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Simple Summary: Protein ubiquitination is catalyzed by many enzymes, whose functions and
substrate specificity are not fully understood. This study reports the expression patterns of the
membrane-associated RING-CH (MARCH) family members in breast cancer and their association
with patient outcomes. Specifically, MARCH8 is a newly identified tumor suppressor with a role in
inhibiting breast cancer metastasis and enhancing cancer cell death. MARCH8 not only promotes
the degradation of membrane proteins such as the breast cancer stem-cell marker CD44 through the
lysosomal degradation pathway, but also recruits a previously unknown nonmembrane target protein,
signal transducer and transcription activator 3 (STAT3), for proteosome-dependent degradation.

Abstract: Protein stability is largely regulated by post-translational modifications, such as ubiquitina-
tion, which is mediated by ubiquitin-activating enzyme E1, ubiquitin-conjugating enzyme E2, and
ubiquitin ligase E3 with substrate specificity. Membrane-associated RING-CH (MARCH) proteins
represent one novel family of transmembrane E3 ligases which target glycoproteins for lysosomal
destruction. While most of the MARCH family members are known to degrade membrane proteins
in immune cells, their tumor-intrinsic role is largely unknown. In this study, we found that the
expression of one MARCH family member, MARCH8, is specifically downregulated in breast cancer
tissues and positively correlated with breast cancer survival rate according to bioinformatic analysis
of The Cancer Genomic Atlas (TCGA) dataset. MARCH8 protein expression was also lower in a
variety of human breast cancer cell lines in comparison to immortalized human mammary epithelial
MCF-12A cells. Restoration of MARCH8 expression induced apoptosis in human breast cancer cell
lines MDA-MB-231 and BT549. Stable expression of MARCH8 inhibited tumorigenesis and lung
metastases of MDA-MB-231 cells in mice. Moreover, we discovered that the breast cancer stem-cell
marker and metastasis driver CD44, a membrane protein, interacts with MARCH8 and is one of
the glycoprotein targets subject to MARCH8-dependent lysosomal degradation. Unexpectedly, we
identified a nonmembrane protein, signal transducer and transcription activator 3 (STAT3), as another
essential ubiquitination target of MARCH8, whose degradation through the proteasome pathway is
responsible for the proapoptotic changes mediated by MARCH8. These findings highlight a novel
tumor-suppressing function of MARCH8 in targeting both membrane and nonmembrane protein
targets required for the survival and metastasis of breast cancer cells.
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1. Introduction

Protein ubiquitination (or ubiquitylation) is one of the best known post-translational
modifications. It is coupled with protein localization and stability in many essential
functions of mammalian cells, such as the cell cycle, oncogenic transformation, and immune
cell functions [1,2]. This process is catalyzed by multiple sequential enzyme classes (termed
E1, E2, and E3) to form a thiol-ester linkage between the C-terminus of ubiquitin and
a lysine (Lys or K) either on a target protein or on the last ubiquitin of a polyubiquitin
chain coupled with a target protein. The unveiling of a growing number of E3 ubiquitin
ligase families with a broad spectrum of protein substrates has resulted in the accelerated
development of protein-targeting strategies in immune diseases and cancers [1–6].

Three major categories of E3 ligases include RING (really interesting new gene),
HECT (homologous to the E6AP carboxyl terminus), and RBR (RING between RING) fami-
lies [7–9]. Belonging to the family of RING E3 ligases, the membrane-associated RING-CH
(MARCH) family consists of 11 recently identified members, with a characteristic RING-
CH domain distinct from the classical RING finger domain containing eight cysteine and
histidine residues [9–13]. MARCH proteins were first identified as mammalian homologs
of viral E3 ligases K3 and K5, which are involved in immune evasion [10–13]. Most of
the MARCH family members have been linked to immune cell regulation by targeting
membrane protein targets; however, their tumor-intrinsic roles are largely unknown. Our
research program is poised to investigate the clinical relevance and molecular functions of
MARCH proteins in breast cancer. In this study, we found that MARCH8 is specifically
downregulated in breast cancer, especially triple-negative breast cancer, which lacks tar-
geted therapies and frequently metastasizes to distant organs with unfavorable outcomes.

MARCH8, originally termed as cellular modulator of immune recognition (c-MIR),
was the first identified human E3 ligase of the MARCH family that plays important roles
in the immune response [10]. It is located on endosomal and cytoplasmic membranes,
with a cytosolic N-terminal RING-CH domain and two transmembrane domains with a
loop region, linked to a short cytosolic C-terminal tail [9–11,14]. MARCH8 is ubiquitously
expressed in many human tissues and cell types. However, its role in breast tissue has yet
to be elucidated. MARCH8 has been shown to downregulate a variety of cell membrane
receptors in immune cells such as major histocompatibility complex I (MHC I) HLA
2.1, MHC II, CD95 (Fas), B7.2, TfR, CD166, CD88, and CD98 [9–11,14]. However, its
tumor-intrinsic role is less understood. In this study, we discovered both membrane
and nonmembrane protein targets of MARCH8, i.e., CD44 and signal transducer and
transcription activator 3 (STAT3), respectively, in different subtypes of breast cancer cells.

CD44 is a cell surface transmembrane glycoprotein enriched in breast tumor-initiating
cells (or cancer stem cells) [15]. CD44 overexpression is positively correlated with inva-
sive and metastatic breast cancer with a poor prognosis [15,16]. High CD44 levels have
also been discovered as a marker for cancer stem cells in many other solid malignant tu-
mors [17,18], modulating intracellular pathways via protein interactions and STAT3 signal
transduction [19]. Our previous studies demonstrated that homophilic CD44 interactions
mediate tumor stem-cell aggregation and polyclonal metastasis [15,20,21]. However, the
regulatory mechanisms underlying CD44 protein stability were unclear. Our finding that
MARCH8 can interact with and downregulate CD44 highlights a possible targeting strategy
for breast cancer.

STAT3 is constitutively activated by phosphorylation of tyrosine 705 (Y705) in many
cancers, acting as a point of convergence for oncogenic signaling pathways and promoting
tumor cell survival and metastasis [22–24]. It has been reported that STAT3 is subject to
viral protein-dependent ubiquitination and degradation [25]. However, the molecular
mechanisms underlying the regulation of STAT3 stability and degradation in the context of
cancer cells are unclear. The current study highlights a previously unknown function of
MARCH8 in ubiquitinating nonmembrane protein STAT3, which results in proteasomal
degradation and triggers proapoptotic signals in breast cancer cells.
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2. Materials and Methods
2.1. Animal Studies

All mouse maintenance and procedures were performed following the NIH Guidelines
for the Care and Use of Laboratory Animals and approved by Northwestern University’s
Institutional Animal Care and Use Committee (IACUC) (protocol # IS00004667). The mice
used in this study were kept in specific pathogen-free facilities in the Center for Compara-
tive Medicine at Northwestern University. The animal sample sizes were determined on
the basis of statistical analysis in preliminary experiments.

Female NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) (Jackson Laboratory, Bar Harbor,
ME USA, Cat 005557) mice, 6 to 8 weeks old, were used for human MDA-MB-231 cell-
based xenograft studies. For assessing the tumorigenic potential of MDA-MB-231 cells,
cells labeled with Luc2-tdTomato (L2T) were trypsinized, and 100 cells were injected
orthotopically into the second and fourth mammary fat pads of NSG mice after mixing
with Matrigel (1:1 ratio) (Thermo Fisher Scientific, Waltham, MA, USA, Cat 354234) as
described [20]. Tumor growth was monitored by bioluminescence imaging.

2.2. Bioinformatic Analysis

Using the online Gene Expression Profiling Interactive Analysis (GEPIA) platform
accessed on 19 March 2021 (http://gepia.cancer-pku.cn/index.html) [26], we performed
boxplot analyses (expression DIY) of MARCH family gene expression in human tumors
versus paired normal tissues in The Cancer Genome Atlas (TCGA) dataset, including breast
cancer (BRCA) and other tumor types. Specifically, the Y-axis gene expression in boxplots is
presented as log2 (transcripts per million + 1) on a log scale. Asterisks represent significant
differential expression between tumor (T) and paired normal (N) tissues in TCGA, with
cutoffs of log2 (fold change) = 0.5 and p < 0.05. A jitter size of 0.4 was used in the box plots.
Using the Prognoscan database, we analyzed the correlation between gene expression and
survival in clinical patient samples [27].

2.3. Cell Culture

Purchased from ATCC, the HEK-293, mammary epithelial MCF-12A, and human
breast cancer cell lines MCF-7, BT-549, SKBR3, BT-474, and MDA-MB-231 were cultured
in Dulbecco’s modified Eagle medium (DMEM), high glucose (Thermo Fisher Scien-
tific, Waltham, MA USA, Cat SH30243FS), supplemented with 10% fetal bovine serum
(FBS) (Thermo Fisher Scientific, Waltham, MA, USA, Cat 16000044) and 1% penicillin–
streptomycin (Thermo Fisher Scientific, Waltham, MA, USA, Cat SV30010). All cell lines
were routinely verified as mycoplasma-free as analyzed by the MycoAlert™ PLUS My-
coplasma Detection Kit (Lonza, Basel, Switzerland Cat LT07-703). For MDA-MB-231 cell
suspension culture, cells were trypsinized into single-cell suspensions and transferred to
poly-hydroxyethyl methacrylate (poly-HEMA) (Sigma-Aldrich, Darmstadt, Germany, Cat
P3932-10G) coated plates. Before use, these six-well plates received 700 µL per well of
20 mg/mL poly-HEMA reconstituted in 95% ethanol and dried overnight in a tissue cul-
ture hood, sterilized by UV for 1 h, and washed three times with phosphate-buffered saline
(PBS). Cells were suspension-cultured for 24 h and then collected for immunoblotting.

2.4. Cell Transfection, Transduction, and Treatment

The MDA-MB-231 cells were lentivirally labeled by L2T and MARCH8-GFP (OriGene
Technologies, Rockville, MD, USA, Cat RC209891L2) or GFP control using the lentiviruses
and labeling protocol previously described [20]. Transfections of MDA-MB-231, BT-549, and
HEK-293 cells were performed using Lipofectamine LTX Reagent (Thermo Fisher Scientific,
Waltham, MA, USA, Cat 15338100), Lipofectamine 3000 (Thermo Fisher Scientific, Waltham,
MA, USA, Cat L3000001), and FuGENE HD Transfection Reagent (Promega, Madison,
WI, USA, Cat E231A), respectively, according to the supplier’s instructions. To block the
proteasomal degradation pathway in MDA-MB-231 cells, a 1:1000 dilution of MG-132
(Abcam, Cambridge, UK, Cat ab147047) at a final concentration of 10 µM was used to treat
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the cells for 6 h to block proteosome degradation pathway. A 1:1000 dilution of chloroquine
(Cell Signaling Technology, Danvers, MA, USA, Cat 14774S) at a final concentration of
50 µM was used for 24 h to block the lysosomal degradation pathway.

2.5. Antibodies and Plasmids

The primary antibodies that were used in our experiments include MARCH8 (Protein-
tech, Rosemont, IL, USA, Cat 14119-1-AP), BAX (Cell Signaling Technology, Danvers, MA,
USA, Cat 5023S), BID (Cell Signaling Technology, Danvers, MA, USA, Cat 2002), cleaved
caspase-3 (Cell Signaling Technology, Danvers, MA, USA, Cat 9661), CD44 (Thermo Fisher
Scientific, Waltham, MA USA, Cat 156-3C11), ubiquitin (horseradish peroxidase (HRP)
conjugate) (Cell Signaling Technology, Danvers, MA, USA, Cat 14049), anti-AKT (Cell
Signaling Technology, Danvers, MA, USA, Cat 9272), anti-pAKT (Cell Signaling Technol-
ogy, Danvers, MA, USA, Cat 9271S), anti-ERK(Abcam, Cambridge, UK, Cat ab184699),
anti-pERK (Abcam, Cambridge, UK, Cat ab201015), anti-STAT3 (Cell Signaling Technology,
Danvers, MA, USA, Cat 124H6), anti-pSTAT3 (Y705) (Cell Signaling Technology, Danvers,
MA, USA, Cat 9145S), and β-actin (Abcam, Cambridge, UK, Cat ab8224). Anti-Flag (Cat
F3165) and anti-HA (Cat H3663) antibodies from Sigma-Aldrich were used 1:1000 for
Western blotting. The secondary antibodies that were used include anti-rabbit IgG HRP
conjugate (Promega, Madison, WI, USA, Cat W401B) and anti-mouse IgG HRP conjugate
(Promega, Madison, WI, USA, Cat W402B) for Western blotting, goat anti-mouse IgG
(H + L) Alexa Fluor 405 (Thermo Fisher Scientific, Waltham, MA, USA, Cat A-31553), and
goat anti-rabbit IgG (H + L) Alexa Fluor 568 (Thermo Fisher Scientific, Waltham, MA, USA,
Cat A11011) for immunofluorescence, and mAb to IgG (HRP) (Abcam, Cambridge, UK,
Cat ab131366) for immunoblotting after immunoprecipitation (IP).

Plasmids that were used for overexpression include human CD44 standard form
(NM_001001391), FLAG-tagged ORF Clone pCMV6-Flag-CD44s (OriGene Technologies,
Rockville, MD, USA, Cat RC221820), CD44 full-length pCMV3-CD44f-HA ((Sino Biological,
Beijing, China, Cat HG12211-CY), Lenti ORF clone of human MARCH8-GFP (OriGene
Technologies, Rockville, MD, USA, Cat RC209891L2), GFP control (OriGene Technologies,
Rockville, MD, USA, Cat PS10007), STAT3 (Addgene, Watertown, MA, USA, Cat 71450),
and STAT3 Y705F (Addgene, Watertown, MA, USA, Cat 71445) mutant.

2.6. Cell Apoptosis Assay

Detection of apoptosis of MDA-MB-231 and BT-549 cells was performed using the
PE Annexin V Apoptosis Kit (BD Biosciences, Franklin Lakes, NJ, USA, Cat 559763) fol-
lowing the manufacturer’s instructions, with flow analysis on a BD LSR II flow cytometer
(BD Biosciences, Franklin Lakes, NJ, USA, Cat 642221).

2.7. Colony Formation Assay

A total of 300 MDA-MB-231 cells were seeded onto 6 cm tissue culture plates contain-
ing 4 mL of medium and cultured continuously until macroscopic cell colonies were formed
(up to 3 weeks). Then, the cells were fixed with 100% methanol and stained with 0.1%
crystal violet solution for 10 min. After washes with PBS, the plates were photographed
using a digital camera. Positive colony formation was calculated by manual counting.

2.8. Western Blotting and Immunoprecipitation

Whole-cell lysates were made in RIPA lysis buffer (VWR, Radnor, PA, USA, Cat N653)
containing Halt protease and a phosphatase inhibitor cocktail (Thermo Fisher Scientific,
Waltham, MA, USA, Cat 78440). After quantification, equal amounts of protein of each
sample were separated by SDS-PAGE and transferred to a nitrocellulose membrane. The
membrane was blocked with 2% bovine serum albumin (BSA) in Tris-buffered saline
containing 0.1% Tween-20 detergent (TBST) for 1 h at room temperature (RT), and then
incubated with primary antibodies for 1 h at RT or 4 ◦C overnight, followed by three
washes with TBST. HRP-conjugated secondary antibodies were used for a 1 h incubation at
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RT, followed by three washes with TBST. The membranes were developed with Pierce ECL2
Western blotting substrate (Thermo Fisher Scientific, Waltham, MA, USA, Cat 80196). The
immunoblotting against β-actin was used as a loading control with the same membrane
being reprobed after being blotted for other targets at distinct molecular weight or the
lower part of the membrane being cut (away from the other target proteins) for the blotting.
The full blots and density measurements are included in Supplementary Figure S1 and
Table S1, respectively.

Total protein was isolated using Pierce™ IP Lysis Buffer (Thermo Fisher Scientific,
Waltham, MA, USA, Cat 87787) with a protease inhibitor cocktail and incubated with
antibodies and IgG for immunoprecipitation (IP) at 4 ◦C overnight. After antibody binding,
Protein A/G PLUS Agarose Beads (Santa Cruz Biotechnology, Dallas, TX, USA, Cat sc-2003)
were added and incubated at 4 ◦C for 4 h. Then, the protein-bound beads were washed and
prepared for immunoblotting. Anti-FLAG conjugated beads (Sigma-Aldrich, Darmstadt,
Germany, Cat M8823) and anti-HA-conjugated beads (Pierce Biotechnology, Rockford, IL,
USA, Cat8836) were used in CD44 immunoprecipitation.

2.9. Immunofluorescence Staining

Cells in a culture plate or on slides were fixed with 4% paraformaldehyde for 10 min,
permeabilized with 0.25% Triton X-100 in PBS, and then blocked with 2% bovine serum
albumin (BSA) in PBS for 1 h. All primary antibodies were incubated at 4 ◦C overnight.
After three washes with PBS containing 0.1% Tween-20, cells were incubated with Alexa
405- or Alexa 568-conjugated secondary antibodies for 1 h, followed by three washes.
Images were taken by a Nikon A1 MP Laser Scanning Confocal Microscope.

2.10. Bioluminescence Imaging for Tumorigenesis and Lung Colonization

Mice were injected intraperitoneally (i.p.) with 100 µL of D-luciferin (30 mg/mL,
GoldBio, St Louis, MO, USA). After 5–10 min, mice were anesthetized with isoflurane, and
bioluminescence images were acquired using the IVIS Spectrum In Vivo Imaging System
(Caliper Life Sciences, Waltham, MA, USA, Cat 124262). Signals are presented as total
photon flux and were analyzed using Living Image 3.0 software.

2.11. Lung Colonization Assay

For MDA-MB-231 cell-mediated colonization experiments, 1 × 105 L2T-labeled MDA-
MB-231 cells were injected into NSG mice via the tail vein. The lung colonization sig-
nal of metastatic tumor cells was monitored by bioluminescence imaging. At indicated
times post injection, the lungs were removed for histology analysis. Mouse lung samples
were fixed with 10% formalin and embedded with paraffin. Lung sections were stained
with hematoxylin and eosin. The images were taken by a microscope equipped with an
Olympus camera.

2.12. Cell Invasion in Wound Healing

Plates were coated with 100 µg/mL Matrigel (Corning, NY, USA, Cat 354234) and
incubated in a 37 ◦C CO2 incubator overnight prior to cell plating. Cells were plated in an
image lock 96-well plate at a confluency of 25,000 cells per well. After 12 h, a scratch was
created using the IncuCyte wound maker. After washing of the floating cells, the washed
wells of adherent cells with the scratch wound were covered with another layer of Matrigel
for 30 min at 37 ◦C in incubator. Then, culture medium was added to the plate. The filling
of the scratch wound was monitored in real time by IncuCyte over 48 h.

2.13. MPP-9 ELISA Assay

A total of 30,000 cells per well were seeded in a 24-well plate. After 48 h, cell culture
supernatants were collected for measurement of MMP-9 antigen levels using a human
MMP-9 ELISA kit (Sigma-Aldrich, Darmstadt, Germany„ Rab0372, Lot# 1207H173). The
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sandwich assay procedure was employed to detect MMP-9 levels with standard curves
according to the manufacturer’s instructions.

2.14. Statistical Analysis

All quantitative experiments were performed with at least three independent biologi-
cal replicates, and the results are presented as the mean ± SD. A Student t-test (two groups)
was used to compare the mean of two groups of samples using GraphPad Prism 7 software,
as shown in Figures. Human data analyses were obtained on an online platform with
specific software, and p < 0.05 was considered statistically significant (* p < 0.05; ** p < 0.01;
n.s., not statistically significant).

3. Results
3.1. Correlation between the Expression of MARCH8 and Breast Cancer and Breast Cancer Patient
Overall Survival

To evaluate the association between MARCH family members and breast cancer in
patients, we compared the mRNA levels of all MARCH genes in breast tumors with paired
normal tissues in TCGA datasets using the online GEPIA platform [26]. The bioinfor-
matic analysis showed that, among all MARCH family members, only MARCH8 and
MARCH9 were significantly downregulated and upregulated, respectively, in breast tu-
mors when compared with the normal tissue (Figure 1A). We further expanded the analysis
of MARCH8 gene expression in all tumor types in TCGA. Among analyzed human cancers,
MARCH8 was significantly downregulated in 10 additional tumor types when compared
to the respective normal tissues, including bladder, cervical, colon, kidney, lung, rectum,
thyroid, and uterine (Figure 1B); on the other hand, upregulated MARCH8 expression was
observed in cholangial tumors, and no significant changes were found in stomach and
other tumors (Figure 1B).

Moreover, using the Prognoscan analysis platform [27], we found that the expression
levels of MARCH1, MARCH2, MARCH5, MARCH8, and MARCH10 were positively
correlated with the overall survival of breast cancer patients, whereas higher expression
levels of MARCH3, MARCH6, MARCH7, and MARCH9 had the opposite correlation with
worse overall survival, as shown in Kaplan–Meier plots (Figure 2). Combining these two
pieces of clinical relevance data, we hypothesized that MARCH8 is a tumor suppressor
downregulated in breast cancer.
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TCGA dataset via the online GEPIA platform accessed on March 19, 2021 (http://gepia.cancer-
pku.cn/). MARCH8 expression is downregulated and MARCH9 expression is upregulated in 
breast tumors versus paired normal tissues (* p < 0.05). (B) Boxplots of MARCH8 mRNA expres-
sion levels of (Ensembl ID: NSG00000165406.15) in multiple human tumors (T, red box) versus 
respective normal tissues (N, gray box) in TCGA dataset, with downregulation in 10 tumors, in-
cluding BLCA (bladder urothelial carcinoma), CESC (cervical squamous cell carcinoma and en-
docervical adenocarcinoma), COAD (colon adenocarcinoma), KICH (kidney chromophobe), KIRP 
(kidney renal papillary cell carcinoma), LUSC (lung squamous cell carcinoma), READ (rectum 
adenocarcinoma), THCA (thyroid carcinoma), THYM (thymoma), and UCEC (uterine corpus en-
dometrial carcinoma). Upregulated expression of MARCH8 observed in CHOL (cholangio carci-
noma) and no significant difference in STAD (stomach adenocarcinoma) compared to respective 
normal tissues. The sample size of the tissues (n) included in the parentheses below T or N. The Y-
axis of gene expression is log2 (transcripts per million + 1) on a log scale. Asterisks (*) represent 
significant differential expression between tumor (T) and paired normal (N) tissues in TCGA, with 
cutoffs of log2 (fold change) = 0.5 and p < 0.05. A jitter size of 0.4 was used in the boxplots. 

Figure 1. MARCH family gene expression levels in human tumors and normal tissues in TCGA.
(A) Boxplots of mRNA expression levels of MARCH family genes (MARCH1–MARCH11) between
human breast tumors (T, red box, n = 1085) and paired normal tissues (N, gray box, n = 112) in TCGA
dataset via the online GEPIA platform accessed on 19 March 2021 (http://gepia.cancer-pku.cn/).
MARCH8 expression is downregulated and MARCH9 expression is upregulated in breast tumors
versus paired normal tissues (* p < 0.05). (B) Boxplots of MARCH8 mRNA expression levels of
(Ensembl ID: NSG00000165406.15) in multiple human tumors (T, red box) versus respective normal
tissues (N, gray box) in TCGA dataset, with downregulation in 10 tumors, including BLCA (bladder
urothelial carcinoma), CESC (cervical squamous cell carcinoma and endocervical adenocarcinoma),
COAD (colon adenocarcinoma), KICH (kidney chromophobe), KIRP (kidney renal papillary cell
carcinoma), LUSC (lung squamous cell carcinoma), READ (rectum adenocarcinoma), THCA (thyroid
carcinoma), THYM (thymoma), and UCEC (uterine corpus endometrial carcinoma). Upregulated
expression of MARCH8 observed in CHOL (cholangio carcinoma) and no significant difference in
STAD (stomach adenocarcinoma) compared to respective normal tissues. The sample size of the
tissues (n) included in the parentheses below T or N. The Y-axis of gene expression is log2 (transcripts
per million + 1) on a log scale. Asterisks (*) represent significant differential expression between
tumor (T) and paired normal (N) tissues in TCGA, with cutoffs of log2 (fold change) = 0.5 and p <
0.05. A jitter size of 0.4 was used in the boxplots.
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Figure 2. Association of MARCH8 expression and other family members with overall survival in breast cancer patients. A
higher expression of MARCH8 and other MARCH family members (MARCH1, 2, 5, 10) is correlated with a higher overall
survival probability for breast cancer patients according to the Prognoscan analysis. MARCH8 mRNA expression levels are
also associated with relapse-free survival (RFS) of basal-like breast cancer (log rank p = 0.01).

3.2. MARCH8 Expression Is Low in Breast Cancer Cells and Transient Restoration of MARCH8
Promotes Apoptosis of MDA-MB-231 and BT549 Cells

To test the hypothesis, we first analyzed the expression levels of MARCH8 in breast
cancer cell lines. Using immunoblotting, we found that MARCH8 expression was low in
breast cancer cells lines MCF-7, BT-549, SKBR3, BT-474, and MDA-MB-231 in comparison to
the immortalized normal mammary epithelial cell line MCF-12A (Figure 3A). To investigate
the function of MARCH8 in breast cancer cells, we restored MARCH8 expression by
transient transfection of the cells with the vectors expressing the MARCH8-GFP fusion
gene (Figure 3B). When compared to the cells transfected with a GFP control vector that
caused minimal cell death, MARCH8-GFP-transfected cells showed a significant increase
in annexin V+ apoptotic cells (60–80%) 2 days post transfection (Figure 3C,D). MARCH8
overexpression further decreased MMP-9 secretion and compromised cell invasion in
wound healing on Matrigel-coated plates (horizontal invasion) (Figure 3E–G), both of which
are related to metastasis. These data demonstrated that MARCH8 promotes apoptosis,
and loss of MARCH8 provides advantages of cell survival and cell invasion for breast
cancer cells.
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MCF-12A and breast cancer cell lines including MCF-7, BT-549, SKBR3, BT-474, and MDA-MB-231. (B) Immunoblots of
MARCH8 indicating the overexpression of fused MARCH8-GFP (~50 kDa) in MDA-MB-231 cells after transient transfection
in comparison to a GFP vector control. (C,D) Transient transfection of MARCH8 significantly promotes cell death in BT-549
and MDA-MB-231 breast cancer cells, as indicated by annexin V levels (apoptosis) and 7AAD (DNA dye). ** t-test p < 0.01.
(E) ELISA-detected MMP-9 levels in the supernatant of the control and MARCH8-overexpressing cells. *** t-test p < 0.001.
(F,G) Images (F) and cell invasion-based wound closure curves (G) of MDA-MB-231 control and MARCH8-overexpressing
cells between 0 and 48 h after wound scratch, analyzed by Incucyte time-lapse imaging. * p < 0.05.

3.3. Stable Expression of MARCH8 Inhibits Colony Formation In Vitro and Diminishes
Tumorigenesis and Lung Colonization In Vivo

To determine the effect of MARCH8 overexpression on breast cancer development
and progression in vivo, we generated stable MDA-MB-231 cell lines adapted to expression
of MARCH8-GFP and control GFP after lentiviral transduction (Figure 4A,B). However,
doxorubicin-mediated chemotherapeutic treatment resulted in proapoptotic signals in
MARCH8-GFP-overexpressing cells, with higher levels of cleaved caspase-3 than in the
GFP control cells (Figure 4B). Furthermore, MARCH8-GFP overexpression inhibited colony
formation of breast cancer cells, demonstrating its role as a tumor suppressor in vitro
(Figure 4C).

To examine the functions of MARCH8 in tumor initiation and experimental metastasis
(lung colonization) in vivo, we inoculated the L2T-labeled breast cancer cells into NSG
mice orthotopically and intravenously, respectively, for bioluminescence imaging. Follow-
ing orthotopic implantation of 100 cancer cells into the second and fourth mammary fat
pads of NSG mice, bioluminescence imaging on day 14 revealed that GFP-control cells
initiated tumor growth from three out of eight injections, whereas no tumor growth was
observed in the mice implanted with MARCH8-GFP-overexpressing cells (Figure 4D). As
MARCH8-GFP-overexpressing cells failed to initiation tumor growth following orthotopic
implantation, no spontaneous metastasis was detected. Instead, we conducted an experi-
mental metastasis assay to assess the lung colonization of these cells. Following tail-vein
injection of 100,000 cells, MARCH8 expression compromised the lung colonization of breast
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cancer cells, with decreased bioluminescence signals and metastatic lesions in H&E-stained
lungs analyzed on day 7 after injection (Figure 4E–G). The results support that MARCH8
inhibits tumorigenesis and lung colonization of MDA-MB-231 cells in vivo.Cancers 2021, 13, x FOR PEER REVIEW 10 of 17 
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Figure 4. MARCH8 inhibits colony formation in vitro and lung colonization in vivo. (A) Cell images
with stable expression of MARCH8-GFP and control GFP after lentiviral transduction of MDA-
MB-231 cells. (B) Immunoblots of proapoptotic protein, cleaved caspase 3, and MARCH8-GFP
indicating an increase in 10 µM doxorubicin-induced apoptosis in the MARCH8-GFP-overexpressing
cells. (C) Colony formation image (left panel) and bar graph (right panel) of compromised colony
formation in MDA-MB-231 cells with stable expression of MARCH8-GFP in comparison to the control
GFP cells in vitro. * t-test p < 0.05 (D) Bioluminescence images (top panel) and a summary table
(bottom panel) of in vivo tumorigenesis showing that three out of eight orthotopic inoculations
with 100 GFP control cells into mouse mammary fat pads formed possible tumors 14 days after
tumor cell implantation, whereas MARCH8-GFP-overexpressing cells formed no tumors out of eight
inoculations (0/8). (E,F) Bioluminescent images (E) and quantifications (F) of the lung colonization
mediated by the GFP control cells with higher metastasis signals and MARCH8-GFP-overexpressing
cells with lower metastasis signals 7 days after tail vein injection of the tumor cells. ** t-test p < 0.01
(G) H&E staining of the lungs removed from the mice 7 days post tail-vein injection of GFP and
MARCH8-GFP-expressing cells. The blue arrow points to the metastatic tumor cells disseminated
into the lungs.
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3.4. MARCH8 Mediates CD44 Degradation through the Lysosome Pathway

As reported by previous studies, CD44 is one of the glycoproteins downregulated
by MARCH8 [28]. However, it was unclear whether CD44 has a direct interaction with
MARCH8. CD44 is also a breast cancer stem-cell marker, contributing to cancer cell sur-
vival, circulating tumor cluster formation, and metastatic potential [20]. To assess whether
CD44 is degraded by MARCH8 and/or contributes to the phenotype of MARCH8 in breast
cancer cells, we performed immunoblotting, immunofluorescence (IF) staining, and flow
cytometry analysis of CD44 in MARCH8-expressing cells. Overexpression of MARCH8
reduced CD44 protein levels with simultaneous upregulation of proapoptotic proteins BAX
and BID in MDA-MB-231 cells (Figure 5A). Decreased CD44 levels in MARCH8-expressing
cells were also confirmed by IF and flow cytometry compared to the GFP control cells
(Figure 5B,C). Notably, the lysosome inhibitor chloroquine instead of the proteasome in-
hibitor MG-132 completely blocked MARCH8-mediated CD44 degradation (Figure 5D),
suggesting that MARCH8 induces lysosome-dependent destruction of CD44. That is con-
sistent with MARCH8 function in degrading other transmembrane glycoproteins [9–11,14].

To determine if CD44 is a possible substrate of MARCH8, with which it interacts,
we overexpressed both MARCH8-GFP and CD44 (either standard form CD44s-FLAG or
the full-length CD44f-HA) into HEK-293 cells for immunoprecipitation. In the presence
of chloroquine, which inhibits lysosome-dependent protein degradation, both CD44 and
MARCH8 were captured in the protein complex immunoprecipitated by anti-FLAG/HA-
bound beads (Figure 5E), suggesting a possible interaction between MARCH8 and CD44
(CD44s and CD44f). To investigate the importance of loss of CD44 in MARCH8 phenotypic
functions, we restored CD44 protein levels in MARCH8 cells via transient transfection of
the CD44-FLAG cDNA plasmid. However, CD44 overexpression only slightly mitigated
the levels of proapoptotic proteins BID and BAX, which were increased in MARCH8-
GFP-overexpressing cells (Figure 5F), suggesting that additional targets of MARCH8 are
responsible for the alteration of proapoptotic signals in breast cancer cells.

3.5. MARCH8 Mediates STAT3 Degradation through the Proteosome Pathway

In the search for other possible targets of MARCH8 regulating cell survival, we
analyzed the total protein levels and activation by phosphorylation of multiple signaling
transducers known to regulate cell survival, such as AKT, ERK, and STAT3, in MDA-MB-231
breast cancer cells that stably express MARCH8-GFP and control GFP. Cells were cultured
as both adherent and in suspension to mimic the detached status of metastatic cancer
cells. MARCH8 did not alter the total protein levels or phosphorylation status of AKT
and ERK in either adherent or suspension cultures (Figure 6A). Although the total protein
levels of STAT3 remained stable in MARCH8-expressing and GFP control cells in both
culture conditions, the phosphorylated STAT3 at Y705 was remarkably downregulated by
MARCH8 in cells in suspension and less dramatically altered in adherent cells (Figure 6B).
The decreased pSTAT3 levels were completely restored by the proteasome inhibitor MG-132
but not by the lysosome inhibitor chloroquine (Figure 6B). In contrast, MARCH8-mediated
CD44 degradation was partially blocked by chloroquine but not by MG-132 (Figure 6B).
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Figure 5. MARCH8 interacts with and degrades CD44 through the lysosome pathway. (A) Immunoblots to detect decreased
CD44 and increased BAX, BID, and MARCH8 expression levels in MARCH8-overexpressing cells compared to GFP
control cells. (B) Immunofluorescence staining with anti-CD44 antibody showing decreased expression of membrane
protein CD44 (blue) in MARCH8-GFP expressing cells. (C) Flow cytometry histogram overlay (left panel) and dot plots
(right panels) indicating MARCH8-decreased CD44 expression levels in negative association with MARCH8-GFP signals.
(D) Immunoblots of endogenous CD44 and exogenous MARCH8-GFP after transient transfection of MARCH-GFP and
treatment with MG-132 or chloroquine (CLQ) to block the proteasomal or lysosomal degradation pathways, respectively.
(E) Immunoblots of MARCH8 and FLAG-tagged CD44 after anti-FLAG mediated immunoprecipitation (IP) of the lysates of
HEK-293 cells after transfections with MARCH8-GFP and CD44-FLAG (standard isoform CD44s and full-length CD44f)
and treatment with CLQ, indicating the interactions between MARCH8 and CD44 (CD44s or CD44f). (F) Immunoblots of
BAX, BID, CD44, and MARCH8 in the MDA-MB-231 cells with stable expression of GFP or MARCH8-GFP with transient
transfection of a FLAG vector control or restoration of CD44 expression via CD44s-FLAG. CD44 overexpression slightly
inhibited the expression of proapoptotic BID and BAX in MARCH8-GFP-overexpressing cells.



Cancers 2021, 13, 2550 13 of 16

Cancers 2021, 13, x FOR PEER REVIEW 13 of 17 
 

 

3.5. MARCH8 Mediates STAT3 Degradation through the Proteosome Pathway 
In the search for other possible targets of MARCH8 regulating cell survival, we ana-

lyzed the total protein levels and activation by phosphorylation of multiple signaling 
transducers known to regulate cell survival, such as AKT, ERK, and STAT3, in MDA-MB-
231 breast cancer cells that stably express MARCH8-GFP and control GFP. Cells were cul-
tured as both adherent and in suspension to mimic the detached status of metastatic can-
cer cells. MARCH8 did not alter the total protein levels or phosphorylation status of AKT 
and ERK in either adherent or suspension cultures (Figure 6A). Although the total protein 
levels of STAT3 remained stable in MARCH8-expressing and GFP control cells in both 
culture conditions, the phosphorylated STAT3 at Y705 was remarkably downregulated by 
MARCH8 in cells in suspension and less dramatically altered in adherent cells (Figure 6B). 
The decreased pSTAT3 levels were completely restored by the proteasome inhibitor MG-
132 but not by the lysosome inhibitor chloroquine (Figure 6B). In contrast, MARCH8-me-
diated CD44 degradation was partially blocked by chloroquine but not by MG-132 (Figure 
6B). 

 
Figure 6. MARCH8 interacts with and degrades STAT3 through the proteasome pathway. (A) Immunoblots of AKT, 
pAKT, ERK, and pERK in MDA-MB-231 cells with stable expression of GFP and MARCH8-GFP, both adherent and in 
suspension. (B) Immunoblots of STAT3, pSTAT3 (Y705), CD44, and MARCH8 in GFP- and MARCH8-GFP-expressing 
cells in the absence or presence of MG-132 and CLQ, both adherent and in suspension. (C) Immunoblots of MARCH8, 
STAT3, pSTAT3 (Y705), and ubiquitin in lysates of cells co-transfected with STAT3 (wildtype or Y705F) and MARCH8-
GFP (or GFP control) and immunoprecipitated by anti-STAT3 and anti-pSTAT3 (Y705). (D) Immunoblots of CD44, STAT3, 
BID, and BAX in MDA-MB-231 cells with stable expression of GFP and MARCH8-GFP, with transient transfection with 
CD44, STAT3, or mutant Y705F as indicated, both adherent and in suspension. 

Figure 6. MARCH8 interacts with and degrades STAT3 through the proteasome pathway. (A) Immunoblots of AKT,
pAKT, ERK, and pERK in MDA-MB-231 cells with stable expression of GFP and MARCH8-GFP, both adherent and in
suspension. (B) Immunoblots of STAT3, pSTAT3 (Y705), CD44, and MARCH8 in GFP- and MARCH8-GFP-expressing cells
in the absence or presence of MG-132 and CLQ, both adherent and in suspension. (C) Immunoblots of MARCH8, STAT3,
pSTAT3 (Y705), and ubiquitin in lysates of cells co-transfected with STAT3 (wildtype or Y705F) and MARCH8-GFP (or GFP
control) and immunoprecipitated by anti-STAT3 and anti-pSTAT3 (Y705). (D) Immunoblots of CD44, STAT3, BID, and BAX
in MDA-MB-231 cells with stable expression of GFP and MARCH8-GFP, with transient transfection with CD44, STAT3, or
mutant Y705F as indicated, both adherent and in suspension.

To determine whether STAT3 is a ubiquitination substrate of MARCH8, we assessed
their interactions and possible ubiquitination of STAT3. After co-transfection of STAT3
(or Y705F mutant) and MARCH8-GFP (or GFP vector control) and a short treatment with
MG-132 to inhibit proteasomal degradation, HEK-293 cell lysates were immunoprecipi-
tated by anti-STAT3 or anti-pSTAT3 Y705. Indeed, MARCH8 was found in the protein
complex with both the wildtype STAT3 and the Y705F mutant with compromised phos-
phorylation (Figure 6C). Notably, pSTAT3 at Y705 (pulled down by anti-pSTAT3) had
minimal interaction with MARCH8 and undetectable ubiquitination, whereas the mutated
STAT3Y705F, which was marginally precipitated by the anti-pSTAT3, had much more abun-
dant MARCH8 protein in the complex, coupled with extraordinary levels of ubiquitination
(Figure 6C), implicating potential competition between STAT3 phosphorylation at Y705
and ubiquitination.

Lastly, we investigated if STAT3 is an essential target of MARCH8 by transient trans-
fection of wildtype or mutant STAT3Y705F into MARCH8-GFP-expressing MDA-MB-231
breast cancer cells. Compared to the GFP control cells, MARCH8 expression upregulated
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proapoptotic proteins BID and BAX, which were inhibited neither by CD44 restoration
nor by wild-type STAT3 overexpression, but almost completely rescued by STAT3Y705F

overexpression, with undetected BID and BAX in suspension cells in particular (Figure 6D).
The accumulation of STAT3Y705F suggests possible resistance of this mutant to degradation.

Taken together, our results demonstrate that STAT3 and CD44 are newly discovered
targets of MARCH8 in breast cancer which can regulate cell survival and metastasis.

4. Discussion

Our studies reveal that tumor suppressor MARCH8 is specifically downregulated
in breast cancer and additional cancer types, such as bladder, cervical, colon, kidney,
lung, rectum, thyroid, and uterine. Consistently, overexpression of MARCH8 has been
shown to inhibit non-small-cell lung cancer (NSCLC) cell proliferation and metastasis
via the phosphoinositide 3-kinase and mTOR signaling pathways and induced apoptosis
of A549 and H1299 cells [29], demonstrating the antitumor properties of MARCH8 in
NSCLC. MARCH8 was also reported to downregulate TRAIL-R1 cell surface expression
in MCF-7 breast cancer cells [30], suggesting various substrates to be identified in a cell
context-dependent manner. However, the role of MARCH8 in each of the other tumor types
requires further investigation. In gastric and esophageal cancers, MARCH8 expression was
not downregulated in comparison to normal adjacent tissues, and its functions might be
context-dependent [31,32].

MARCH8 and many other MARCH E3 ligases are known to target various membrane
proteins for protein trafficking and degradation, as well as regulation of transcription and
DNA repair [9,11]. Our study reports a novel function of MARCH8 in ubiquitinating and
degrading a nonmembrane protein, STAT3, through the proteasomal degradation pathway,
in addition to a more typical membrane protein target, CD44, through the lysosomal
degradation pathway. MARCH8 is expressed widely in early and late endosomes of
human tissues and cells, and it plays an important role in immune responses [29,31–34].
In this study, we elucidated the function of MARCH8 in cell survival, tumorigenesis, and
metastasis in breast cancer, in which CD44 [15,20,21,35] and STAT3 [22,23] are known to
contribute to the phenotypic functions mediated by cancer stem cells.

Future studies will further identify the biochemical properties of MARCH8 in mediat-
ing the interactions with CD44, STAT3, and other new targets, map their ubiquitination
sites in connection to lysosome and proteasome degradation pathways, and elucidate the
interplay with phosphorylation-mediated alterations of cell fate, stem-cell functions, and
metastasis in breast cancer, as well as other cancers.

5. Conclusions

Our study identifies MARCH8 as a new tumor suppressor in inhibiting breast cancer
metastasis and enhancing cancer cell death, partially via the lysosomal degradation of the
breast cancer stem-cell marker CD44, as well as via the proteosome-dependent degradation
of STAT3.
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