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While developing adaptive immune responses, young infants are especially vulnerable to 
serious infections, including sepsis, meningitis, and pneumonia. Antimicrobial proteins 
and peptides (APPs) are key effectors that function as broad-spectrum anti-infectives. 
This review seeks to summarize the clinically relevant functional qualities of APPs and 
the increasing clinical trial evidence for their use to combat serious infections in infancy. 
Levels of APPs are relatively low in early life, especially in infants born preterm or with 
low birth weight (LBW). There are several rationales for the potential clinical utility of 
APPs in the prevention and treatment of infections in infants: (a) APPs may be most 
helpful in those with reduced levels; (b) during sepsis microbial products signal via 
pattern recognition receptors causing potentially harmful inflammation that APPs may 
counteract; and (c) in the era of antibiotic resistance, development of new anti-infective 
strategies is essential. Evidence supports the potential clinical utility of exogenous APPs 
to reduce infection-related morbidity in infancy. Further studies should characterize the 
ontogeny of antimicrobial activity in mucosal and systemic compartments, and examine 
the efficacy of exogenous-APP formulations to inform translational development of 
APPs for infant groups.
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iNTRODUCTiON

During early life, the immune system of the newborn (first 28 days of life) and young infant (up 
to 3 months of age) undergoes remarkable functional change. Historically, the newborn immune 
system was thought to be an immature version of the adult. However, contemporary evidence sug-
gests that neonatal responses are not simply “immature” but wholly unique, reflecting the distinct 
immunological needs of fetal versus newborn life (1). Antenatally, the fetus experiences a normally 
sterile environment until delivery, when the newborn infant is rapidly colonized and challenged with 
a broad array of microbes (2).

The challenge of immune adaption to this rapid environmental change from immune seclusion 
to immune challenge may contribute to the propensity of neonates to succumb to overwhelm-
ing infection (3). Unique newborn innate and adaptive immunity, reflecting the constraints and 
needs of the perinatal transition, may also contribute to this susceptibility. Distinct aspects include 
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Th2-polarized responses of monocyte and dendritic cells via 
pattern recognition receptors (PRRs), T cell hyporesponsiveness 
to many stimuli (4) and a limited assortment of infant B-cells 
capable of producing high-affinity antibodies (5). These distinct 
features of newborn immunity may help prevent overwhelming, 
and potentially tissue-damaging pro-inflammatory responses 
and/or potential cross-reactive auto-immune responses to newly 
encountered microbes. During this immunological transitional 
period, certain “bridging” mechanisms help provide immune 
protection for the newborn. This includes “passive immunity” 
from the transplacental transfer of maternal antibodies to the 
fetus during pregnancy and postnatal transfer to the newborn 
primarily through breastfeeding. However, the neonate remains 
inadequately protected from infection, with over one-third of 
deaths during the neonatal period directly attributable to peri-
natal infections, including sepsis, meningitis, pneumonia, and 
diarrheal disease (6, 7).

In the absence of developed adaptive immunity, infants may 
particularly depend upon innate immune mechanisms to combat 
infections. Indeed, primary immune deficiencies, such as MyD88 
and IRAK4 defects in the toll-like receptor (TLR) pathways, pre-
sent in early life, and survival past the neonatal phase is associated 
with much lower risk of infection (8, 9). Antimicrobial proteins 
and peptides (APPs) are a key effector arm of innate immunity 
that function as broad-spectrum anti-infectives against a wide 
array of Gram-negative and Gram-positive bacteria, mycobac-
teria, fungi, and enveloped viruses (10–12). In this review, we 
discuss the capacity of the newborn and infant to express and 
deploy APPs; how this may affect early life responses to infection; 
and how exogenous APPs or agents that induce APP expression 
may have clinical utility in this age group (Figure 1), based on 
systematically collected data using the methods described in 
Tables 1 and 2.

Relative to older infants and adults, newborns (particularly 
those born preterm) demonstrate lower levels of circulating APPs 
and reduced cellular release of APPs at sites of infection. This rela-
tive deficiency of APPs may contribute to the high risk of invasive 
infections in early life (13, 14). Factors, such as age, including 
gestational age at birth, may influence the physiological levels of 
APPs in infancy. Table 3 depicts APP levels in preterm and term 
neonates according to anatomical site. Newborns are at increased 
risk of infection by microbes including fungi (15), Gram-
negative bacteria, such as Escherichia coli (E. coli) and Klebsiella 
pneumoniae (K. pneumoniae), and Gram-positive bacteria, such 
as Staphylococcus aureus (S. aureus), Streptococcus pneumoniae  
(S. pneumoniae), and Group B Streptococcus (GBS) (15).

wHAT ARe ANTiMiCROBiAL 
PePTiDeS AND PROTeiNS?

Antimicrobial proteins and peptides are fascinating cationic 
molecules that are released primarily by neutrophils, monocytes, 
and macrophages by secretion or during degranulation. APPs 
are also produced within the skin and at mucosal surfaces by 
epithelial cells in the respiratory, gastrointestinal, and urinary 
tract and thus, are present within bodily fluids, including saliva, 
tears, nasal secretion, gastric juice, sweat, semen, airway surface 

liquid, and breast milk (35). Clinically important APPs in early 
life include defensins, cathelicidins, protegrins, bactericidal/
permeability-increasing protein (BPI), S100 proteins (e.g., 
calprotectin), lactoferrin (LF), lysozyme, and RNAses (e.g., 4, 
5, and 7) (13).

Defensins are disulfide-rich cationic peptides expressed in 
plants, insects, fungi, and mammals, including humans (36). 
Humans express α-defensins (human neutrophil peptides HNP-1, 
HNP-2, HNP-3, HNP-4, and human defensins HD-5 and -6) and 
human β-defensins (HBDs including HBD-1, HBD-2, and HBD-3 
(28, 37)). Cathelicidins are multifunctional bactericidal peptides 
with N-terminal fragments bearing a structural similarity to the 
protease inhibitor cathelin (38), and include human cathelicidin 
(LL-37), bovine Indolicidin and Ranalexin (39). Protegrins are 
porcine APPs, structurally similar to cathelins, and have served 
as templates for development of congeners for therapeutic use in 
humans (40). BPI is a 456 residue LPS-neutralizing anti-infective 
protein stored within primary granules of human polymorphic 
neutrophils (PMNs), and has been developed as a synthetic 
therapeutic (rBPI21) (41, 42). Calprotectin is a predominantly 
neutrophil-derived metal-chelating protein of the S100 protein 
family (43), which is gaining recognition as a potential diagnostic 
marker for necrotizing enterocolitis (NEC). LF is a neutrophil 
and mammalian-milk derived protein based on one polypeptide 
chain that contains around 700 amino acids and forms two 
homologous globular domains (N-and C-lobes) (44, 45).

Antimicrobial proteins and peptides can be constitutively 
expressed, and/or inducible in response to proinflammatory 
stimuli. Cathelicidins and HNPs 1–4 are both constitutively 
expressed and inducible. Lysozyme, LF, HD5-6, and HBD1 are 
only constitutively expressed, and HBDs 2–4 are only detectable in 
response to stimuli (46). APPs facilitate effective pathogen clear-
ance by both direct antimicrobial action and immunomodulatory 
functions (11, 35, 47), inducing angiogenesis, promoting wound 
healing (10), inhibiting LPS-induced proinflammatory responses 
(10, 48), modulating adaptive cellular immune responses (13, 
49), mediating immune cell ontogeny in the lung and gut, and 
acting as chemoattractants for other immune cells. Chemokines 
and cytokines regulate the release of APPs but can also display 
direct antimicrobial activity themselves: indeed, up to two-thirds 
of human chemokines have been shown to have some direct 
antibacterial action (46).

Antimicrobial proteins and peptides target invading bacteria 
via initial electrostatic contact at the anionic bacterial surface. 
The specific mode of action differs between APP families but 
permeabilization of target cytoplasmic membranes is a com-
mon crucial step in APP-mediated antimicrobial activity and 
cytotoxicity (47). The concept of extracellular entrapment 
of bacteria, and the contribution of APPs to this process, has 
advanced in recent years, both in relation to antibacterial 
activity at epithelial surfaces and within the bloodstream. Yost 
et al. describe neutrophil extracellular traps (NETs), which are 
lattices of extracellular DNA, chromatin, and APPs that mediate 
extracellular killing of bacteria (50). A similar process occurs at 
the intestinal mucosal surface whereby defensins form nanonets 
to trap bacteria and combat invasion across the intestinal barrier 
into deeper tissues (51).

http://www.frontiersin.org/Immunology/
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FiGURe 1 | Antimicrobial proteins and peptides as protective antimicrobial molecules in the newborn bloodstream and at barrier surfaces. Depicts 
the site of action of naturally occurring as well as exogenous therapeutic and prophylactic antimicrobial peptides and proteins. Antimicrobial peptide (APP), 
bactericidal/permeability-Increasing protein (BPI), human cathelicidin (LL-37), polymorphic neutrophils (PMNs), toll-like receptor (TLR), opebacan (rBPI21), 
bloodstream infection (BSI), catheter-associated bloodstream infection (CA-BSI).
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APPs have potential as stand alone therapeutics or as adjunc-
tive agents, to reduce either length of antibiotic treatment and/
or inflammation induced by killed microbes/microbial products 
(52). Important APPs that have undergone clinical trials include 
rBPI21; Pexiganan, an analog of Magainin (MSI-78) (53); Iseganan 
(IB-367), a protegrin mimetic; Omiganan pentahydrochloride 
(CLS001), an Indolicidin analog; Brilacidin, a defensin mimetic; 
LTX-109, a short lactoferricin-based peptide (54), and Talactoferrin, 
an analog of LF (55, 56). The terms analog and mimetic are used, 
respectively, to describe synthetic compounds with closely similar 
molecular structure versus those with a closely similar functional 
capacity to that of an endogenous APP (see Table 4).

APPs AND THe SKiN: AT THe FRONTLiNe 
OF iMMUNe DeFeNSeS

Many APPs exert their main effects at the frontlines of the 
body’s immune defenses – the skin and mucosal surfaces. The 
skin acts as both a physical barrier and a chemical barrier to 
potential pathogenic organisms hosting an array of APPs 
including LL-37, LF, a- and b-defensins (see Table  3). HBD-2 
is particularly effective against both Gram-negative and Gram-
positive bacteria, such as E. coli and S. aureus, respectively (40). 
Amphibian skin has proven to be a promising source of new 
APPs (57), which can be chemically synthesized for human 
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TABLe 2 | inclusion criteria for referenced studies.

inclusion criteria

Language English
Populations All
Articles that 
include  
research on

Antimicrobial protein and peptide (APP) expression and 
secretion during the first year of life within the blood, mucosal 
surfaces, and bodily fluids, including preterm, low birth 
weight, and infected human infants. Clinical trials of APPs as 
therapeutics that show promise for use in the treatment or 
prevention of neonatal infections and inflammatory conditions. 
Where relevant reference animal studies that support clinical 
studies or hypotheses relating to human infants

Description of the studies included in the structured review: topics covered and 
reasons for their inclusion.

TABLe 1 | Literature search strategy.

Antimicrobial peptide AND/OR infant AND/OR Sepsis

Antimicrobial protein Neonat* Infection
Lactoferrin Early life Pneumonia
Cathelicidin Newborn Diarrhea
LL-37
BPI
Cathelin
HNP-1
HNP-2
HNP-3
HBD-1
HBD-2
HBD-3
Protegrin

Birth Necrotizing 
enterocolitis
Bacteremia
BSI
Meningitis
Preterm
Prematur*
Low birth weight
Skin
Intestin*
Breast milk
Amnion*
Blood
Lung
Immun*

A search for articles was performed using a “systematic review” based method: 
searching through the Pubmed database using a detailed search strategy with 
keywords and MeSH terms as listed above. Rapid assessment of the literature to 
identify the most relevant articles through a rapid screen of titles and abstracts by 1 
reviewer. Article selection removed duplicates and the remainder were then screened 
based on inclusion criteria below.
Where appropriate * was placed at the end of a group of letters (“trunk” of the word) to 
retrieve all possible variations.
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use. For example, Pexiganan (an analog of magainin – isolated 
from the skin of the African clawed frog) shows promise for 
use in the treatment of localized skin infections in humans 
(53). Staphylococcus epidermidis (S. epidermidis) is commonly 
found on the skin, and is responsible for clinically significant 
infection in preterm and low birth weight (LBW) infants (58). 
LL-37 significantly inhibits growth of S. epidermidis isolated 
from the skin of newborn infants (59), and the reduced levels of 
LL-37 in preterms (6) may contribute to their susceptibility to  
S. epidermidis infection. In fact, in newborn infants, the lesions of 
a commonly encountered harmless rash only seen in the neonatal 
period, termed as “erythema toxicum,” are densely filled with 
LL-37 expressing neutrophils and eosinophils. While the exact 
trigger for the erythema toxicum rash remains unclear, it appears 
that activation of innate immune cells to express APPs occurs 
and, thus, colonization of the skin with microbial flora may 
initiate this process (22).

APPs iN THe LUNGS AND DURiNG 
PNeUMONiA

Airborne organisms can gain entry to the human host through 
the airways, but the lung tissue is well protected from invasion by 
epithelial lining fluid that is rich in APPs (60); including LL-37, 
defensins, and lysozyme (32). Resident mucosal immune cells 
(e.g. alveolar macrophages), epithelial cells, and systemic immune 
cells (recruited to the lung epithelium at times of microbial chal-
lenge) all contribute to the secretion of APPs into epithelial lining 
fluid (33). During an episode of pneumonia, increased levels of 
APPs are detectable in bronchoalveolar lavage (BAL) fluid (21). 
It  is clear that HBD-2 is the predominant defensin in neonatal 
lung, and whether defensin levels are lower in preterm or term 
infants is yet to be established (30). However, there appear to be 
reduced levels of BPI in the lungs of preterm infants compared to 
term infants, which may contribute to the higher risk of pneumo-
nia in this age group; with lower lung APPs, preterm infants may 
be unable to clear pathogenic organisms effectively (30, 33, 61).

APPs iN THe iNTeSTiNe iN 
HeALTH AND DiSeASe

The human intestine harbors a broad array of micro-organisms 
(the intestinal microbiome), which are increasingly understood 
to interact dynamically with the host immune system potentially 
leading to long-term effects on health. APPs are believed to sig-
nificantly alter environmental microbiota and influence expres-
sion of pattern-recognition receptors at the intestinal epithelial 
surface (62). Indeed, mouse models have helped describe the 
homeostatic role of α-defensins in regulating the makeup of the 
commensal microbiota in the neonatal intestine (63). However, 
while hosting beneficial bacteria, the intestinal mucosa must 
also protect itself from dangerous invasive organisms: Paneth 
cells contribute to this protection by secreting defensins and 
other APPs into the intestinal fluid. The various mechanisms by 
which gut defensins in particular are able to protect the intestinal 
mucosa from microbial invasion continue to be elucidated. 
Recent work published in Science describes eloquently how HD-6 
released from Paneth cells undergoes a complex self-assembly 
into nanonets and fibrils at the ostia of crypts, allowing highly 
effective entrapment of bacteria and preventing damage to stem 
cells at the base of crypts (51).

There is a paucity of literature describing APP function in the 
healthy human newborn and infant gut, but some inferences can be 
made from studies of animals, and of human fetal tissue. Perhaps 
contrary to what we might expect, a recent study indicates that 
specific APP levels are increased in the mouse intestine during the 
neonatal period. The intestinal intraepithelial cell (IEC) mRNA 
expression levels of the mouse cathelicidin-related antimicrobial 
peptide (mCRAMP), the murine intestinal homolog of human 
LL-37, is highly expressed in healthy term neonatal epithelium 
and becomes less abundant during the postnatal period as IEC 
proliferation and differentiation occurs (64). Indeed, mCRAMP 
expression has previously also been shown to be increased in 
embryonic and neonatal mouse skin, when compared with adult 
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TABLe 3 | Differential levels of antimicrobial peptides and proteins (APPs) according to age and anatomical site.

Family/
peptide

Site Sample 
type

Age groups APP levels

Cathelicidin: 
LL37

Blood Whole 
blood

Neonates and 
adults

Lower levels in preterm than term neonates and mothers (enzyme-linked immunosorbent – ELISA) 
(16). Lower levels in neonatal than in adult neutrophils (flow cytometry), but no difference in plasma 
levels (ELISA) (17)

Breast Breast milk Mothers Present in expressed breast milk (EBM) of mothers of term and preterm neonates (reverse-
transcriptase PCR (RT-PCR) and ELISA) and in EBM-derived cells (direct immunoprecipitation and 
western blot) (18, 19)

Gut Feces/
meconium

Term neonates Distinct inter-individual variation in feces and meconium (western blot) (20)

Lungs Tracheal 
aspirates

Preterm/term 
neonates

Detected in bronchoalveolar lavage fluid (BALF) of mechanically ventilated neonates (antigen capture 
dot-blot assay), concentration did not vary with gestational age (21)

Skin Skin 
biopsies/
vernix 
caseosa

Term neonates 
and adults

Site-specific expression profile, with expression in human skin biopsies of newborns 
(immunohistochemistry) (22), higher levels within neonatal foreskin compared to adults (immune 
staining) (23), and dense expression in vernix of newborns (enhanced chemiluminescence western blot 
detection system (22) and reverse-phase chromatography-dot blot/western blot analyses) (24)

α-defensins: 
HNP-1, -2, and 
-3, and HD-5

Blood Whole 
blood

Preterm/term 
neonates and 
mothers

Significantly lower HNP-1, -2, and -3 levels in preterm and term neonates compared to mothers 
(ELISA) (16). Significantly higher HNP-1 and -3 levels in preterm infants delivered to mothers with 
amniotic infection, compared to normal deliveries (ELISA). Correlation between gestation and HNP 
levels in preterm infants (25)

Breast Breast milk Mothers Significantly higher HD5 levels in breast milk from mothers at day 7 than at day 21, and no association 
between HD5 levels and risk of sepsis (19)

Gut Feces/
meconium

Term neonates HNP-1 and -2 in meconium and neonatal feces (ELISA). HNP-3 in meconium (Matrix-assisted laser 
desorption/ionization-mass spectrometry (MALDI-MS)) (20). HD5 in meconium and feces of neonates 
(weak cationic exchange chromatography and reversed-phase chromatography/MALDI-MS) (20)

Skin Vernix 
caseosa

Term neonates The main antimicrobial components in vernix (HPLC, dot blot analysis, mass spectrometry (24), and 
western analysis (26))

β-defensins: 
HBD-1 and 
HBD-2

Blood Whole 
blood

Mother–infant 
pairs

Significantly lower HBD-2 (ELISA) in serum of preterm compared to term infants. Low levels of HBD-2 
may be associated with increased risk of late onset sepsis (LOS) (27)

Breast Breast milk Mothers HBD-1 and HBD-2 levels (ELISA) significantly higher at day 7 than day 21, and displayed antimicrobial 
activity against neonatal pathogens. No difference between levels fed to infants with and without LOS 
(19)

Gut Feces/
meconium

Preterm/term 
neonates

Similar levels of HBD-2 in preterm and term infants (ELISA), both of which are significantly higher than 
in children or adults (28). Significant lower levels in feces compared to meconium (ELISA) (29)

Lungs Tracheal 
aspirates/
lung tissue

Preterm/term 
neonates

Present in tracheal aspirates (TA) (antigen capture dot-blot assay) with similar levels in preterm and 
term infants (21). HBD-2 is the predominant defensin in neonatal lung, and levels (RT-PCR) appear to 
be developmentally regulated (30)

Skin Skin 
biopsies

Term neonates/
adults

HBD-1 is constitutively expressed in human skin (22) and HBD-2 levels comparable between perinatal 
and adult skin (immunohistochemistry) (23)

BPI Blood Whole 
blood

Preterm/term 
neonates, and 
adults

Three- to fourfold lower cellular content of BPI in neonatal compared to adult neutrophils (western 
blot) (31). Lower plasma levels of BPI in preterm infants compared to mothers (ELISA) (16), and lower 
ability to release BPI from neutrophils in preterm than term infants and adults (ELISA) (32). Higher levels 
in infants delivered prematurely due to maternal amniotic infection (ELISA). No association between 
gestational age and BPI levels (25)

Lungs Tracheal 
aspirates

Preterm/term 
neonates

Higher levels in term than preterm infants and significant increase in first postnatal week, as detected 
in acid extracts of neonatal TA polymorphic neutrophils (PMNs) (ELISA) (33)

Lactoferrin Maternal Breast milk Mothers Most abundant APP present within breast milk of mothers of preterm infants (ELISA) with significantly 
higher levels at day 7 than day 21 (19)

Skin Skin 
surface/
vernix 
caseosa

Term neonates 
and adults

Enriched on neonatal skin surface compared to adults (34), and identified in vernix of full-term infants 
(western analysis) (26)

Summary of the results of published human studies assessing APP levels in preterm infants, term infants, their mothers, and other adults. Study results are reported in the context of 
the anatomical site and sample type assessed, the methods used, and the age of the study participants.

5

Battersby et al. Antimicrobial Peptides in Early Life

Frontiers in Immunology | www.frontiersin.org August 2016 | Volume 7 | Article 309

skin (23). Further research is required to explore whether this 
specific developmental phenomenon exists in the skin and intes-
tinal mucosae of human infants.

Conversely, studies of human fetal intestinal tissue support 
the premise that APP levels are relatively diminished in early 
life: reduced mRNA expression levels of HD-5 and HD-6 have 
been reported within terminal ileal tissue at 24-week gestation 

compared to full-term infants and adults (65). Indeed, data sug-
gest that low levels of defensins in preterm infants are associated 
with increased incidence of intestinal pathology, in particular 
the devastating illness, Necrotizing enterocollitis (NEC) (66). 
NEC etiology is incompletely understood but an interplay 
exists between host factors [prematurity, very low birth weight 
(VLBW)], the intestinal microbiota and enteral feeds. APPs 
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TABLe 4 | important synthetic antimicrobial proteins and peptides 
according to the endogenous compounds from which they are derived.

Origin endogenous compounds exogenous synthetic 
compounds

Bovine • Indolicidin
• Bovine Lactoferrin (BLF)b

• Omiganan 
pentahydrochloride 
(CLS001)

• LTX-109

Porcine • Protegrin
• (β-defensin 2 (pBD-2)

• Iseganan (IB-367)
• pBD-2a

Amphibian • Ranalexin
• Magainin

• Polymixin
• Pexiganan (MSI-78)

Human • Human defensins
• Cathelicidin
• Bactericidal/permeability-

increasing protein (BPI)
• Lactoferrin (LF)

• Brilacidin
• N/A
• rBPI21

• Talactoferrin and LTX-109

aDenotes promising compounds currently in pre-clinical experimental stages, all other 
synthetic forms are in clinical trial stages.
bDenotes compounds in the endogenous form that have undergone human clinical trial.
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potentially contribute, as animal models have shown that deple-
tion of Paneth cells of α-defensins followed by enteric infection 
results in a clinical picture akin to human neonatal NEC (67).

Ileal tissue from infants with NEC show elevated defensin 
levels compared to age-matched controls, likely indicating that 
at some stage in the pathogenesis of the disease, Paneth cells 
are induced to increase production of defensins (65). Higher 
HBD-2 concentrations appear to have a protective effect once 
NEC pathology is established, in that they have been associated 
with more moderate courses of the disease. Indeed, in severe 
NEC, low HBD-2 expression is accompanied by low TLR4/
MD2 expression, suggesting an inadequate response to luminal 
bacteria, possibly predisposing to the development of NEC (29). 
Calprotectin levels have been extensively investigated in neonatal 
stool samples, as a potential screening marker for the detection 
of NEC. A recent systematic review of the literature confirmed 
fecal calprotectin levels are elevated in NEC, but whether this is 
robust enough to act as a diagnostic test early in the disease, and 
what relevance the levels have to disease progression and severity 
remains unclear (43).

An important mode by which the infant intestinal mucosal 
surface is furnished with APPs, is through ingestion of maternal 
breast milk. APPs may contribute to the ability of breast milk to 
protect the newborn from inflammatory and infectious diseases. 
Several APPs have been identified in breast milk, including LF 
(68), lysozyme (69), LL-37 (18), α-, and β-defensins (19, 70). 
Importantly, LF is abundant at concentrations sufficient to inhibit 
bacterial growth (19, 70). Given its multi-functional immuno-
modulatory, anti-inflammatory, and antimicrobial properties, LF 
supplementation in VLBW has been increasingly studied for the 
prophylactic treatment of bloodstream infection (BSI) and NEC 
(71). Evidence supports the notion that combinations of compo-
nents working in synergy contribute to the antimicrobial activity 
of breast milk, as exemplified by the concomitant action of LF 
with bovine RNase 5 (angiogenin-1), RNase 4, and angiogenin-2 
(72). A strategy of mimicking the synergistic nature of breast milk 

derived APPs and associated molecules has potential for future 
therapeutics.

APPs iN THe BLOOD AND 
BLOODSTReAM iNFeCTiON

APPs consistently circulate in the bloodstream, they are trans-
ported freely within the plasma, and provide an ongoing low-level 
non-specific immune defense against potential invasive patho-
gens. Cellular expression and secretion of some APPs, including 
defensins (73), LL-37 (74), and BPI can be mediated by TLRs (6). 
In infants with BSI with bacterial etiology, plasma BPI concentra-
tions are higher than those in healthy infants, which indicates that 
BPI transcription and/or cellular secretion is upregulated during 
infection (41, 75). Additionally, healthy uninfected neonates born 
to mothers who have suffered from an amniotic infection dem-
onstrate higher levels of LF, BPI, HNP-1, HNP-2, and HNP-3 in 
the cord plasma (25). Maternal plasma LL-37 levels appear to be 
the most important predictor of infant plasma LL-37 levels, and 
although the source of these APPs in cord blood is not known, 
it is possible that these higher levels may not be a reflection of 
the functional status of the infant’s own immune system, but 
an example of maternally derived transplacentally transferred 
immune protection (76).

However, generally, intracellular levels of APPs are lower in 
neonates than in later life: LL-37 and BPI levels are reduced in 
neonatal whole blood and neutrophils when compared with adults 
(17, 31, 32, 77), and BPI deficiency of neutrophils in neonates is 
associated with reduced bacterial-killing capacity (41). It is yet 
to be established whether an infant’s intrinsic intracellular or 
plasma levels of APPs influence an individual’s risk of developing 
a BSI, or indeed the clinical outcome following BSI. Measuring 
serum, plasma or even resting-state intracellular levels of APPs 
have obvious limitations in understanding the importance of 
differences between neonates and adults. Indeed, more relevant 
perhaps is identification of functional impairments of the innate 
immune response in neonates, such as defective NET forma-
tion resulting in impaired bacterial killing in vitro (78). Further 
characterization of the functional capacities of peripheral blood 
neutrophils in term and preterm infants will undoubtedly yield 
insights into understanding neonatal BSI and developing strate-
gies for its prevention and cure.

THe PReMATURe iNFANT:  
A SPeCiAL CASe

Premature birth significantly increases susceptibility to serious 
infections, including BSI, meningitis, and pneumonia (79, 80). 
APP levels are generally lower in preterm than in full-term infants, 
including within the bloodstream (16) (both in the circulating 
plasma and intracellularly within immune cells), at epithelial sur-
faces and within bodily fluids and feces (6, 29, 30) (Table 3). This 
relative deficiency in APPs may contribute to the preterm infant’s 
increased risk for invasive bacterial infection (13). Importantly, 
higher levels of APPs (including HBD-1, HBD-2, and LL-37) are 
seen in the blood and body fluids of those with acute infections, 
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such as BSI (81) and respiratory infection (21). Increased levels 
of APPs in cord blood of infants born to mothers with a history 
of BSI or chorioamnionitis (25) is important in the context of 
premature infants, as preterm delivery is often triggered by amni-
otic infection that may, therefore, act as a significant confounder 
when assessing for effect of gestational age on APP levels. Studies 
not taking a history of chorioamnionitis into account should, 
therefore, be interpreted with caution (21, 28).

CLiNiCAL APPLiCATiON OF APPs: 
PROMiSiNG eviDeNCe FROM CLiNiCAL 
TRiALS iN ADULTS?

While the number of APPs undergoing pre-clinical develop-
ment has been increasing, the majority of clinical trials have 
focused on topical formulations with few trials in the pediatric 
population (Table  5). Several lead compounds, including 
Pexiganan, Iseganan, and Omiganan have failed to achieve 
late stage development due to their failure to meet primary 
trial endpoints, or disappointingly insurmountable regulatory 
hurdles (56). Currently, Dipexium Pharmaceutical’s Locilex 
(Pexiganan cream 0.8%) is the only APP undergoing a phase 
III clinical trial, for the treatment of mild wound infections 
(NCT01594762). Cellceutix Corporation recently completed 
phase II trials of Brilacidin in acute bacterial skin infections 
(NCT02052388) and have begun preclinical studies in otitis 
media and ocular infections. Cutanea Life Sciences has identi-
fied new indications (including skin infections) for Omiganan 
(CLS001), which was previously not approved for urinary tract 
infections (NCT02456480). Lytix Biopharma has completed 
phase II trials of LTX-109 in impetigo (a problematic condition 
primarily affecting young children). Several pharmaceutical 
companies are developing APPs for systemic administration, 
such as Agennix AG who are pursuing the development of oral 
Talactoferrin in severe sepsis (NCT00630656). Results from 
their phase II randomized controlled trial (RCT) showed a sig-
nificant reduction in all-cause mortality at 28 days and 6 months 
in the treatment group (82) yet, the recent follow on phase II/III 
RCT (OASIS trial) was terminated prematurely over concerns of 
safety and efficacy (55). Interestingly the APP that has undergone 
most advanced clinical testing using the intravenous (IV) route 
is rBPI21, which was assessed for its efficacy in meningococcemia 
in children (42). Other AMPs, such as LF 1-11 (hLF1-11), are 
undergoing safety and tolerability testing for delivery via the IV 
route in healthy volunteers (83).

CLiNiCAL APPLiCATiONS OF 
APPs iN iNFANTS

Evidence supports the use of recombinant congeners of APPs to 
improve circulating levels and potentially reduce the incidence 
of, and/or improve outcomes from bacterial infection in infants. 
APPs have been used to prevent infections and aberrant inflam-
mation in high-risk infants, such as premature and LBW infants. 
A large, multicentre, double-blind, RCT comparing LF supple-
mentation alone or in combination with probiotics demonstrated 

a significant reduction in late onset sepsis (LOS) in VLBW infants 
in both treatment groups as compared to placebo controls (84). 
Secondary analysis of data from the same RCT showed significant 
reductions in incidence rates of invasive fungal infection in both 
treatment groups as compared to placebo controls (85). A third 
LF study demonstrated that the same treatment interventions 
significantly diminished incidence of NEC in VLBW infants (86). 
These findings were reiterated in a smaller RCT which found that 
LF-treated infants experienced fewer primary but also secondary 
episodes of sepsis as compared to placebo (87). A recent Peruvian 
study also reported that infants receiving LF were less likely to 
develop sepsis than placebo controls (88). Taken together, these 
findings highlight the feasibility of supplemental LF, either alone 
or in combination with probiotics, as a promising approach to 
protect VBLW infants from neonatal infections.

Invasive meningococcal disease is a rare but devastating 
disease, associated with high morbidity and mortality in the 
young. Promising preclinical data supported the antibacterial 
and anti-endotoxin properties rBPI21, while phase I/II tri-
als demonstrated the safety of rBPI21 in adults and suggested 
beneficial effect on inflammatory biomarkers in children with 
severe meningococcal sepsis, thus prompting a phase III RCT 
for this indication (89). The study, whose youngest participant 
was ~2 weeks old, suggested that rBPI21 conferred benefit with 
respect to mortality and morbidity. By intention to treat analysis, 
mortality was lower in the rBPI group, though not significantly. 
A sub-group analysis of those who survived to complete the 
first infusion of rBPI or placebo demonstrated nearly a 50% 
reduction in mortality in the rBPI21 group. Although the study 
was underpowered to detect significant changes in mortality by 
intention to treat analysis, rBPI21-treated study participants had 
a substantial reduction in severe limb amputations, shorter ICU 
stay, and better return to baseline function. These results sug-
gest the potential utility of rBPI21 in reducing meningococcal-
associated complications and, if approved such that it could be 
given even sooner in the sepsis cascade, would likely confer even 
greater benefit. Notably, when administered to total body irra-
diated mice, rBPI21 demonstrated benefit in conjunction with 
conventional fluoroquinolone antibiotic, including more rapid 
recovery of the hematopoietic compartment and improved 
survival suggesting that it may be a useful adjunct in those 
deficient in BPI due to chemoradiotherapy (90). These results 
raise the possibility to extend the beneficial effects of rBPI21 to 
other populations that are relatively deficient in functional BPI 
activity, including the preterm infant group.

FUTURe POTeNTiAL OF APPs 
iN DiSeASeS OF iNFANCY

Circulating and intracellular levels of APPs are relatively low 
in early life, especially in those born preterm or with LBW, 
potentially contributing to susceptibility to infection. There are 
several rationales for the potential clinical utility of APPs in the 
prevention and treatment of infections in infants: (a) APPs may 
be most helpful in those with reduced levels; (b) during sepsis 
microbial products signal via PRRs causing potentially harmful 
inflammation which APPs may counteract; and (c) in the era of 
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TABLe 5 | Antimicrobial peptides and proteins evaluated in clinical trials for the treatment of infections in children.

Peptide Clinical 
application

Treatment 
arms (n)a

Phaseb Status Company Outcome Reference/ 
Reg no.c

Opebacan 
(rBPI21): 
recombinant 
21-kDa modified 
fragment 
of human 
bactericidal/
permeability-
increasing 
protein (BPI)

Severe 
meningococcal 
sepsis

rBPI21 (190) III Complete Xoma The trial was underpowered to detect 
significant differences in mortality. 
However, patients receiving rBPI21 had 
a trend toward improved outcome in 
all primary outcome variables, and the 
study authors concluded that rBPI21 is 
beneficial in decreasing complications 
of meningococcal disease

Levin (42)
Placebo (203)

Bovine 
lactoferrin (BLF): 
80 kDa naturally 
occurring 
multifunctional 
glycoprotein of 
the transferrin 
family

Late-onset 
sepsis

BLF (153) NS Complete Saint Anna Foundation 
and Dicofarm

Compared with placebo, BLF 
supplementation alone or in 
combination with LGG (Lactobacillus 
rhamnosus GG) reduced the 
incidence of a first episode of late-
onset sepsis in VLBW neonates (84). 
Prophylactic oral administration of 
BLF also reduces the incidence of 
invasive fungal infection in preterm 
VLBW neonates

ISRCTN53107700; 
Manzoni  

(84, 85, 86)
BLF plus LGG 
(151)

Invasive fungal 
infections

Placebo (168)

Necrotizing 
enterocolitis

BLF (247) NS Complete Compared with placebo, BLF 
supplementation alone or in 
combination with LGG reduced the 
incidence of ≥stage 2 NEC and of 
death-and/or ≥stage 2 NEC in VLBW 
neonates (86)

BLF plus LGG 
(238)
Placebo (258)

Late-onset 
sepsis

BLF (22)
Placebo (25)

NS Complete Ankara University Fewer sepsis episodes were 
observed in LF-treated infants with 
none developing NEC, without 
statistical significance (87)

NCT01287507; 
Akin 2014 (87)

Necrotizing 
enterocolitis

Late-onset 
sepsis

BLF (95) II Complete Universidad Peruana 
Cayetano Heredia

Overall sepsis occurred less 
frequently in the LF group than in the 
control group. Although the primary 
outcome did not reach statistical 
significance (88)

NCT01264536 (88)
Placebo (95)

BLF III Ongoing NCT01525316
Placebo

Healthcare-
associated 
infections

BLF
Placebo

NS Complete Research Center of 
Sainte Justine,  
Canada

Results awaited ISRCTN66482337

Necrotizing 
enterocolitis
Late-onset 
sepsis

BLF III Ongoing National Health and 
Medical Research 
Council, Australia

Results awaited ACTRN12611000 
247976Placebo

Late-onset 
sepsis

BLF III Ongoing The National Institute 
for Health Research, 
UK

Results awaited ISRCTN88261002
Placebo

aBLF, bovine lactoferrin; LGG, probiotic Lactobacillus rhamnosus GG; GOS; galacto-oligosaccharides. Sample size (n) is absent for trials either in progress or completed but unpublished.
bNS, “not stated.”
cReference or registration numbers are obtained from http://clinicaltrials.gov, http://www.isrctn.com, and http://www.anzctr.org.au.
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antibiotic resistance, development of new anti-infective strategies 
is essential.

Clinical trials of oral LF and IV rBPI21 have suggested 
significant clinical benefit lending support to the hypothesis 
that APPs, either induced endogenously or as exogenously 

administered congeners, may help prevent and treat infections 
in highly susceptible infants in early life: particularly premature 
or VLBW infants. Future strategies should identify and develop 
APPs with potential for prevention and treatment of the most 
devastating diseases: BSI, pneumonia, CNS infection, diarrheal 
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disease, and NEC. There are a number of strategies that have 
as yet made little progress in clinical trials: such as inhaled 
TLR ligands that can stimulate production of APPs at the lung 
surface. The company Pulmotech have developed “PUL-042”; a 
novel combination of two synthetic TLR agonists (Pam2 and 
ODN) (91) that will begin Phase 1b/2a clinical studies this year in 
immunosuppressed adults at high risk of developing pneumonia. 
PUL-042 or similar compounds could be considered for use to 
reduce pneumonia in at risk infants, such as ventilated premature 
or VLBW infants.

APPs iN THe eRA OF ANTiBiOTiC 
ReSiSTANCe

In the era of antibiotic resistance individual APPs, combina-
tions of APPs, or agents that induce their expression (e.g. TLR 
agonists), may serve as novel alternatives to antibiotics. It has 
been proposed that bacterial resistance to APPs is much less 
likely to evolve than to conventional antibiotics, owing to their 
broad, non-specific antibacterial mechanism of action (92). The 
in  vivo response to infection involves the action of multiple 
endogenous APPs and, thus, a combination therapy of multiple 
synthetic APPs may be a better therapeutic option than an 
individual agent.

As long-term survival rates of preterm and VLBW infants in 
neonatal intensive care units (NICUs) increase, so does morbid-
ity associated with catheter-associated blood-stream infections 
(CA-BSIs). Neonates are at particular risk of exposure to antibiotic 
resistant bacterial BSIs: specifically, from, methicillin-resistant 
Staphylococcus aureus (MRSA), vancomycin-resistant entero-
cocci (VRE), and extended spectrum beta-lactamase producing 
Gram-negative bacteria (ESBL) (93). New strategies are needed 
to eradicate antibiotic-resistant bacterial strains, including those 
colonizing or infecting the skin and mucosal surfaces, before the 
organisms gain entry to the bloodstream. Experimental data are 
emerging on the potential of APPs as single or synergistic agents 
to existing therapies in this regard.

In the case of staphylococcal-resistant organisms, a recent 
study using a skin explant model to assess the efficacy of 
Ranalexin with an endopeptidase (Lysostaphin) found that the 
combination was able to rapidly and specifically kill resistant 
staphylococcal species without adversely affecting normal 
skin microflora (94). Additionally, a group from Singapore 
have designed four hybrid peptides (based on Indolicidin 
and Ranalexin), which display strong antibacterial activity 
against MRSA in vitro (95), and another in vitro study identi-
fied Indolicidin (and a number of other APPs) alone and in 
combination with antibiotics, as potential candidates for future 
therapeutics against MRSA biofilms (96). The underlying 
mechanisms explaining these synergistic effects against MRSA 
remain to be completely elucidated. An in vitro and in vivo study 
of Nafcillin (an anti-staphylococcal β-lactam) identified that it 
enhances killing of MRSA by increasing the binding of LL-37 to 
the MRSA membrane.

Infection with penicillin-resistant strains of S. pneumonia can 
be a serious therapeutic challenge in the young infant. Recently, 

a Malaysian research group designed a novel hybrid peptide 
“DM3” that has shown synergistic therapeutic efficacy in com-
bination with penicillin in a mouse model of systemic infection 
with a strain of penicillin-resistant S. pneumoniae (97). Design 
and testing of APPs to ensure maximal efficacy while limiting 
toxicity is of paramount importance for the vulnerable infant 
age group.

A BROAD-BASeD APPROACH TO 
FUTURe ReSeARCH

Newborn infants and in particular those born prematurely are 
highly susceptible to invasive and often overwhelming sepsis. 
Data from the World Health Organization suggest that worldwide 
every year 1.1 million neonates die from infection (3). Evidence 
is growing for the potential of APPs to be useful in the reduction 
of morbidity and mortality from infection in infancy in both 
resource-rich and resource-poor countries. Further research is 
needed, including in vitro and in vivo studies characterizing the 
ontogeny of global cellular and soluble antimicrobial and anti-
infective (e.g. endotoxin-neutralizing) activity within systemic 
compartments and at epithelial surfaces. These basal surveys will 
then need to be systematically compared in relation to induced 
and exogenous-APP supplemented fluids to inform translational 
development of APPs in high-risk populations, including new-
born and infant groups.
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