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Objectives: Little research has been done in pharmacoepidemiology on the use of
machine learning for exploring medicinal treatment effectiveness in oncology. Therefore,
the aim of this study was to explore the added value of machine learning methods to
investigate individual treatment responses for glioblastoma patients treated
with temozolomide.

Methods: Based on a retrospective observational registry covering 3090 patients with
glioblastoma treated with temozolomide, we proposed the use of a two-step iterative
exploratory learning process consisting of an initialization phase and a machine learning
phase. For initialization, we defined a binary response variable as the target label using
one-by-one nearest neighbor propensity score matching. Secondly, a classification tree
algorithm was trained and validated for dividing individual patients into treatment response
and non-response groups. Theorizing about treatment response was then done by
evaluating the tree performance.

Results: The classification tree model has an area under the curve (AUC) classification
performance of 67% corresponding to a sensitivity of 0.69 and a specificity of 0.51. This
result in predicting patient-level response was slightly better than the logistic regression
model featuring an AUC of 64% (0.63 sensitivity and 0.54 specificity). The tree confirms
confounding by age and discovers further age-related stratification with chemotherapy-
treatment dependency, both not revealed in preceding clinical studies. The model lacked
genetic information confounding treatment response.

Conclusions: A classification tree was found to be suitable for understanding patient-
level effectiveness for this glioblastoma–temozolomide case because of its high
interpretability and capability to deal with covariate interdependencies, essential in a
real-world environment. Possible improvements in the model’s classification can be
achieved by including genetic information and collecting primary data on treatment
response. The model can be valuable in clinical practice for predicting personal
treatment pathways.

Keywords: real world evidence, oncology, exploratory study, propensity score modeling, decision tree,
machine learning
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INTRODUCTION

Glioblastoma is one of the most common and aggressive brain
tumors in adults, with a median survival of less than one year
from the time of diagnosis. Apart from the current standard of
care treatment based on surgical resection and post-operative
radiotherapy, there is only one medicinal product available for
the treatment of glioblastoma patients. This temozolomide
intervention has been shown to be efficacious in prolonging
survival in Randomized Controlled Trials (RCTs) (Stupp et al.,
2005; Stupp et al., 2009).

However, specific details on the mechanisms that drive
individual response to temozolomide treatment in clinical
practice, or on the drivers of real-world patient-level treatment
effectiveness, are unknown (van Genugten et al., 2010; Eichler et
al., 2011; Liu et al., 2016). To study these personal responses,
traditional cohort-oriented methods, such as the Kaplan-Meier
survival techniques currently used in pharmacoepidemiology
(Strom and Kimmel, 2006) for investigating real-world
evidence (RWE) data, have shown to be inadequate because of
their difficulties to cope with heterogeneous patient populations;
their restrictive assumptions regarding linear relationships
among variables; their inability to provide patient-level
predictions; and their inability to infer causality (Ankarfeldt
et al., 2017; Arora et al., 2019).

For example, Kaplan-Meier methods provide (sub)
population-level results, that is, they return the average or
median treatment effect rather than patient-level results. Other
statistical methods commonly used in the domain of
medicine, such as logistic regression models, have hitherto
focused mainly on investigating survival probability and
their associated confounding factors when used in
pharmacoepidemiology, as opposed to treatment effectiveness
(Burke et al., 1995).

While currently primarily investigated for their application in
drug discovery and development (Vamathevan et al., 2019),
Onukwugha et al. (2017) suggested machine learning to be a
valuable tool in pharmacoepidemiology as well aiming at
studying this personal treatment’s effectiveness (Onukwugha
et al., 2017). Specifically, conducting exploratory treatment
effectiveness studies using machine learning generates new
knowledge on whether and how the treatment works in its
specific real-world population and health care system context
by accurately making individual predictions (Onukwugha et al.,
2017; Berger et al., 2017; Puranam et al., 2018). These methods
are increasingly being used by oncologists for cancer detection
and prediction of risks, cancer recurrence, and survival (Lavrac,
1999; Kononenko and Kukar, 2001). Henceforward, machine
learning develops as an alternative for traditional survival
methods because it can be used for hypotheses generation on
patient-level treatment effects in heterogenetic real-word patient
populations, among others, through causal assessments
(Vamathevan et al., 2019; Lavrac, 1999; Kononenko and
Kukar, 2001; Cruz and Wishart, 2006; Onukwugha et al., 2017;
Berger et al., 2017; Puranam et al., 2018). However, only little
research has been done so far to explore the value of machine
learning in pharmacoepidemiology (Crown, 2015).
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In this paper, we present information-based machine learning
methods – decision tree-based classification or classification trees
(CT)—for use in a two-step iterative exploratory learning process
to investigate the stratification factors of individual treatment
response to temozolomide in glioblastoma patients using
observational data. The well-known CT technique can then be
used for patient-level effectiveness predictions of temozolomide.
MATERIALS AND METHODS

To investigate the effects of real-world data (RWD) covariates on
real-world treatment response on a patient-level basis and to be
able to identify confounding factors influencing real-world
treatment response, the methods that are used should allow for
product performance-based data labeling if no primary data are
available on real performance per patient. Hence, these models
should use patient-level information and be able to handle
personal treatment paths and/or genomic information. In this
section, we will first describe the data collection process and
provide a definition of the product’s performance used to
annotate the data set. Next, we will describe the classification
models and exploratory learning process used for theorizing
about personal treatment effectiveness.

Data Setting
In this study, data were extracted from the Belgian Cancer
Registry (BCR), including 4587 patients with glioblastoma
(ICD-10 code C71.0-C71.9) diagnosed between 2004 and 2012,
and vital status information updated until January 1, 2015.
Variables for this study were taken from the full standard set
of variables nationally collected by the BCR—including patient
and tumor characteristics—and Inter Mutualistic Agency (IMA),
including reimbursed therapeutic acts consisting of medical acts
and medications administrated in hospitals and handed out in
pharmacies. These variables were further limited by BCR
oncologists for their potential relevance in the analysis.

The index date, or date of incidence of glioblastoma, was
defined as the date of first microscopic confirmation of
malignancy, first hospitalization for the cancer, first
consultation for the malignancy, first clinical or technical
diagnosis, start of treatment, or date of death, whichever date
came first. Patients with incidence dates that were the same as the
date of death as well as patients without a social security
identification number were excluded.

Temozolomide therapy relevant for the treatment of
glioblastoma was extracted from the IMA data set based on the
medicines’ anatomical therapeutic chemical (ATC) code
(L01AX03) and treatment start data within −1 to 9 months from
the date of incidence. Other chemotherapeutic interventions with
possible interactive effects were extracted from the IMA data set
based on the ATC code for chemotherapy (L01), starting −1
month from the date of incidence. Information on
radiotherapeutic (RT) interventions, biopsy, and surgical
resection were extracted from the IMA data set by BCR51
oncologists based on the relevant nomenclature codes used.
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The final data set consisted of (a) the patient’s overall survival
(OS) period, a continuous variable calculated as the difference
between the date of death or last confirmation that the patient
was alive and date of incidence; (b) treatment path, that is, binary
variables indicating biopsy and/or surgical resection and RT, and
chemotherapeutic treatment; (c) five discrete covariates (age,
tumor differentiation grade, topography, total number of tumors,
and World Health Organization [WHO] performance score at
diagnosis and recursive partitioning analysis [RPA] class), one
binary covariate (sex), and one categorical covariate (tumor
topography, specifying the location in the brain), confounding
both the patient’s OS and treatment path; and (d) OS binary
observation status specifying whether the survival was censored,
that is, whether the follow-up time was too short to observe the
date of death. The final RWD set consisted of 4528 patients, of
which 3090 treated with temozolomide (Table 1).

Definitions
Because no primary data on treatment response was available for
temozolomide, initialization was needed to label the data. For this
purpose, a binary dependent variable with variables 1 and 0
representing individual-treatment response and non-response,
respectively, was created based on the patients’ gain in OS, that
is, the number of months the patient gained in survival when
being assigned to the temozolomide treatment. Here, OS was used
as the main indicator of the treatment effect because this was the
RCT’s primary endpoint. Patients’ gain in OS was calculated using
nearest neighbor propensity score (PS) matching, a method
commonly used on RWD to mitigate bias induced by the non-
random assignment of treatments. Hence, let T and C be the set of
treated (Z = 1) and control (Z = 0) patients, respectively. The PS =
Pr(Zi = 1|Xi) is defined as the probability of being assigned to the
treatment of consideration conditional on the observed covariates
X. Its value is estimated using a logit model (Rosenbaum and
Rubin, 1983; Rosenbaum and Rubin, 1984) with the selected
covariates X being the observed variables which significantly
affect the survival time, because this variable selection approach
is associated with better PS estimations (see supplementary
materials for more details) (Austin et al., 2007). Following this
nearest neighbor PS technique, each temozolomide-treated
patient is matched to k control patients based on the smallest
difference in estimated PSs, that is, i ∈ T and j ∈ C are matched if
dist (PSTi ,PS

C
j ) is minimal (Rosenbaum and Rubin, 1983;

Rosenbaum and Rubin, 1984).
Here, we chose to set k equal to 10, given a set of 1438 control

patients, to not average out possible covariate effects. This
nearest neighbor PS matching algorithm was performed with
the “MatchIt” 125 package within R (Ho et al., 2011).

Further, let YT = OST and YC = OSC be the observed
continuous outcomes of the treated and control units,
respectively. Denote by C (i) the set of k control patients j ∈ C
matched to the treated patient i ∈ T. Define the weights wij = 1/k
if j ∈ (i) and wij = 0 otherwise. From the formula for the average
treatment effect (Ho et al., 2011), we defined the treated patient’s
survival gain (SG): SGi = OSTi −oj∈C(i)wijOS

C
j . Following the
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guidelines of the European Society for Medical Oncology
(ESMO) andMagnitude of Clinical Benefit scale (MCBS) and
with the aim of maximizing treatment response rate(TRR)
(Becker and Ichino, 2002), patients were labeled with
“response” whenever their SG was longer than the threshold l
equal to one month (Cherny et al., 2015).

Classification Model
We used classification techniques within machine learning to
divide individual patients into treatment response and non-
response groups, with the purpose to fully understand
individual treatment response to temozolomide. For
TABLE 1 | Main characteristics of the real-world study population.

Real-World

Control group (n
= 1438)

Treated group (n =
3090)

Age
Range (median) 0–94 (74) 5–98 (61)
no. (%) < 50 98 (42%) 582 (19%)
no. (%) >= 50 1,340 (58%) 2,508 (81%)

Sex – no. (%)
Male 814 (57%) 1,847 (60%)
Female 624 (43%) 1243 (40%)

WHO performance status—n
(%)
0—asymptomatic 253 (18%) 415 (13%)
1—symptomatic but

completely ambulatory
850 (59%) 2265 (73%)

2—symptomatic, up and
about >50% walking hours

197 (14%) 313 (10%)

3—symptomatic, confined to
bed/chair > 50% walking

84 (6%) 61 (2%)

hours 54 (4%) 36 (1%)
4—completely disabled; totally

confined to bed/chair
RPA—n (%)
Class III† 43 (3%) 162 (5%)
Class IV‡ 789 (55%) 2,419 (78%)
Class V § 606 (42%) 509 (16%)

Surgical procedure (biopsy/
debulking)—n (%)
No 169 (12%) 23 (1%)
Yes 1,269 (88%) 3,067 (99%)

Radiotherapy treatment—n
(%)
No 899 (63%) 130 (4%)
Yes 539 (37%) 2,960 (96%)

Chemotherapy treatment—n
(%)
No 1,342 (93%) 2,277 (74%)
Yes 96 (7%) 813 (26%)

Time from diagnosis to
radiotherapy: range (median)

377.0–256.3
(Arora et al., 2019)

−313.6 to 186.9
(Vamathevan et al.,

2019)
Time from diagnosis to
chemotherapy: range (median)

−4.0 to 190.0
(Stupp et al., 2005)

−4.3 to 389.7 (Burke et
al., 1995)
January 2020 | V
Patients were categorized according to recursive partitioning analysis (RPA) classes:
†Age < 50 years and World Health Organization (WHO) status 0. ‡ Age < 50 years and
WHO status > 0 or age ≥ 50 years and surgical resection. §Age ≥ 50 years and no
surgical resection
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exploratory reasons, we used a CT to extract patterns from the
data. CTs are highly interpretable and intuitive as well as well
attuned to coping with missing data and heterogeneous data
types (Kelleher et al., 2015). While recursively creating branches
for different covariate values, ordered in function of their
classification error minimization power, the CT algorithm (for
details see Supplementary Material) gradually improves
prediction accuracy. Missing data is handled by classifying
these observations in branches based on surrogate variables,
predicting the most likely missing variable value.

As pointed out by Puranam et al. (2018), we believe that our
sample size of 3090 temozolomide-treated patients was
sufficiently large to extract valuable evidence (Shaikhina et al.,
2017). Although identification of the best classification model
was not the main purpose of this research, we did compare this
technique with a logistic regression model, one of the most
commonly used statistical classification methods in the
medicinal literature (Kononenko and Kukar, 2001).

The set of treated patients T was divided into a training set,
comprising 80% (2472 units) of the temozolomide-treated patients
sampled at random, and a test set, comprising the remaining 20%
(618 units). The CT algorithm was trained and validated using 10-
fold cross validation to obtain the most generalizable model using
the “rpart” package within R, which implements the Classification
and Regression Tree (CART) algorithm described by Breiman et
al. (1984). Given that the difference between our defined binary
response and predicted response by the classification model can be
described by a confusion matrix, we can define the following
properties: the number of true positives (TP), true negatives (TN),
false positives (FP), and false negatives (FN). From these
properties, the true positive rate (TPR) and the true negative rate
(TNR) are defined as TPR = TP/(TP + FN) and FPR = FP/(TN +
FP), respectively. The CT and logistic regression model
performance were then evaluated by calculating the area under
the curve (AUC) of the receiver operating characteristic (ROC)
curve, mapping the models’ sensitivity and specificity measured by
the TPR and 1 –TNR, respectively (Fawcett, 2006; Cherny et al.,
2015). The AUC and ROC curves were computed using the
“pROC” package within R (Robin et al., 2011).

Iterative Exploratory Learning Process
The focus of this study was on investigating the confounding
factors and causal effects of individual treatment response to
temozolomide. As classification methods within machine
learning identify correlations but cannot by themselves
reach causal inference (Puranam et al., 2018), further
interpretation of the CT is required. We conducted a two-
step iterative exploratory learning process, as depicted in
Figure 1 , which aids inductive theory building. This
learning process consisted of the evaluation of (i) possible
unobserved confounding variables, for example through
expert consultation, and (ii) the redefinition of response as a
target feature when not available as primary data, by changing
TRR assumptions and/or using different response-
identification algorithms. Iteration ended when no further
improvements were obtained, giving the model’s optimal
AUC achievable in practice (see Appendix for pseudo-code).
Frontiers in Pharmacology | www.frontiersin.org 4
RESULTS

First, we will show results for the data labeling process for
patients treated with temozolomide. Thereafter, the outcome of
the trained and validated CT is given and evaluated. The training
set for the CTmodel consisted out of 2472 temozolomide-treated
patients. These CT results are finally compared to the results of
the logistic regression model.

Initialization: Binary Response Labeling
The observed covariates significantly affecting the survival time
of temozolomide-treated patients included patients’ age, RT, and
chemotherapeutic treatment (p-value < 0.001), and WHO
performance score (p-value < 0.01) (see supplementary
materials for more details). Nearest neighbor PS matching
based on these covariates resulted in 1063 control units
matched once or multiple times to one treated unit. Following
the ESMO-MCBS (Cherny et al., 2015), we obtained a TRR of
52%, meaning 1,607 of 3,090 temozolomide-treated patients
showed SG > 1 month.

Classification Results
The CART algorithm showed a maximal decrease in
classification error when first dividing the treated patients
according to their age (Figure 2, see supplementary materials
for more details). Another covariate stratifying the training set
included patients’ chemotherapeutic treatment path, but such
covariate interdependencies are currently not analyzed in RCT
and treatment effectiveness studies (Stupp et al., 2005; Strom
and Kimmel, 2006; Stupp et al., 2009; van Genugten et al.,
2010). CT performance evaluation of the test data set resulted in
an AUC of 0.6650 (Figure 3A). Compared to a model that is no
better than a random classifier, featuring an AUC of 0.50, the
CT performed better than chance but still showed poor
prediction skills. Associated with this AUC was a sensitivity
of 0.6850, meaning that 31% of patients who would benefit from
the treatment were not recognized by the model, and a
specificity of 0.5114, meaning that 49% of patients who would
not benefit from the treatment were predicted to benefit by
the model.

The logistic regression model achieved a slightly lower AUC
of 0.6357 with a sensitivity of 0.6337 and specificity of 0.5420
(Figure 3B). Although they showed a better specificity than the
CT, the results of the logistic regression model are still far
too low.

Iterative Exploratory Learning Process
With an AUC of 66.50% and 63.57% for the CT and logistic
model, respectively, further interpretation of the model was
done to obtain a higher sensitivity and lower specificity. In this
temozolomide case, two learning steps were followed depicted
in Figure 1: (i) theorization about possible unobserved
confounding variables and (ii) redefinition of treatment
response as a target feature. In the first case, a low AUC,
which is associated with many misclassifications (false
responders and non-responders), can result from the problem
of spuriousness, suggesting that there may be some important
January 2020 | Volume 10 | Article 1665
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confounding variables that were omitted from the data set, that
were not collected in the data source, or that were just unknown
(i.e., not known from any translational research). As an
example, from our case, the BCR does not dispose of genetic
information such as the methylation of the promoter for the
gene encoding O-6-methylguanine-DNA methyltransferase.
However, based on clinical research literature, this appears to
be associated with a higher survival benefit (Stupp et al., 2005;
Stupp et al., 2009).

In the second case, one can modify the TRR definition. In our
case, for example, modifying the threshold to 3 months (giving a
TRR of 43%) in the algorithm led to a CT with a different
structure and lower AUC of 0.6005 (see supplementary
materials). Again, age and status of chemotherapeutic
treatment were shown to be the main classification variables.
DISCUSSION

Although the prediction structure induced by RWD confirms
the importance of patient age, which was previously used as a
Frontiers in Pharmacology | www.frontiersin.org 5
stratification variable during RCT, the CT based on observational
data reveals extra interdependencies of chemotherapy as a co-
treatment effect, which was not found in preceding RCT-based
studies. Such variable interdependencies cannot be investigated
through current pharmacoepidemiology methods, including
Kaplan Meier survival analysis techniques. In the following
sections, we will discuss the causality assessment to generate
hypotheses about personal treatment effectiveness and show the
significance of this method. Next, we will discuss some
limitations of the proposed method as well as possible issues
with the data.

Hypotheses Generation Through
Exploratory Learning
Our CT model had an AUC of 67% with an associated sensitivity
equal to 0.69 and specificity equal to 0.51. In the case of cancer
treatments, a low specificity is undesirable because the treatment
of false positives can be dangerous for the patient, depriving him
or her of correct treatment, and can also be very costly,
considering the high oncology drug prices during health care
budget austerity. Therefore, theorizing about personal treatment
FIGURE 1 | Flowchart of two-step iterative exploratory learning process. The model is iterated until the area under the receiver operating characteristic curve (AUC)
is satisfactory, i.e. until the highest achievable AUC in practice is found. Unobserved confounding variables are (unknown) variables currently not captured in real-
world situations. (AUC, area under the receiver operating characteristic curve; CT, decision tree).
January 2020 | Volume 10 | Article 1665
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effectiveness was done following an iterative learning process. A
starting point for the first learning step of the CT was to explain
why false responders and non-responders were observed in the
various groups because this could suggest that there are some
essential variables not being collected in RWD, such as genomic
information, or other unidentified factors confounding RWE that
are not detected by cohort-oriented methods used in current
efficacy and effectiveness studies. Mitigating this problem of
spuriousness may be essential to avoid wrong causal
conclusions. Thus, including known or yet unknown
unobserved (depending on data set used) confounding variables,
for example through expert-consolations or conducting
Frontiers in Pharmacology | www.frontiersin.org 6
translational research, may lead to a subsequent CART search
to induce a CT with better prediction accuracy and possibly a
higher specificity.

In the second learning step, one can experimentally modify the
TRR definition (under the guidance of experts) and/or method.
Ideally, this can be done by collecting a treatment response
identifier as primary data from the data source, such as
information on tumor growth. Here, the TRR was based on PS
matching and a non-variable SG threshold of 1 month. Depending
on the extent of the phenotype (e.g. blood pressure) and genotype
(e.g. mutations) variable collection in RWD sources, advanced
TRR identification algorithms can greatly improve the labeling.
FIGURE 2 | Summary predictive classification tree model after training and validation. Predicted stratification variables for TMZ in glioblastoma include age, RPA
class, and chemotherapeutic (Chemo) and radiotherapeutic (RT) patient status. For each stratified patient class a confusion matrix indicates the number (N) and
percentage (P) of treated patients from the test set for which the CT predicts treatment response correctly (responders to predicted treatment response and non-
responders to predicted non-response) with respect to the labeled SG value. E.g. the CT model predicts the class of patients aged 52 to 61 years and >63 years
not receiving concomitant or adjuvant chemotherapy to respond to the treatment with a true positive (TP) probability of 58%. For this class, with patients aged < 63
years 82% are correctly predicted (true negative [TN]) not to respond.
January 2020 | Volume 10 | Article 1665
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Patient-Level Effectiveness Prediction
We found a combination of age and chemotherapeutic treatment
status to be the main stratification factors of real-world personal
treatment response to temozolomide in glioblastoma. Additionally,
further specifications of these factors not found in preceding RCT-
based studies were discovered. For example, the CT predicts positive
response to the treatment for patients being assigned to
chemotherapeutic treatment and being older than 63 years with a
probability of 66%. Additionally, patients aged 52 to 61 years and
Frontiers in Pharmacology | www.frontiersin.org 7
>63 years not receiving concomitant or adjuvant chemotherapy are
predicted to respond to the treatment with a probability of 58%.
Using the iterative learning process described in Hypotheses
Generation Through Exploratory Learning section, a higher AUC
and hence better predictions could be obtained when (un)known
stratification factors are identified and included. As an example, in
our case, the BCR does not yet dispose of genetic information, such
as the methylated promoter for the gene encoding O-6-
methylguanine-DNA methyltransferase, which is associated with a
FIGURE 3 | Receiver operating characteristic (ROC) curve featuring model performance evaluation as an area under the curve (AUC), sensitivity TPR and FPR or (1-
specificity) for (A) the CT prediction model 3 and (B) a logistic regression model of the test data set. The CT model (A) featured an AUC of 0.6650, a sensitivity of
0.6850, and a specificity of 0.5114, The logistic regression model (B) achieved a slightly lower AUC of 0.6357 with a sensitivity of 0.6337 and specificity of 0.5420.
January 2020 | Volume 10 | Article 1665
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larger survival benefit (Stupp et al., 2005; Stupp et al., 2009; van
Genugten et al., 2010). When the achieved AUC is satisfactory and
thus treatment effectiveness is fully understood, that is, when all
stratification and confounding variables are known, the model can
be used for accurate patient-level effectiveness predictions.

Significance of the Proposed Methodology
for RWD
In this temozolomide-glioblastoma case, the CT was potentially
useful for exploring covariate interdependencies and
confounders of individual treatment responses. With this, the
importance of factors yet unknown to previously conducted
clinical research, such as phenotypical or genotypical
variations, can easily be integrated and tested for their effects
using this technique. Therefore, CTs may be valuable in terms of
discovering variations in patient-level effectiveness of medicines,
which might not be discovered otherwise. This confirms recent
literature discussing the promise of machine learning techniques
in pharmaceutical innovation and decision making (Reps et al.,
2018; Beam and Kohane, 2019; Rajkomar et al., 2019). Therefore,
we argue that RWE-based machine learning analysis can be used
in exploratory treatment effectiveness studies (Berger et al., 2017;
Puranam et al., 2018) for improving the understanding of TRR
and the specification of treatment paths with a level of detail not
previously achieved in pharmacoepidemiology studies of
temozolomide. In practice, when considering cancers that are
being treated following multiple sequences (e.g. first- to third-
line treatments) with a range of different, possibly combined,
interventions (as is the case for melanoma, colorectal, and breast
cancer) in conjunction with a range of different diagnostic tools,
the technique can also be useful for exploring and predicting
optimal treatment sequences and therefore guide clinical
decision making.
Limitations of the Proposed Method
This study does not come without limitations. For the CT’s
predictive accuracy, the quality of the RWD is very important.
Within health care, data sources may be of low veracity, that is,
they may contain incomplete, imprecise, or inconsistent data.
Data cleaning is an important step to mitigate this problem.
Also, data sources may capture a low variety of information.
Here, no primary data on treatment response was available,
which required the use of PS matching to estimate
personal treatment effect. Also, the BCR does not dispose of
genetic information.

Additionally, we must note that the TRR definition did not
consider survival censoring, that is, the OS of both treated and
control patients were assumed to be uncensored. Fortunately, in
this study, censoring was rarely observed given the severity of
the disease; only 1% of matched cohort patients (13 of 1063)
and 7% of treated patients (211 of 3090) had censored OS, and
the latter was only of importance if the SG was less than one
month because these would potentially be wrongfully classified
as non-responsive. In such cases, the use of semi-supervised
machine learning methods, where treatment response as the
Frontiers in Pharmacology | www.frontiersin.org 8
target feature is missing when the OS of either matched treated
patient and/or matched control patient is censored, may
improve these results.

Lastly, the used matching technique does not control for
unobserved variables and does not consider early patient death
before start of treatment. In our case, the latter may be important
because of short patients’ OS.
CONCLUSIONS

Using machine learning, we showed an increased understanding
of patient-level treatment responses and specification of
individual treatment paths that were not be identified using
cohort-oriented methods used in previous RCT studies. Through
the iterative learning model, confounding factors can be
identified to achieve the most optimal prediction model of
patient-level effectiveness.

We believe that machine learning can be effective in the
observational phase following “initial” licensing in an adaptive
licensing approach, as suggested by Eichler et al. (2012), or in the
pilot phase after licensing following Phase III pre-approval
studies in the sequential study design suggested by Franklin
et al. (2014). In both cases, machine learning can be used for
exploratory treatment effectiveness studies where hypotheses are
generated to further guide efficient designs of large-scale
confirmatory observational trials, both in disease database and
pragmatic RCTs.

The CT method was found to be the suitable for this case
because of its high interpretability and capability to deal with
covariate interdependencies. However, the CT is suitable up to a
maximum level of complexity characterized by the number of
baseline variables, amount of possible treatment pathways and
their combinations, and extent of OS censoring. Thus, when
considering medicinal products such as cetuximab or
panitumumab for colorectal cancer, CTs become inadequate
because more patients will have censored OS while receiving
multiple and more combined treatments in different sequences
depending on their genetic expression, resulting in a smaller
sample-to-feature ratio. As a result, methods should account for
label uncertainty, for example, by including the likelihood of the
treatment response measure. Further studies involving predictive
data analytics used for real-world effectiveness exploration are
needed to determine whether more advanced techniques within
machine learning should be considered to deal with the higher
complexity in these cases. These methods include probability-
based Bayesian classification, support vector machines, and
neural networks conducted through supervised or semi-
supervised learning.
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