuclein can be considered. To illustrate, approximately fifty percent of AD patients seem
to have Lewy body pathologies, and the levels of soluble α-synuclein are elevated in the
brains of AD patients, which is associated with deteriorating cognitive function [206]. This
could indicate that α-synuclein could potentially augment cholinergic and hippocampal
neurodegeneration in the brains of AD patients [206]. Initial studies utilizing double-
transgenic mice experimental models determined that Aβ supplemented the fibrilization of
α-synuclein in vivo and in vitro, as well as that α-synuclein seemed to boost 1-38 Aβ aggre-
gation when co-incubated in vitro [207,208]. Alternatively, injected fibrillated α-synuclein
into transgenic mice models of AD were unsuccessful at cross-seeding Aβ in vivo, and
the mice that co-expressed the A30P mutations of α-synuclein appeared to inhibit the
formation of plaques in the mutant amyloid precursor protein (APP), as well as presenilin
1 [209]. These experimental discoveries propose that, instead of α-synuclein cross-seeding
with tau, it actually appears to inhibit the deposition of Aβ, thereby lowering the formation
of plaques in vivo [207]. Furthermore, when observing tauopathy in PD, the hyperphos-
phorylation of tau has also been determined to disintegrate from microtubules, thereby
leading to neuronal dysfunction [210]. Hyperphosphorylated tau are prone to assemble
into oligomers, eventually developing into filamentous neurofibrillary tangles [211,212].
In general, this is crucial, because hyperphosphorylated tau has been observed to interact
with α-synuclein to boost fibrilization and aggregation, subsequently leading to axonal
transport dysfunction and Lewy body formation [213]. Subsequent research will then be
critical for observing if preventing the aggregation of Aβ will elevate the levels of the toxic
oligomeric Aβ and lead to the dysfunction of neurons, in spite of a decline in the formation
of plaques.

7. Future Directions

It has been over two decades since the identification of α-synuclein as a genetically as-
sociated causative factor of PD and primary constituent of Lewy bodies [6,178]. This has led
to various research studies on numerous dysfunctional pathways and post-translational
modifications and their effects on propagation, oligomerization, and activation of the
glia [11,179,197]. In turn, these studies have elucidated differing routes that could be uti-
lized to therapeutically treat these neurodegenerative diseases and target α-synuclein [148].

Nonetheless, there is a plethora of objectives that must still be determined. To illustrate,
a more definite timeline of disease and pathway dysfunction during synucleinopathy
progression, the identification of native and toxic α-synuclein isoforms in healthy and
affected subjects, and the characterization of α-synuclein’s propagation could be crucial.
Consequently, since α-synuclein appears to be intertwined with Aβ and tau fibrillization,
which are critical proteins in the pathogenesis of AD, further apprehension of the interactive
roles of these three proteins is necessary [8]. Finally, continuing to analyze the effects that
the post-translational modifications of α-synuclein have in PD progression will also aid
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in furthering the understanding of their pathology and disease progression, as well as
potentially discovering novel therapeutic targets.
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