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Background. MicroRNAs (miRNAs) are confirmed to participate in occurrence, development, and prevention of membranous
nephropathy (MN), but their mechanism of action is unclear. Objective. With the GEO database and the use of bioinformatics,
miRNA-mRNA regulatory network genes relevant to MN were explored and their potential mechanism of action was explained.
Methods. /e MN-related miRNA chip data set (GSE51674) and mRNA chip data set (GSE108109) were downloaded from the
GEO database. Differential analysis was performed using the GEO2R online tool. TargetScan, miRTarBase, and StarBase databases
were used to predict potential downstream target genes regulated by differentially expressed miRNAs, and the intersection with
differential genes were taken to obtain candidate target genes. According to the regulatory relationship between miRNA and
mRNA, the miRNA-mRNA relationship pair was clarified and Cytoscape was used to construct a miRNA-mRNA regulatory
network. WebGestalt was used to conduct enrichment analysis of the biological process of differential mRNAs in the regulatory
network; FunRich analyzes the differential mRNA pathways in themiRNA-mRNA regulatory network. And the STRING database
was used to construct a PPI network for candidate target genes, and Cytoscape visually analyzes the PPI network. Results.
Experiments were conducted to screen differentially expressed miRNAs and mRNAs. /ere were 30 differentially expressed
miRNAs, including 22 upregulated and 8 downregulated; and 1267 differentially expressed mRNAs, including 536 upregulated
and 731 downregulated. Using TargetScan, miRTarBase, and StarBase databases to predict the downstream targets of differentially
expressed miRNAs, 2957 downstream target genes coexisting in the 3 databases were predicted to intersect with differentially
expressed mRNAs to obtain 175 candidate target genes. Finally, 36 miRNA-mRNA relationship pairs comprising 10 differentially
expressed miRNAs and 27 differentially expressed mRNAs were screened out, and the regulatory network was constructed.
Further analysis revealed that the miRNA regulatory network genes may be involved in the development of membranous
nephropathy by mTOR, PDGFR-β, LKB1, and VEGF/VEGFR signaling pathways. Conclusion. /e miRNA regulatory network
genes may participate in the regulation of podocyte autophagy, lipid metabolism, and renal fibrosis through mTOR, PDGFR-β,
LKB1, and VEGF/VEGFR signaling pathways, thereby affecting the occurrence and development of membranous nephropathy.

1. Introduction

Membranous nephropathy (MN) is a common pathological
type of adult nephrotic syndrome. Its pathological mani-
festations are characterized by the formation of immune
complexes under the epithelial cells of the outer visceral
layer of the glomerular basement membrane and diffuse
thickening of the glomerular basement membrane. /e
clinical manifestations are massive proteinuria,

hypoalbuminemia, edema, and dyslipidemia. MN accounts
for about 20% to 37% of adult nephrotic syndrome, and
about 1/3 of patients eventually develop end-stage renal
disease [1]. 75%–80% of MN are idiopathic membranous
nephropathy (IMN), and 20%–25% are secondary mem-
branous nephropathy or atypical membranous nephropathy.
/e main causes of the latter are systemic lupus eryth-
ematosus, hepatitis B virus, use of NSAIDs, and malignant
tumors [2]. Studies have shown a 13% increase in the risk of
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membranous nephropathy in China every year, which may
be related to environmental pollution [3]. A single-center
study in Beijing showed that, from 2003 to 2012, the inci-
dence of IMN in primary glomerular disease increased from
16.8% to 29.35%, and the proportion of young patients
suffering from early primary membranous nephropathy
increased significantly [4]. In the United States, the inci-
dence of MN is estimated to be about 12 per million per year,
with an average age between 50 and 60 years old, and the
ratio of males to females is 2 :1 [5–7]. In the United States,
the incidence of ESRD caused byMN is about 1.9 per million
per year [5]. In clinical observations, it was found that about
1/3 of patients with primary membranous nephropathy will
be completely relieved naturally, while another 1/3 of pa-
tients will develop lifelong proteinuria while retaining
kidney function for a long time, leaving 1/3 of patients will
progress to end-stage renal disease [8]. Membranous ne-
phropathy seriously endangers human health and brings a
heavy economic burden to individuals and society. /ere-
fore, early detection of the disease, early diagnosis, and
appropriate treatment play a vital role in preventing or
delaying the deterioration of membranous nephropathy.

Renal biopsy is the gold standard for the diagnosis of
membranous nephropathy. However, because it is a trau-
matic operation and has certain technical requirements for
physicians, and renal biopsy cannot be performed in some
patients due to various reasons, there are certain limitations
in clinical applications. /erefore, exploring the potential
regulatory mechanism of MN and identifying new potential
biomarkers and drug target genes have important guiding
significance for subsequent clinical diagnosis and treatment.

MicroRNA is a type of endogenous noncoding small-
molecule single-stranded RNA widely found in eukaryotes.
It usually consists of 21–25 nucleotides and is highly con-
served. It does not have an open reading frame itself. It
participates in post-transcriptional gene regulation, affects
the pathophysiological process of the body, and is related to
cell development, differentiation, proliferation, apoptosis,
immune regulation, tumorigenesis, etc. [9]. /e study [10]
found that, compared with the healthy group, the expression
of miRNA-186 in the kidney tissue of patients with mem-
branous nephropathy was significantly downregulated, and
in vitro experiments proved that miRNA-186 via Toll-like
receptor 4 (TLR4), P2X7, and caspase-3 participates in
podocyte apoptosis, leading to increased basement mem-
brane permeability, which in turn leads to membranous
nephropathy. /e study [9] found that, compared with
healthy persons, increased levels of miRNA-193a were found
in the urine of membranous nephropathy patients and are
associated with an increase in urinary protein levels, thus
increasing the severity of the disease. In addition, over-
expression of miRNA-193a often indicates poor prognosis.
However, there are few reports about the miRNA-miRNA
regulatory network and the deep molecular mechanism of
MN, especially the miRNA-mediated regulatory mechanism
and the molecular network involved in the prevention and
treatment of MN are still unclear. Hence, the experiment
intends to use the MN-related miRNA and mRNA ex-
pression data sets in the GEO database to construct a

miRNA-mRNA regulatory network using bioinformatics
methods, screen key miRNA-mRNA regulatory relationship
pairs, and analyze target functions and related signal
pathways to explore their mechanism of action and provide
important theoretical references and scientific basis for early
diagnosis and targeted therapy of MN.

2. Materials and Methods

2.1. Design. Molecular bioinformatics research.

2.2. Time and Place. From July 2021 to August 2021, in the
nephrologist’s office of the Eastern District of Shandong
University of Traditional Chinese Medicine Affiliated
Hospital.

2.3. Data Source. /emicroarray data of miRNA expression
profile and mRNA expression profile related to MN were
retrieved from the GEO (Gene Expression Omnibus) da-
tabase of NCBI (Table 1). Screening criteria: kidney samples
from MN patients and healthy people are included, and cell
lines or animal models are excluded. Finally, the miRNA
expression data set GSE5167 and the mRNA expression data
set GSE108109 that meet the requirements were down-
loaded. /e data set GSE51674 was based on the platform
GPL10656 and contained 16 kidney tissue samples, in-
cluding 6 patients with membranous nephropathy, with an
average age of 63.8 years, and 6male patients; and there were
4 healthy patients with an average age of 38 years, 3 males
and 1 female. /e data set GSE108109 was based on the
platform GPL19983 and contained 111 kidney tissue sam-
ples, including 6 healthy people and 44 membranous ne-
phropathy patients.

2.4. Methods

2.4.1. Data Processing and Differential Expression Analysis.
/e online analysis tool GEO2R (https://www.ncbi.nlm.nih.
gov/geo/geo2r/) from NCBI’s GEO online analysis tool was
used to obtain differential mRNAs and miRNAs and screen
the differential genes. /e standard setting is adj. p value
<0.01 and |log2 fold change (FC)|> 1. /e volcano map and
cluster map are used to visually describe the differential
expression data.

2.4.2. Target Gene Prediction and miRNA-mRNA Regulatory
Network Construction. /e target genes of differentially
expressedmiRNAs were predicted using the TargetScan [11],
miRTarBase [12], and StarBase [13] databases. In order to
obtain candidate target genes, search for the intersection of
target genes predicted by all three databases and GSE108109
differential genes. According to the regulatory relationship
between miRNA and mRNA, the miRNA-mRNA regulatory
network is constructed. Cytoscape [14] software (version
3.7.2) was used for miRNA-mRNA regulatory network
visualization.
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2.4.3. Cross-Validation of External Data Sets. /e MN-re-
lated mRNA expression data set GSE108113 was down-
loaded from the GEO database. GSE108113 was based on the
platform GPL19983 and contained 280 kidney tissue sam-
ples, including 5 healthy patients and 87 patients with
membranous nephropathy. In order to verify the common
genes in the development of MN, we look for the same
differential mRNA in the datasets GSE108109 and
GSE108113.

2.4.4. miRNA-Regulated Target Gene Function Enrichment
and KEGG Pathway Analysis. /e WebGestalt [15] online
website was used to conduct biological process (BP) en-
richment analysis of differential mRNAs in the regulatory
network; FunRich [16] software was used to analyze the signal
pathway of differential mRNA in the regulatory network.

2.4.5. Candidate Target Gene Protein-Protein Interaction
Network Construction. In order to further identify the re-
lationship between candidate target genes, the STRING
database [17] is used for protein-protein interaction (PPI),
and the Cytoscape software is used for visual analysis of the
PPI network. /e size of the node is represented by the
degree value and is used by CytoHubba [18]. /e plug-in
MCC [18] algorithm screens out the top 20 core genes and
takes the intersection with the target genes in the miRNA
regulatory network.

3. Results

3.1. Differentially Expressed miRNA. Comparing the kidney
tissue samples of patients with membranous nephropathy
and healthy controls in the GSE51674 data set, 30 differ-
entially expressed miRNAs were obtained, including 22
upregulated (hsa-miR-296-5p, hsa-miR-1249, hsa-miR-
1539, hsa-miR-602, hsa-miR-2116∗, hsa-miR-210, hsa-miR-
106b, hsa-miR-222, hsa-miR-550, hsa-miR-17, hsa-miR-718,
hsa-miR-660, hsa-miR-484, hsa-miR-532-5p, hsa-miR-17∗,
hsa-miR-503, hsa-miR-29c, hsa-miR-29a, hsa-miR-27b, hsa-
miR-26a, hsa-let-7g, and hsa-miR-24) and 8 downregulated
(hsa-miR-29b-1∗, hsa-miR-135a, hsa-miR-126∗, hsa-miR-
125a-5p, hsa-miR-30c, hsa-miR-320d, hsa-miR-513a-5p,
and hsa-miR-513b); a heat map and volcano map were
plotted by using http://www.bioinformatics.com.cn, a free
online platform for data analysis and visualization
(Figure 1).

3.2. Differentially Expressed mRNA. Comparing the kidney
tissues of patients with membranous nephropathy and
healthy controls in the GSE108109 data set, 1267 differen-
tially expressed mRNAs, including 536 upregulated ex-
pressions and 731 downregulated expressions, were
obtained. Clustering of the top 50 differential mRNAs with a
larger absolute value of the fold change is presented in
Figures 2 and 3.

3.3. Target Gene Prediction and Regulatory Network
Construction. TargetScan, miRTarBase, and StarBase data-
bases were used to predict the downstream targets of dif-
ferentially expressed miRNAs. Among them, 2957 mRNAs
existed in the three databases at the same time (Figure 4(a)),
and 2400 miRNA-mRNA relationship pairs existed in the 3
databases at the same time. /e intersection of genes and
differential genes that exist in the three databases was taken
at the same time to obtain 175 candidate target genes
(Figure 4(b) and Table 2).

According to the negative regulatory relationship be-
tween miRNA and mRNA, 36 miRNA-mRNA relationship
pairs consisting of 10 differentially expressed miRNAs and
27 differentially expressed mRNAs were finally screened out.
Cytoscape software was used to construct and visualize the
miRNA-mRNA regulatory network (Figure 5 and Table 3).

3.4. Cross-Validation of External Data Sets. Using the same
screening criteria (adj. p value <0.01, |log2 FC|> 1), the
GSE108113 data set was screened for differential genes; a
total of 346 differential genes were screened, of which 121
were upregulated and 225 were downregulated. Compared
with the GSE108109 data set, 44 differential genes were
found to be upregulated at the same time, and 93 differential
genes were downregulated at the same time (Figure 6).

3.5. Function Analysis of Network Target Genes. /e BP
function analysis of differential mRNAs in the regulatory
network was carried out through the WebGestalt online
website, and a total of 10 entries were enriched, 9 of which
were statistically significant, mainly including cellular re-
sponse to stress, positive regulation of nucleobase-con-
taining compound metabolic process, apoptotic process,
positive regulation of RNA metabolic process, response to
steroid hormone, negative regulation of DNA biosynthetic
process, muscle structure development, regulation of cellular
response to stress, and response to organic cyclic com-
pounds (Figure 7). FunRich software was used to analyze the
differential mRNA pathways in the miRNA-mRNA regu-
latory network, which are mTOR, PDGFR-β, LKB1, and
VEGF/VEGFR signaling pathways.

3.6. Construction of Differential Gene PPI Network. /e
downstream target genes existing in the three databases were
intersected with the difference genes in the data set, 175
candidate target genes were obtained, the PPI network was
constructed through the STRING database, and the software

Table 1: Databases or software used in this study.

Database/software URL
GEO database https://www.ncbi.nlm.nih.gov/geo/
STRING database https://string-db.org/
TargetScan database http://www.targetscan.org/vert_72
miRTarBase database https://mirtarbase.cuhk.edu.cn/
StarBase database https://starbase.sysu.edu.cn/
WebGestalt database http://www.webgestalt.org/
FunRich database http://www.funrich.org/
STRING database https://string-db.org/
Cytoscape software (3.7.2) https://cytoscape.org/
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Cytoscape was used to visually analyze the PPI network
graph (Figure 8). /e CytoHubba [18] plug-in MCC algo-
rithm was used to screen out the first 20 hub genes
(Figure 9(a)), and they were intersected with 27 differential
genes in the miRNA-mRNA regulatory network, and finally,
3 hub target genes—NOTCH1, CCND2, and PIK3R1—were
obtained (Figure 9(b)). /rough the analysis of differentially
expressed mRNAs, it is found that NOTCH1, CCND2, and
PIK3R1 not only are core target genes but also exist in the
miRNA-mRNA regulatory network. Studies have found that
upregulation of NOTCH1 can aggravate the degree of renal
interstitial fibrosis and the decline of glomerular filtration
rate [19]. In addition, RNF152 and TET2 show significantly
low expression in the kidney tissue of MN patients. Studies
have shown that ring finger protein 152 (RNF152) prevents
the activation of mTORC1 by targeting the small G protein
Rheb, thereby inhibiting the activity of the mTOR signaling
pathway [20]. RNF152 can inhibit the activity of mTOR
signaling pathway, thereby exerting renal protection. Pre-
vious studies have found that abnormal DNA methylation
affects gene expression and disease development. Many
studies have shown that the pathogenesis of nephrotic
syndrome may be related to epigenetic changes [21, 22].
Studies have shown that [23] TET2 regulates DNA meth-
ylation and may participate in the occurrence and devel-
opment of MN by regulating DNA methylation.

4. Discussion

With the development of gene sequencing technology and
bioinformatics, the types of noncoding RNAs have been
continuously improved, and their biological functions have
also received increasing attention, which has become a
current research hotspot in life sciences. /e research on
miRNAs has been gradually improved. miRNAs are widely
expressed in various tissues and organs of the human body.
One miRNA can regulate multiple target genes, and each
target gene can be regulated by multiple miRNAs, thus
forming a complex miRNA regulatory network. miRNA
exists stably in blood, urine, and tissues, and blood and urine
miRNAs can be detected without invasive procedures. And
the expression in different kidney diseases is relatively
specific, so miRNAs may develop into a new marker of MN
in the future, which will help diagnose the disease early and
evaluate the efficacy.

Although the pathogenesis of IMN is not yet clear, most
scholars believe that IMN is an antibody-mediated auto-
immune disease. /e target antigen located in podocytes is
recognized by autoantibodies and combined to form im-
mune complexes deposited on basement membrane podo-
cytes. Under the circumstances, activation of the
complement system causes damage and shedding of
podocytes, resulting in increased permeability of the

Up regulated
Down regulated
Not changed

-L
og

10
 (a

dj
.P.

Va
lu

e)
5

4

3

1

2

Log2 (Fold Change)
-10.0 -7.5 -5.0 -2.5 0 2.5 5.0 7.5 10.0

(a)

G
SM

31
81
59
3

G
SM

31
81
59
8

G
SM

31
81
59
4

G
SM

31
81
59
5

G
SM

31
81
59
6

G
SM

31
81
59
7

G
SM

15
81
50
7

G
SM

15
81
50
9

G
SM

15
81
50
6

G
SM

15
81
50
8

hsa−miR−513a−5p
hsa−miR−513b
hsa−miR−126*
hsa−miR−135a
hsa−miR−29b−1*
hsa−miR−320d
hsa−miR−125a−5p
hsa−miR−30c
hsa−miR−106b
hsa−miR−660
hsa−miR−17
hsa−miR−532−5p
hsa−miR−26a
hsa−miR−27b
hsa−miR−29a
hsa−let−7g
hsa−miR−24
hsa−miR−1249
hsa−miR−29c
hsa−miR−17*
hsa−miR−484
hsa−miR−210
hsa−miR−222
hsa−miR−550
hsa−miR−1539
hsa−miR−2116*
hsa−miR−718
hsa−miR−602
hsa−miR−296−5p
hsa−miR−503

Group

Group
MN
Normal

−1.5
−1
−0.5
0
0.5
1
1.5

(b)

Figure 1: Differentially expressed miRNA kidney samples in patients with MN and healthy patients. (a) Volcano map of differentially
expressedmiRNAs. Red dots represent upregulation, blue dots represent downregulation, and gray dots represent no differential expression.
(b) Heat map of differentially expressed miRNA. Red represents upregulation, and green represents downregulation.
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basement membrane and a large amount of proteinuria.
Studies have shown that a large number of miRNAs have
been confirmed to be closely related to the occurrence,
mechanism, and prognosis of MN. For example, miRNA-
217 [24] promotes podocyte apoptosis by targeting tumor
necrosis factor superfamily member 11 and then participates
in the occurrence of MN; miRNA-328-5p [25] may par-
ticipate in MN through inflammation and apoptosis-related
pathways such as MAPK-related signaling pathways and p53
signaling pathways; miRNA-186 [10] via Toll-like receptor 4
(TLR4), P2X7, and cysteine caspase-3 participates in the
apoptosis of podocytes, leading to increased permeability of
the basement membrane, which in turn leads to membra-
nous nephropathy; and miRNA-193a [9] may affect the
occurrence of MN by influencing other related factors. Most
of the above are focused on the upstream and downstream

interactions between a single or several miRNAs/genes/
pathways, but the occurrence and development of diseases
are the result of a multitarget, multipathway, and multistep
synergistic effect. If you only study the relationship between
a certain miRNA and gene, it will limit the study of the
mechanism of MN to a certain extent.

In this experiment, 22 upregulated miRNAs and 8
downregulated miRNAs were excavated. TargetScan, miR-
TarBase, and StarBase databases were used to predict
downstream targets of differentially expressed miRNAs. It is
predicted that 2957 mRNAs exist in the three databases at
the same time, and 2400 miRNA-mRNA relationship pairs
exist in the 3 databases at the same time. Genes and dif-
ferential genes that exist in the three databases were
intersected at the same time to obtain 175 candidate target
genes. According to the negative regulation relationship of
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Figure 2: Heat map of the top 50 differentially expressed mRNAs with a larger absolute value of the fold change. Red represents
upregulation, and green represents downregulation.
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miRNA and mRNA, 36 miRNA-mRNA relationship pairs
comprising 10 differentially expressed miRNAs and 27
differentially expressed mRNAs are finally screened out.
/ese differential miRNAs and mRNAs may be key nodes in
the pathophysiology of MN, and the first 20 core genes are
screened out through the CytoHubba plug-in MCC algo-
rithm, and they are intersected with 27 differential genes in
the regulatory network to obtain the 3 genes NOTCH1,
CCND2, and PIK3R1. Among them, NOTCH1 is signifi-
cantly highly expressed in the kidney tissue of MN patients.
Studies have shown that the degree of glomerular sclerosis
and the urine protein level are positively correlated with the
upregulation of NOTCH1 expression in renal podocytes,
and the upregulation of NOTCH1 in patients with chronic

renal failure can aggravate the degree of interstitial fibrosis
and the decline of glomerular filtration rate [19].

/rough FunRich analysis, it is found that the differ-
entially expressed mRNAs in these regulatory networks are
mainly related to mTOR, PDGFR-β, LKB1, and VEGF/
VEGFR signaling pathways, among which the mammalian
target of rapamycin (mTOR) is a highly conserved serine/
threonine protein kinase, which is widely present in yeast to
animal cells and belongs to the phosphatidylinositol-3-ki-
nase-related kinase (PIKK) protein family [26]. Its stability
affects the expression of cytokines in Tcells; it participates in
immunosuppression, affects transcription and protein
synthesis, and regulates cell growth, apoptosis, and auto-
phagy. Studies have shown that autophagy levels in MN
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Figure 4: Screening of target genes. (a) Venn diagram of TargetScan, miRTarBase, and StarBase databases predicting miRNAs corre-
sponding to downstream target genes. (b) Venn diagram of differentially expressed mRNA and miRNA downstream target genes.
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Table 2: /e intersection of mRNAs predicted by differentially
expressed miRNAs and differentially expressed mRNAs in MN.

mRNA LogFC
FSCN1 2.588635
SEMA7A 2.421008
ADM 2.409355
BMP2 2.383218
TNFRSF21 1.945833
NCAM1 1.925172
UCP2 1.909103
TGFB1 1.905343
EGR3 1.847593
BAMBI 1.808341
CCND1 1.743998
CCDC85C 1.655328
ITGA5 1.620048
COL1A2 1.615838
PLD3 1.599157
HBEGF 1.597727
EHD2 1.593748
TRPC6 1.567959
GATA3 1.567876
TP53 1.541281
SKI 1.532832
ST3GAL2 1.511352
PLEKHO1 1.502347
HK2 1.4997
NOTCH1 1.462259
TMEM154 1.430919
PDE4A 1.430186
LYN 1.424265
TMEM184B 1.422096
PLXNC1 1.41303
KPNA2 1.40473
PREX1 1.401679
FAM129B 1.387175
EIF5A2 1.383387
PXDN 1.376657
DAG1 1.371781
FBRS 1.361762
MTSS1L 1.350619
KCTD12 1.34922
RNF44 1.343982
CENPP 1.338335
PRR11 1.335654
VEGFC 1.33485
PCDH17 1.333166
CD248 1.325592
LRP10 1.323391
CCND2 1.320625
ZNF703 1.31591
PLXND1 1.313283
RUSC2 1.312396
COL4A2 1.309219
COL4A1 1.307964
IER3 1.294667
SLIT3 1.29412
GNG2 1.290121
CBX6 1.275551
FKBP14 1.267006
ADAM12 1.255887
EMP1 1.248797

Table 2: Continued.

mRNA LogFC
PPM1F 1.247126
ADAMTS1 1.243952
ZCCHC24 1.242563
SEMA4C 1.234261
FN1 1.229458
MARK2 1.218718
SLC35E2 1.213068
ORAI1 1.209795
BTN2A2 1.202712
TMED9 1.201828
KIAA0930 1.200233
PIK3C2B 1.199587
PRR12 1.189574
FICD 1.188868
VASH1 1.18757
CDH5 1.179563
ANK1 1.175622
CDKN1C 1.171323
MAFB 1.160213
NETO2 1.158592
PACS1 1.155518
SLC7A1 1.12978
MAP1B 1.123029
FMNL3 1.120955
NCOR2 1.118047
FOXK1 1.113134
VPS37B 1.109738
SLC35C1 1.104002
CDC42SE1 1.10201
mRNA logFC
IQSEC1 1.100248
C15orf39 1.099142
STK10 1.098527
MLXIP 1.097227
PDGFRB 1.094398
BCL7B 1.092912
RRM2 1.083712
TNFAIP1 1.082132
RAB23 1.077515
TWIST1 1.077234
KIAA1211 1.075862
TNKS1BP1 1.075735
TRAM2 1.075199
ELK3 1.073763
BAG2 1.073373
BAK1 1.066222
ASB6 1.062721
HID1 1.062155
NFIX 1.04586
PDGFB 1.045391
SYNM 1.043951
KMT2D 1.042489
DTX3L 1.033091
PGM2L1 1.029231
CDK6 1.025282
DDN 1.022429
HYOU1 1.022252
GLTP 1.022145
QSOX2 1.018591
ZNF598 1.017456
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patients are abnormal. Animal experiments have found that
podocyte autophagy in rats with membranous nephropathy
is expressed at a high level, and there is a certain correlation

between podocyte damage and shedding and autophagy. A
number of studies have confirmed that autophagy is in-
volved in the occurrence and development of MN [27, 28].
/e mTOR signaling pathway may participate in the oc-
currence and development of MN by regulating the auto-
phagy level of cells. /e main function of platelet-derived
growth factor (PDGF) is to regulate cell proliferation, mi-
gration, inflammation, and tissue permeability and partic-
ipate in extracellular matrix deposition. Chen et al. [29]
found that blocking the PDGFR-β signaling pathway in a rat
model of chronic renal failure can inhibit the progression of
renal fibrosis, and some patients with membranous ne-
phropathy will also develop chronic renal failure. Blocking
the PDGFR-β signaling pathway may be beneficial to the
long-term renal prognosis of MN patients. It provides a new
treatment strategy for stabilizing the renal function of pa-
tients with MN. MN patients are mostly accompanied by
dyslipidemia, and lipid metabolism disorders will promote
the occurrence and development of the disease. Studies have
found that [30] the AMPK-CaMKKβ (LKB1) signal trans-
duction pathway plays a very important role in lipid
metabolism. /e LKB1 signaling pathway may affect MN by
participating in lipid metabolism. At the same time, MN will
eventually lead to renal fibrosis as the disease progresses.
Studies have found that vascular endothelial growth factor
(VEGF) is an important factor in maintaining the stability of
the glomerular filtration barrier structure and the homeo-
stasis of the kidney [31]. Experiments have shown that
blocking the VEGF/VEGFR pathway can prevent the
transformation of pericytes to myofibroblasts and then delay
renal fibrosis [32].

Although the experiment constructed a potential
miRNA-mRNA regulatory network based on bio-
informatics, there are certain limitations. First of all, the
number of kidney tissue cases in the healthy group is rel-
atively small, which may affect the results of the experiment.
/emain sequencing method is chip sequencing./ere is no
high-throughput data set. In addition, there is a lack of data
sets of the same population and the same platform. Second,
the experimental results only involve membranous ne-
phropathy kidney tissue specimens, not urine, blood, and
other samples. Finally, the experiment only analyzed gene
expression microarrays of membranous nephropathy and
did not analyze RNA sequencing data, which lacked the
ability to identify new features. In the future, more studies
such as the dual luciferase report experiment will be
designed to verify the in vivo and in vitro biological func-
tions of the miRNA-mRNA regulatory network model.

In summary, based on the GEO chip data set, with the
help of bioinformatics methods, 36 experimental miRNA-
mRNA regulatory relationship pairs related to MN were
explored and the regulatory network was constructed to
clarify the complex network of multiple targets and multiple
pathways of MN regulation. /e network core targets can
improve the clinical performance of MN through mTOR,
PDGFR-β, LKB1, and VEGF/VEGFR signaling pathways
and provide targets and reference directions for further in-
depth study of their mechanism of action and treatment of
MN.

Table 2: Continued.

mRNA LogFC
LRRC59 1.017138
TNRC18 1.014733
ANKRD52 1.011072
RAB1B 1.002591
EFHD2 1.001892
DUSP1 -1.00608
WNK3 −1.00956
IRF2BP2 −1.00999
SLC38A9 −1.02822
ZFP36 −1.03017
PIK3R1 −1.0368
INTU −1.04403
HNRNPC −1.05119
TFRC −1.07492
LRIG3 −1.08372
MYSM1 −1.08847
PAXBP1 −1.09315
RORA −1.09921
RND3 −1.10045
IQCB1 −1.1254
SCML1 −1.13556
HNRNPA1 −1.16882
CPM −1.19419
ACADSB −1.20615
NEDD9 −1.20698
DDIT4 −1.23395
DDX5 −1.30958
CEBPD −1.3324
ETNK2 −1.33701
ANK3 −1.34546
RDH10 −1.35602
WSB1 −1.35652
HLF −1.3639
PFKFB2 −1.36934
ANO3 −1.37338
LUC7L2 −1.40151
OGT −1.41004
SLC16A9 −1.45495
FKBP5 −1.47532
A1CF −1.48213
RIMKLB −1.51655
LUC7L3 −1.52778
GATM −1.53727
NABP1 −1.5713
ALDH6A1 −1.58547
TET2 −1.59016
RNF152 −1.6183
CHORDC1 −1.67273
SLC4A4 −1.67506
AGMAT −1.68711
PRLR −1.84312
IP6K3 −1.90237
EYA4 −1.91033
PDE7A −1.93011
ANKS4B −2.13921
GOLGA8A −2.18853
GOLGA8B −2.44931
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Figure 5: MN-related miRNA-mRNA regulatory networks. Red means the expression is upregulated, and blue means the expression is
downregulated. miRNA and mRNA are represented by V-shape and circle, respectively.

Table 3: miRNA-mRNA regulatory pairs associated with MN.

miRNA Gene symbol miRNA logFC mRNA logFC
hsa-let-7g GATM 1.2 −1.53726793
hsa-let-7g SLC16A9 1.2 −1.45495451
hsa-let-7g LRIG3 1.2 −1.08372218
hsa-let-7g DUSP1 1.2 −1.00608428
hsa-miR-106b NABP1 3.95 −1.57129602
hsa-miR-106b SLC16A9 3.95 −1.45495451
hsa-miR-106b DDX5 3.95 −1.30958254
hsa-miR-106b RORA 3.95 −1.09920587
hsa-miR-106b WNK3 3.95 −1.00956193
hsa-miR-125a5p BAK1 −3.03 1.06622167
hsa-miR-125a-5p HK2 −3.03 1.49970035
hsa-miR-125a-5p FAM129B −3.03 1.38717468
hsa-miR-125a-5p SEMA4C −3.03 1.2342607
hsa-miR-17 NABP1 3.5 −1.57129602
hsa-miR-17 SLC16A9 3.5 −1.45495451
hsa-miR-17 DDX5 3.5 −1.30958254
hsa-miR-17 RND3 3.5 −1.10045332
hsa-miR-17 RORA 3.5 −1.09920587
hsa-miR-17 WNK3 3.5 −1.00956193
hsa-miR-24 HNRNPA1 1.12 −1.16881604
hsa-miR-24 SCML1 1.12 −1.13556225
hsa-miR-26a CHORDC1 1.4 −1.67272568
hsa-miR-26a TET2 1.4 −1.59015664
hsa-miR-26a NABP1 1.4 −1.57129602
hsa-miR-27b EYA4 1.44 −1.91033091
hsa-miR-27b RNF152 1.44 −1.61830472
hsa-miR-29a TET2 1.62 −1.59015664
hsa-miR-29a PIK3R1 1.62 −1.03679898
hsa-miR-29a ZFP36 1.62 −1.03016982
hsa-miR-29c TET2 1.77 −1.59015664
hsa-miR-30c SKI −3.05 1.5328315
hsa-miR-30c NOTCH1 −3.05 1.46225942
hsa-miR-30c CCND2 −3.05 1.32062533
hsa-miR-30c FOXK1 −3.05 1.1131342
hsa-miR-30c MLXIP −3.05 1.09722718
hsa-miR-30c KMT2D −3.05 1.04248918
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