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Abstract
Gene- treatment interactions, just like drug- drug interactions, can have dramatic ef-
fects on a patient response and therefore influence the clinician decision at the pa-
tient’s bedside. Crossover designs, although they are known to decrease the number of 
subjects in drug- interaction studies, are seldom used in pharmacogenetic studies. We 
propose to evaluate, via realistic clinical trial simulations, to what extent crossover de-
signs can help quantifying the gene- treatment interaction effect. We explored different 
scenarios of crossover and parallel design studies comparing two symptom- modifying 
treatments in a chronic and stable disease accounting for the impact of a one gene 
and one gene- treatment interaction. We varied the number of subjects, the between 
and within subject variabilities, the gene polymorphism frequency and the effect sizes 
of the treatment, gene, and gene- treatment interaction. Each simulated dataset was 
analyzed using three models: (i) estimating only the treatment effect, (ii) estimating 
the treatment and the gene effects, and (iii) estimating the treatment, the gene, and 
the gene- treatment interaction effects. We showed how ignoring the gene- treatment 
interaction results in the wrong treatment effect estimates. We also highlighted how 
crossover studies are more powerful to detect a treatment effect in the presence of a 
gene- treatment interaction and more often lead to correct treatment attribution.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
When pharmacogenetic effects are suspected for drugs of the same therapeutic area, 
they should be explored in order to choose the best treatment and dose for each patient 
to avoid rejecting a new drug.
WHAT QUESTION DID THIS STUDY ADDRESS?
Investigating if pharmacogenetic effects differ between treatments is important to at-
tribute the best therapeutic option (treatment or regimens) in each genetic subgroup.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
To capture adequately the gene- treatment interaction, a crossover design is more 
powerful than a parallel design. Ignoring an existing gene- treatment interaction re-
sults in incorrect treatment effect estimates.
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INTRODUCTION

The development of personalized medicine should lead to 
improved safety and efficacy of drug use,1,2 even more for 
drugs with a narrow therapeutic margin and a high interin-
dividual variability.3 It is now well- established that pharma-
cokinetic and pharmacodynamic studies enable to quantify 
the interindividual variability in treatment response and its 
genetic component when it exists.4,5

Indeed, genetic variability has been described in the me-
tabolism and effect of drugs, and gene modulators of the 
response to drug treatment have been identified.6 Precisely, 
pharmacogenetic studies investigate the influence of genetic 
polymorphism on drug response,7– 9 thereby providing a tool 
for treatment personalization.10,11

Currently, during the development of a new drug, asso-
ciations with specific polymorphisms are routinely explored, 
nonetheless the potential influence of the metabolizer status 
for certain enzymes (e.g., CYP450 cytochrome) is hardly re-
ported. Attia et al. highlighted four conceptual objectives (i) to 
identify a polymorphism with a key role on the drug efficacy, 
(ii) to avoid rejecting wrongly a drug candidate because of an 
unidentified gene effect, (iii) to increase the consistence of 
result across populations, and (iv) to help the clinician choice 
over a drug panel.12 The development of a new drug, histor-
ically confined to the “one- size- fits- all” approach, must now 
tend toward personalized medicine to increase its chances at 
providing a superior efficacy, a more convenient dosing reg-
imen or route of administration, or a lower risk of adverse 
effects.5 Many studies report associations between genotype 
and efficacy in patients treated with a given drug, ignoring 
information from untreated patients.13 The benefits of incor-
porating pharmacogenetic into clinical practice is now well- 
established, however, high- quality findings are lacking due 
to unresolved methodological and statistical issues of phar-
macogenetic studies.1,6,14,15 Briefly, as well illustrated by 
Holmes et al.8 in a systematic review on the methodological 
pitfall of pharmacogenetic studies, the lack of consistency of 
these studies may be a result of the small sample sizes, use 
of candidate gene approaches, with paucity of reproducibil-
ity and paucity of meta- analyses. Therefore, there is still an 
urgent need for individualized treatments.16 Better- designed 
and analyzed pharmacogenetic studies could provide alterna-
tive medications and better response through a change of reg-
imens. An important aspect of the design of pharmacogenetic 
studies, as of any clinical trial, is to have sufficient power to 

detect a clinically significant difference between genotypes.1,7 
Evaluation of the power to detect gene- treatment interaction 
is complicated because it depends not only on the treatment 
effect size within each genotype, but also on the number of 
genotypes, their size, and the gene effect size.7

The crossover design is an alternative to the parallel de-
sign regularly used for drug- drug interaction evaluation, con-
sisting in randomly allocating patients to treatment sequences 
so as to capture within individual differences between treat-
ments especially relevant for chronic and stable disease with 
rapid and reversible treatment effect. A standard crossover 
design is the two- treatment, two- period crossover, in which 
each patient receives both treatments but is randomly allo-
cated to one of two sequences whereas in the parallel design 
patients are randomly allocated one of the two treatments.17,18 
Its nature permits each patient to act as their own control, 
exploiting the fact that in most instances the variability be-
tween measurements from different subjects in a study will 
be far greater than that from the same subject on different 
occasions. Therefore, crossover trials are often more power-
ful than parallel group trials. However, it is seldom used in 
pharmacogenetic studies,18,19 which preferably use parallel 
designs where every patient is given only one drug, the ref-
erence, or the test.

The aim of the present work is to show the impact of the 
study design and statistical model on the power of a phar-
macogenetic study evaluating two treatments (candidate and 
reference) when a genetic polymorphism does or does not 
increase the benefit of the candidate treatment. Although the 
strength of a crossover study is recognized by some in the sta-
tistical community, we used simulations to help demonstrate 
its advantages to detect a gene- treatment interaction and to 
study the impact of the choice of the statistical model.

METHODS

Statistical model

Let us consider a reference (T  = 0) and a test treatment (T  = 
1) and one genetic polymorphism with G = 1 for the geno-
type “rare allele homozygotes” and G = 0 otherwise (i.e., 
two alleles of the rare variant are required for the polymor-
phism to have an effect; this corresponds to a recessive ge-
netic model). G affects the outcome of interest directly and 
through an interaction with the test treatment.

HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, AND/
OR THERAPEUTICS?
Assuming a gene- treatment interaction and using a crossover design seems the best 
strategy for the pharmacogenetic study of concurrent drug treatments.
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Let Yij be a continuous outcome of interest for patient 
i = 1,…, N receiving treatment Tij at occasion j = 1 or 2 
within a standard two- treatment two- sequences two- periods 
crossover design (Dxo) as follows:

where � is the intercept, �T the treatment effect, �G the gene 
effect, and I the gene- treatment interaction (i.e., Iij = Tij × Gi) 
such that I = 1 when the test treatment is given to a patient gen-
otype G = 1 with �I the gene- treatment interaction effect. Here, 
the random effects bi and kij capture the between and within 
subjects’ variability and follow normal distributions of mean 0 
and variances �2 and �2, respectively. In addition, we define RG, 
the gene component coefficient based on the ratio of the within 
and between subject variances, such as RG = 1 − �2∕�2 20 that 
varies from 0 (weak gene component to the variability) to 1 
(strong gene component to the variability).

For a parallel design (Dp), (1) simplifies in:

where the random effect bi. follows a normal of mean 0 and 
variance �2 (=ω2 + γ2), and every patient receive only one treat-
ment (i.e., N/2 patients receive the reference treatment and N/2 
the test).

Simulation study

We choose to set the simulation study in the context of a 
chronic disease with a rapid and reversible treatment effect 
(symptoms modifying drug) to enable the assumption of no 
carry- over, sequence or period effects in the crossover study. 
The simulated values for the intercept µ = 8 and the residual 
error standard deviation σ = 14 were based on the Ideal trial 
study.21 In Table 1 for Dxo and Dp, we display the set of all 
simulated values for N (N for Dxo = 2 × N for Dp), F (the fre-
quency of G = 1), �T, �G, �I, ω

2, γ2, and the corresponding RG 
and σ2. For the treatment, the gene and the interaction effect 
size we considered a 50% change in the continuous outcome 
(i.e., a medium magnitude according to ref. 22) For the gene 
and the interaction effect size, we in addition considered a 
100% change for illustration purposes. To explore the im-
pact of the number of subjects, the minimum and maximum 
values are rather typical for crossover (from 50 to 200) and 
parallel (from 100 to 400) designs. For instance, the IDEAL 
study, which was a crossover study included N  =  112 pa-
tients. Then, to explore the impact of the percentage of mu-
tant homozygotes, we considered 20% (typical of CYP2A6 
or CYP2B6 variant homozygotes in White patients) and 4% 
(typical of CYP2C8 or CYP2C9 homozygotes variants in 
White patients).23 For Dxo, all the possible combinations of 

N (3 values)  ×  F (2 values)  ×  RG (3 values)  × �T (3 val-
ues) × �G (3 values) × �I (3 values) were simulated = 486 
scenarios. Similarly, for Dp, all the possible combinations of 
N (3 values)  ×  F (2 values)  × �T (3 values)  × �G (3 val-
ues) × �I (3 values) were simulated = 162 simulation sce-
narios. Therefore, in total, we simulated 648 scenarios and 
for each scenario, we simulated one thousand datasets with 
the R software.

Each simulated dataset was analyzed using three models: 
(i) MT estimating only the treatment effect �T and assuming 
no gene effect, no gene- treatment interaction, (ii) MTG es-
timating the treatment effect �T and the gene effect �G but 
assuming no gene- treatment interaction, and (iii) MTGI esti-
mating the treatment effect �T, the gene effect �G, and the 
gene- treatment interaction effect �I. In all three models, be-
tween and within subject variances on Dxo and between sub-
ject variances on Dp were estimated. We used the R package 
nlme to fit the simulated datasets.24

In all scenarios, we evaluated the type I error and the 
power of the bilateral Wald tests at the level 0.05 to detect 
(i) a treatment effect H0 : �T = 0, when the data were fitted 
with MT, MTG or MTGI, (ii) a gene effect H0 : �G = 0, when the 
data were fitted with MTG or MTGI, and (iii) a gene- treatment 
interaction effect H0 : �I = 0, when the data were fitted with 

(1)Yij = � + �TTij + �GGi + �IIij + bi + kij,

(2)Yi = � + �TTi + �GGi + �IIi + bi,

T A B L E  1  Set of values used for the various scenarios for each 
parameter for the crossover DXO and parallel DP designs

Design Crossover D
XO

Parallel 
D

P

Number of subjects 50 100

100 200

200 400

Allelic frequency 0.04 0.04

0.20 0.20

Gene component 
coefficient and 
standard deviation

R
G

�;� σ

0.5 11.43;8.08 14

0.7 12.28;6.73

0.9 13.35;4.22

Treatment effect �
T

0 0

−5 −5

5 5

Gene effect �
G

0 0

−5 −5

−10 −10

Gene- treatment 
interaction effect �

I

0 0

−5 −5

−10 −10

Note: In bold are the values used to illustrate the main results.
Abbreviations: �

T
, treatment effect; �

G
, gene effect and �

I
, gene- treatment 

interaction effect. F, frequency of mutant homozygotes; N, number of subjects; 
� and �, standard deviation of the between and within subjects’ variability, 
respectively; RG, gene component coefficient; �, standard deviation for DP.
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MTGI. The 95% prediction interval around 0.05 for 1000 sim-
ulated datasets is (0.037; 0.065). We calculated the estima-
tion errors: �̂k − � ∗

k
 where � ∗

k
 is the true simulated value, for 

all parameters on all scenarios.

Treatment attribution error

We also explored the treatment attribution error. For each sce-
nario, the correct treatment attribution could be determined ac-
cording to the patient genotype. For example, for the scenario 
�T = 5; �G = 0 and �I = −10, for a patient with G = 0, if T = 0 
the predicted outcome Ypred T = 0 and G = 0 = 8 and if T = 1 then 
Ypred T = 1 and G = 0 = 13, so Ypred T = 0 and G = 0 < Ypred T = 1 and G = 0, 
the patient should be assigned the treatment test. However, for 
a patient with G = 1, if T = 0 the outcome Ypred T = 0 and G = 1 = 
8 and if T = 1 then Ypred T = 1 and G = 1 = 3, so Ypred T = 0 and G = 1 > 
Ypred T = 1 and G = 1, the patient should not be assigned the treat-
ment test. Table 2 illustrates the decision rules based on the 
model fitted (MT, MTG or MTGI), the test result on �T and the 
sign of �T + �I highlighting the attribution error cases.

The error was thereafter calculated as the percentage of 
simulated datasets selecting a model leading to the wrong 
treatment attribution for each genotype and in the whole pop-
ulation (i.e., averaging over the genotype frequency in the 
population, F).

RESULTS

Parameter estimation

The estimation errors on all parameters for all scenarios are 
presented in Supplementary Material Figures S1– S4.

For the mean effect �, ignoring the gene effect (using MT) 
resulted in a downward trend in the estimation errors for � 
driven by the value of F and �G. Conversely ignoring the 
gene- treatment interaction (using MTG) resulted in an upward 
trend in the estimation errors for � driven by the value of F 
and �I. Using MTGI, no trend was observed.

For �T, using MT or MTG led to a downward trend in the 
estimation errors for �T driven by F and �I, especially for DP 
and a decreasing RG. Using MTGI, there was no trend with 
greater uncertainty for DP and a decreasing RG.

For �G, using MTG, a downward trend in the estimation 
errors for �G was observed driven by F and �I, with greater 
uncertainty for DXO and a low F. Using MTGI, there was no 
trend and also greater uncertainty for DXO and a low F.

For �I, using MTGI, no trend was detected with greater un-
certainty for DP and a decreasing RG.

Type I error and power

In the following, we only detail the results for Dxo (N = 100 
with RG = 0.7) and Dp (N = 200) when F = 0.2, and vary-
ing �T; �G and �I. Of note, all the results, for all other simu-
lated values of F, N, and RG, are in Supplementary Material 
Figures S5– S7.

Figure 1 illustrates the type I error and power to re-
ject H0 : �T  = 0 when fitting the data with MT, MTG, or 
MTGI for Dxo or Dp. When the data were fitted with MTGI, 
no type I error inflation was observed for both Dxo and 
Dp, whatever the values of �G or �I (i.e., even when �I = 
0). When ignoring the gene- treatment interaction (i.e., 
fitting the data with MT or MTG), a type I error inflation 
was observed with increasing values of �I for Dxo (up to 
50% for �I = −10) and to a lesser extend for Dp. Fitting 

T A B L E  2  Treatment prediction (Tpred = 1 for the test treatment and 0 for the reference treatment) according to fitted model and Wald test on 
the treatment effect �T, the gene- treatment interaction effect �I and the sign of the sum �T + �I, for a patient with G = 0 and a patient with G = 1

G = 0 ( T
true

 = 1) G = 1 ( T
true

 = 0)

Tests on βT

Fitted model
Not 
significant

Significant 
with �

T
 > 0

Significant 
with �

T
 < 0

Not 
significant

Significant 
with �

T
 > 0

Significant 
with �

T
 < 0

MT or MTG Tpred = 0 Tpred = 1 Tpred = 0 Tpred = 0 Tpred = 1 Tpred = 0

MTGI Tests on 
�

I

Not significant Tpred = 0 Tpred = 1 Tpred = 0 Tpred = 0 Tpred = 1 Tpred = 0

Significant with 
�

T + �I > 0
Tpred = 0 Tpred = 1 Tpred = 0 Tpred = 1 Tpred = 1 Tpred = 1

Significant with 
�

T
 + �

I
 < 0

Tpred = 0 Tpred = 1 Tpred = 0 Tpred = 0 Tpred = 0 Tpred = 0

Notes: The gray boxes correspond to attribution error cases, for example, when a patient with G = 0 is attributed the reference treatment (Tpred = 0 whereas Ttrue = 1) or 
a patient with G = 1 is attributed the test treatment (Tpred = 1 whereas Ttrue = 0).
Abbreviations: �T treatment effect, �I gene- treatment interaction effect. MT only treatment effect, MTG only treatment and gene effects, and MTGI treatment, gene and 
gene- treatment interaction effects.
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the data with MTGI, a 100% power to reject H0 �T= 0 was 
achieved for Dxo versus 60% for Dp, whatever the value 
of �G or �I (i.e., even when �I = 0). Fitting the data with 
MT or MTG, the power dropped when �T  and �I were not 
of the same sign, down to about 80% for Dxo and 30% for 
DP when �T  = 5 and �I = −10. Conversely, when �I = 0 or 
was of the same sign as �T  the power actually increased 
(up to 90% for Dp without adjusting for the type I error 
inflation).

Figure 2 illustrates the type I error and power to reject H0 
�G = 0 when fitting the data with MTG or MTGI for Dxo or Dp. 
Similar plots were obtained for other simulated values of �T 
(Figure S6). The design had little impact on the type I error 
and power to reject H0 �G = 0. However, using MTGI, no infla-
tion of the type I error was observed whatever the simulated 
value of βI or βT, and the power was driven by βG only. Using 
MTG, an inflation of the type I error was observed, driven 
by �I and the power was driven by both �G and �I to a lesser 
extent.

Figure 3 illustrates the type I error and power to detect a 
gene- treatment interaction effect (H0 : �I = 0) for Dxo or Dp. 
Similar plots were obtained for other simulated values of βT 
(Figure  S7). No inflation of the type I error was observed 
whatever the simulated value of �T or �G and the power to 
detect a gene- treatment interaction effect was three times 
higher for Dxo compared to Dp for a strong interaction and 
twice higher for a mild interaction.

Influence of N, F, and RG

When the data were fitted with MTGI, the power to reject 
H0 �T = 0 or H0 �I = 0 increased with N and RG(for DXO) 
(Figures S5 and S7). F only influenced the power to detect a 
gene- treatment interaction effect. The power to reject H0  �G 
= 0 was not affected by RG or the study design.

Whereas ignoring the gene- treatment interaction (i.e., 
fitting the data with MTG), an inflation of the type I error 
was observed driven by F and largely for Dp. The power 
to reject H0 �G= 0 increased with N and F, largely for DP 
(Figure S6).

When ignoring the gene effect and the gene- treatment in-
teraction (i.e., fitting the data with MT or MTG), the type I 
error and the power to reject H0 �T = 0 were driven by N, F, 
and RG. Of note, RG had an opposite effect on the power to re-
ject H0 �T = 0 according to the positive or negative simulated 
value of �T. The power to reject H0 �T = 0 increased with 
increasing RG when �T and �I had the same sign conversely.

Treatment attribution error

Figure 4 and Table S2 illustrate the treatment attribution error 
(in percentage) per genotype and in the whole population, for 
scenario �T = 5; �G = 0 and �I = −10, as a function of N, F, the 
design and RG. In that scenario, the test treatment (T = 1) should 

F I G U R E  1  Type- I- error (when βT = 0, second line) and power (when βT = −5 or +5) to reject H0 : βT = 0 according to the three fitted models 
(MT only treatment effect, MTG only treatment and gene effects, and MTGI treatment, gene, and gene- treatment interaction effects) for the scenarios 
where the frequency of G = 1,  F = 0.2 and the number of subjects N = 100 for crossover trials (Dxo) (with the ratio of variability R

G
 = 0.7), and 

N = 200 for parallel trials (Dp)
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F I G U R E  2  Type- I- error (when βG = 0, circle symbols) and power (when βG = −5, square symbols or −10, triangle symbols) to reject H0 
βG = 0 according to the two fitted models (MTG treatment and gene effects, and MTGI treatment, gene, and gene- treatment interaction effects) for 
the scenarios where the frequency of G = 1, F = 0.2 and the number of subjects N = 100 for crossover trials (Dxo) (with the ratio of variability 
R

G
 = 0.7), and N = 200 for parallel trials (Dp)

F I G U R E  3  Type- I- error (when βI = 0, empty symbols) and power (when βI = −5, cross symbols or −10, full symbols) to reject H0 βI = 0 
according to the fitted model MTGI (treatment, gene, and gene- treatment interaction effects) for the scenarios where the frequency of G = 1, F = 
0.2, and the number of subjects N = 100 for crossover trials (Dxo) (with the ratio of variability R

G
 = 0.7), and N = 200 for parallel trials (Dp)
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be assigned to a patient with G = 0 and the reference treatment 
(T = 0) should be assigned to the patient genotype G = 1. For 
example, using MT for the scenario with F = 0.2, RG = 0.5 and 
N = 100 for DXO, we have 24% of attribution error in patients G 
= 0, 14% in patients G = 1, and 22% in the whole population.

The treatment attribution error in the whole population 
was lower for Dxo (13% for N = 100 and RG = 0.7 when F = 
0.2) than for Dp (44% for N = 200 when F = 0.2) using MT or 
MTG. The treatment attribution error in the whole population 
was even lower using MTGI with 1% for Dxo (N = 100 and RG 
= 0.7 when F = 0.2) versus 27% for Dp (N = 200 when F = 
0.2). The treatment attribution error in the whole population 
decreased with increasing N and/or RG and decreasing F. Of 
note, Dp led to consistently higher treatment attribution errors 
in patients with genotype G = 0 with, for example, an estimate 
of 54% versus 6% in patients with genotype G = 1 using MT 
on the scenario with F = 0.2 and N = 200. Conversely, Dxo 
led to higher treatment attribution errors in patients with gen-
otype G = 1 when RG > 0.5 and N > 100 with, for example, an 

estimate of 17% versus 12% in patients with genotype G = 0 
using MT on the scenario with F = 0.2, N = 100 and RG = 0.7.

DISCUSSION

As shown with this simulation study, first the choice of the 
model and second the choice of the trial design strongly 
affects not only the statistical type I and power to detect a 
gene- treatment interaction in pharmacogenetic studies but 
also the correct treatment attribution. Indeed, ignoring a true 
gene- treatment interaction in the model led, notably, to bi-
ased treatment effect estimates and inflated type I, whereas 
no penalty is paid when accounting for a nonexistent gene- 
treatment interaction. Further, to capture adequately the 
gene- treatment interaction, a crossover design is more pow-
erful than a parallel design.

First, we note that the gene- treatment interaction effect size 
strongly affects the power to detect a treatment effect, whereas 

F I G U R E  4  Treatment attribution error (T = 0 or 1) (in %) per genetic group (G = 0 or 1 and in whole population according to the three fitted 
model (MT only treatment effect, MTG only treatment and gene effects, and MTGI treatment, gene, and gene- treatment interaction effects). Results 
are displayed as a function of the frequency F of G = 1, the design (crossover Dxo and parallel DP), the number of subjects N, and the ratio of 
variability RG (not applicable for Dp). Results are presented for the scenario with treatment effect βT = 5, gene effect βG = 0 and gene- treatment 
interaction effect βI = −10 (i.e., the test treatment [T = 1] should be assigned to a patient with G = 0 and the reference treatment [T = 0] should be 
assigned to the patient genotype G = 1)



   | 347CROSSOVER STUDIES FOR GENE- TREATMENT INTERACTION

the gene effect size has little influence but on the standard 
error. Indeed, in agreement with our study, the sample size 
simulation studies by Cardon et al.25 and Puangpetch et al.26 
highlighted the association between sample size ratios and 
the genetic model, frequency, and effect size. In a crossover 
design, baseline covariates not impacting the within- subject 
variability, have limited impact on the power to detect a treat-
ment effect. However, polymorphisms can sometimes impact 
the within subject variability. Indeed, Alfaro et al.27 observed 
an increase in power to detect a treatment difference, when 
accounting for the CYP2D6 polymorphism in a crossover de-
sign due to decreased within variability between genotypes. 
More specifically, Gonzalez- Vacarezza et al.28 and Cabaleiro 
et al.29 have shown how selecting patients on the basis of their 
CYP2D6 their CYP2D6 metabolizer status could lower the 
sample size of bioequivalence studies thanks to a decreased 
within- subject variance in extreme metabolizer groups.

If the gene- treatment interaction effect is opposite to the 
treatment effect, the latter is completely masked except when 
accounting for the interaction in the model.4,19,27 Good esti-
mates of treatment effect size are only a means to the treatment 
attribution end.1,16 We focused on a scenario with a positive 
treatment effect and a strong opposite gene- treatment interac-
tion to illustrate how the model or design choice affected the 
treatment attribution, according to the genotypes. Our study 
confirms that neglecting the gene- treatment interaction effect 
had a real impact on the attribution treatment for all geno-
types, as shown in Figure 4. Therefore, in such specific cases, 
quantifying the gene- treatment interaction would be essen-
tial to attribute the best therapeutic option (treatment or reg-
imens).14 The gene effect size had little impact on treatment 
attribution compared to the effect size of the gene- treatment 
interaction, which only applies when administering the new 
treatment. Whereas the gene effect size applies whatever the 
given treatment (reference or new).25,26

This work has limitations. Our example mimics symp-
toms modifying drugs for a chronic disease enabling us to 
assume no sequence or carry- over effects. It corresponds, for 
example, to the study by Reichert et al. whom identified an 
interaction of sleep pressure and the ADA rs73598374 poly-
morphism on sleepiness using a crossover design.30 Similarly, 
Lopez- Minquez et al. identified an interaction of physio-
logical melatonin and the MTNR1B rs10830963 polymor-
phism on glucose tolerance in a crossover study.31 In a more 
pharmacological context, Park et al. explored the effects of 
itraconazole and CYP2D6*10 genetic polymorphism on the 
pharmacokinetics and pharmacodynamics of haloperidol in a 
crossover study.32 Of note in these studies, the magnitude of 
the treatment, gene, and interaction effects varied from 10% 
to 81%. However, pharmacogenetic studies cannot always ig-
nore the disadvantages of crossover designs (e.g., the carry- 
over effect), the handling of drop- outs and their unsuitability 

for disease modifying treatments. The carry- over effect can 
be anticipated at the design stage with an appropriate wash-
out period (for example 1 month) and dropouts will require 
sensitivity analyses, but for disease- modifying treatments, 
only a parallel design can be considered.

We also considered the effect of only one recessive poly-
morphism. A perspective work would be to explore two poly-
morphisms with opposite or synergic effects and to explore an 
additive polymorphism model. Further, the simulated ranges 
of genotype frequencies (4% and 20%) may appear too high 
and/or our sample sizes too low. However, Cardon et al.25 
in their simulation study showed that, in the presence of a 
polymorphism advantageous for the treatment under study, 
a pharmacogenomic trial requires a smaller sample size than 
a traditional trial (not adjusting on the polymorphism) to de-
tect the same effect. Further, Katara et al.5 argued that poly-
morphisms could be responsible for around 30%– 40% of the 
overall functional variability and significantly impacts drug 
response differences. In this context, one may expect a com-
mon polymorphism to have an intermediate- to- strong effect 
and not necessarily a combination of many common poly-
morphisms with a small effect.

To conclude, based on realistic simulations, we highlighted 
how ignoring an existing gene- treatment interaction results 
in incorrect treatment effect estimates. Several pharmacoge-
netic studies have acknowledged that small sample size was 
their main limitation.15,26,33 However, we showed that a study 
design and analysis plan based on a full model with a gene- 
treatment interaction term could overcome such a limitation. 
Indeed, crossover designs proved to be more powerful to 
detect a treatment effect in the presence of a gene- treatment 
interaction, here, in a simulation framed in the context of a 
chronic disease with a quick rapid and reversible treatment 
effect (a short period of washout maximum of 1 month) and 
no carry- over effect. Therefore, assuming a gene- treatment 
interaction and using a crossover design seems the best 
strategy for the pharmacogenetic study of concurrent drug 
treatments. Well conducted clinical trials to explore efficacy 
and/or tolerance accounting for candidate polymorphisms 
appears an inevitable step for the development of personal-
ized medicine.16,26 Our study partly addresses the challenge 
of developing pharmacogenetic tools in the context of well- 
known candidate polymorphisms as framed by Claassens 
et al.34 Here, we demonstrated the advantages of crossover 
designs and of accounting for gene- treatment interaction in 
the analysis. We hope our results will help improve future 
pharmacogenetic studies.
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