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Abstract

Background

Dozens of omics based cancer classification systems have been introduced with prognos-

tic, diagnostic, and predictive capabilities. However, they often employ complex algorithms

and are only applicable on whole cohorts of patients, making them difficult to apply in a per-

sonalized clinical setting.

Results

This prompted us to create hemaClass.org, an online web application providing an easy

interface to one-by-one RMA normalization of microarrays and subsequent risk classifica-

tions of diffuse large B-cell lymphoma (DLBCL) into cell-of-origin and chemotherapeutic

sensitivity classes. Classification results for one-by-one array pre-processing with and with-

out a laboratory specific RMA reference dataset were compared to cohort based classifiers

in 4 publicly available datasets. Classifications showed high agreement between one-by-

one and whole cohort pre-processsed data when a laboratory specific reference set was

supplied. The website is essentially the R-package hemaClass accompanied by a Shiny

web application. The well-documented package can be used to run the website locally or to

use the developed methods programmatically.

Conclusions

The website and R-package is relevant for biological and clinical lymphoma researchers

using affymetrix U-133 Plus 2 arrays, as it provides reliable and swift methods for
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calculation of disease subclasses. The proposed one-by-one pre-processing method is rel-

evant for all researchers using microarrays.

Introduction

In addition to current clinically used risk factor scoring systems, several independent gene
expression profile (GEP) based risk stratifications have been proposed, with biological and clin-
ical significance in hematological cancers. Although drug targetable genes, which are only
expressed in subtypes of e.g. DLBCL tumours have been identified, they are not readily applica-
ble in clinical research and routine settings due to a lack of available routine diagnostic tests [1,
2].

[3] developed an important example of a biological sub-classification of lymphoma. On the
basis of GEP analyses, DLBCL cases were classified as activated B-cell phenotype (ABC) or ger-
minal center B-cell phenotype (GCB) with different clinical outcomes. The validity of this clas-
sification and its prognostic importance have been confirmed in a number of later studies [4–
8]. Recently, we have refined the ABC/GCB subclassification of DLBCL to include a B-cell
Associated Gene Signature (BAGS) classifier capable of classifying DLBCL samples into 5 dif-
ferent B-cell subtypes: Naive (N), Centrocyte (CC), Centroblast (CB), Memory (M), and Plas-
mablasts (PB) [9]. The BAGS classifier stratifies the GCB phenotype into CC and CB subtypes,
with superior survival in the CC subtype. Thus, different treatment regimes could be consid-
ered in subsets of the GCB class of patients. In another study we developed classification based
resistance gene signatures (REGS) for the most prominent drugs used in the treatment of
DLBCL patients: Cyclophosphamide (C), Doxorubicin (H), and Vincristine (O) [10]. However,
these and most existing algorithms are only applicable in the presence of whole cohorts of
patients, making them difficult to apply in a routine clinical setting.

The traditional lymphoma staging and risk classification systems are based on the Ann
Arbor classification for staging of lymphoma (extent of disease and extranodal involvement)
and simple prognostic tools such as the international prognostic index (IPI, [11]) for large cell
lymphoma and the Follicular Lymphoma International Prognostic Index (FLIPI, [12]), both
derived from patient age, performance status, easy available blood tests, and disease stage. Due
to the simplicity of these clinical risk stratification algorithms they are still the most widely
used risk scoring systems today. Risk stratification according to these algorithms has been sys-
tematized and made easily accessible for desktop, online, and even smart-phone use. Easily
accessible molecular classification methods are, however, lagging behind, thereby delaying the
translation of new molecular findings into clinical practice. A few methods exist for cancer
types other than lymphoma, including acute myeloid leukemia (AML) [13], and for lymphoma
[14] has developed an ABC/GCB classifier, which is stable across microarray technologies and
trial centres. This ABC/GCB classifier is, however, potentially biased towards classes which dif-
ferentiate the prognosis instead of biological classes, since the ensemble of classifiers were cho-
sen based on their ability to separate survival.

In clinical settings, the methods need to be applicable for a single patient sample and
straightforward to use. This prompted us to develop a user-friendly and flexible web-based tool
for ABC/GCB, BAGS, and REGS classification using our recently developed classifiers for
microarray data based on the Affymetrix’s Human Genome U-133 Plus 2 array. The classifica-
tions made by the web-based tool hemaClass.org are compared to the existing state-of-the-art
and approved ABC/GCB classifications of DLBCL.We believe that hemaClass.org will provide
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a novel and user-friendly concept for bringing complex molecular classification of diseases
more swiftly into daily clinical practice.

Methods

Classification workflow

The workflow architecture of hemaClass.org is illustrated in Fig 1. The user is presented with a
graphical interface for uploading data and adjusting settings. The user data is RMA pre-pro-
cessed by the server (with an optional user one-by-one RMA reference), and subsequently pro-
cessed by the classification algorithms. The results are then returned for download and
inspection via the user interface.

Software availability and technical details

The interactive web application available at hemaclass.org was created using the statistical pro-
gramming language R [15], the software package shiny [16], and the accompanying Linux
server software. All hemaClass.org functionality, including the RMA normalization and classi-
fication procedures, are available through the accompanying package hemaClassbased on a
number of packages from the Comprehensive R Archive Network [15] and the Bioconductor
environment [17]. The Shiny server handles the interaction between the front end web applica-
tion and the back end R processing. The back end is essentially the well-documentedhema-
Class package which can be utilized as a programmatical interface to the functionality of the
website. However, the package also allows users to run a local instance of the website if one
wishes to avoid uploading large files to our server. The development and latest version of
hemaClass is open source and freely available at https://github.com/oncoclass/hemaclass for
sharing, modification, and redistribution. All bug-reports, suggestions, and comments on the
website or package are welcome and should be posted to the github page following the link

Fig 1. Diagram of the hemaClass.org workflow architecture.

doi:10.1371/journal.pone.0163711.g001
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above. The regular RMA pre-processing is carried out with the Bioconductor package affy
[18]. Core functions for the one-by-one RMA pre-processing are written in C++ and imported
to R usingRcpp and RcppArmadillo [19–22].

Data overview

The seven gene expression datasets used in this paper are summarized in Table 1. All GEP data
are from the AffymetrixGeneChip HG-U133 Plus 2.0 array and available at the Gene Expres-
sion Omnibus (GEO) [23] website (http://www.ncbi.nlm.nih.gov/geo/). To establish the classi-
fiers the following datasets are used:

1. Gene expressions from 181 CHOP treated DLBCL patients are used to establish the ABC/
GCB classifier. This cohort will be referred to as the LLMPP CHOP (Lymphoma/Leuke-
mia Molecular Profiling Project CHOP) cohort [7]. The cohort is also used as a default
reference set throughout the paper for one-by-one RMA normalization of arrays.

2. The BAGS classifier is based on gene expression data from eight human tonsils sorted in
five B-cell subsets. This dataset is also used for scaling of gene expression data for BAGS
classification, and will be referred to as the Tonsil dataset [9].

3. The REGS classifiers are based on a panel of 12 Multiple Myeloma (MM) and 14 DLBCL
cell lines. This panel will be referred to as BCELL26. The DLBCL part of the cell line panel
is used for scaling of patient data and will be referred to as DLBCL14 [10].

For validation the following four DLBCL cohorts are used:

4. The Aalborg OCT cohort (CHEPRETRO) of 89 Danish DLBCL patients undergoing first-
line treatment at Aalborg University Hospital [9].

5. The International DLBCL Rituximab-CHOP ConsortiumMD Anderson (IDRC) cohort
of 470 DLBCL patients treated with R-CHOP first-line therapy [24]. Note, that these sam-
ples are formalin-fixed, paraffin-embedded(FFPE).

6. The Lymphoma/Leukemia Molecular Profiling Project R-CHOP (LLMPP R-CHOP)
cohort of 233 DLBCL patients treated with R-CHOP first-line therapy [7].

7. The Mayo-Dana-Farber Cancer Institute (MDFCI) cohort of 90 DLBCL patients treated
with R-CHOP first-line therapy [8].

The GEO datasets were downloaded using the R-packageDLBCLdata [25].

Table 1. Overview of used datasets and GEO accession numbers.

No. Dataset n Usage GEO number Ref.

1. LLMPP CHOP 181 Training GSE10846 [7]

2. Tonsil 33 Training GSE56315 [9]

3. BCELL26 26 Training GSE53798 [10]

4. CHEPRETRO 89 Validation GSE56315 [9]

5. IDRC 470 Validation GSE31312 [24]

6. LLMPP R-CHOP 233 Validation GSE10846 [7]

7. MDFCI 90 Validation GSE34171 [8]

doi:10.1371/journal.pone.0163711.t001
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One-by-one RMA normalization

Robust multichip average (RMA) pre-processing consists of three steps in the order: (1) Back-
ground correction, (2) quantile normalization, and (3) summarization of probes to probe-sets
[26, 27]. Confer [28] for a comprehensive account on RMA. Both the quantile normalization
and summarization procedures of RMA are cohort based and hence need to be altered to facili-
tate a one-by-one RMA pre-processing scheme. Previous approaches similar to the one-by-one
normalization approach used by hemaClass.org have been describedby [29] and [30] As quan-
tile normalizer, the empirical cumulative distribution function (ECDF) of the mean of the sam-
ple quantiles of an RMA background corrected reference dataset is used in place of the usually
applied ECDF of the mean of the sample quantiles of the user supplied data [31]. To mimic the
summarization procedure of RMA [27] the probe effects estimated by median polish for the
same reference data is subtracted all probes of the user data. The RMA pre-processed expres-
sion value for each probe-set is then estimated as the median of the associated probes. For
more detail on our one-by-one normalization approach see S1 Text section S4. Finally, before
classification the median of each probe-set in the RMA reference dataset is subtracted from the
corresponding probe-set in the user data, since the classifiers were trained on median centered
data.

The one-by-one normalization has the implicit assumption that the samples and reference
follow the same distribution. This assumption might be violated by batch effects arising from
differences in laboratory specific sample preparations and can cause severe bias in the normali-
zation; to accomodate this hemaClass.org allows users to upload their own RMA reference
dataset prepared under similar conditions. In the this paper a laboratory specific RMA refer-
ence is referred to as an InLab reference. InLab references were simulated by selecting a ran-
dom subset of 30 samples from each cohort. Samples were also one-by-one RMA normalized
using the LLMPP CHOP dataset as an external reference; this is referred to as ExLab reference
normalization.

Classification methods

Elastic nets. Logistic and multinomial regression were used in all classification methods
available at hemaClass.org. However, in GEP experiments, the number of probe-sets present
on the microarray always outnumbers the sample size. Collinearity present among the features
further aggravates the problem of identifying genes responsible for the underlying biological
mechanism. Regression under these ill-posed circumstances is typically handled by so-called
regularization. Here the elastic net penalty [32, 33], which is a combination of the Lasso [34]
and ridge regression [35], was used. Similar to the Lasso, this penalty ensures simultaneous var-
iable selection and model estimation by forcing small coefficients to be zero, yielding sparse
solutions, but contrary to the Lasso the elastic net penalty is capable of selectingmore variables
than samples.

The elastic net penalty contains two parameters α and λ. The parameter α interpolates the
elastic net penalty between the ridge and the Lasso penalty which corresponds to values of 0
and 1, respectively. The parameter λ determines the amount of shrinkage of the coefficients
with larger values inducing more shrinkage until no variables are contained in the model. Reg-
ularized logistic and multinomial regression were performedwith the R-package glmnet [32].

ABC/GCB classification. The ABC/GCB classifier was established using logistic regres-
sion with an elastic net penalty on the LLMPP CHOP cohort. Of the 181 patients 74 were ABC,
76 were GCB, and 31 were non-classified. Using the 150 patients classified as either ABC or
GCB, a dichotomous classifier capable of assigning each sample an estimate of the probability
of being ABC was established.

hemaClass.org: Microarray Normalization and Classification
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To avoid over-fitting and limit the number of noise contributing genes, the elastic net
parameters α and λ were chosen through 10 fold cross-validation. The parameter α was varied
between 0.1 and 1 with step size 0.025 and log(λ) was varied between −10 and 2 with step size
0.06. The optimal combination of the parameters, and thereby the number of probe-sets, was
found at the values minimizing the deviance. The results of the cross validations are shown in
S1 Fig. The minimum deviance of 0.13 was attained at α = 0.15 and log(λ) = −7.29. This
resulted in a gene expression classifier consisting of 381 probe-sets corresponding to 273
Ensembl Gene IDs.

When a tumour sample was classified according to the ABC/GCB classifier using cohort or
InLab one-by-one normalized data the associated gene expressions are rescaled probe-set wise
by the standard deviation of the LLMPP CHOP data divided by the standard deviation of the
cohort or InLab reference data. For ExLab one-by-one normalization the data was used
directly, since the training data for the ABC/GCBclassifier was the same as the ExLab reference
in the current study.

Wright’s ABC/GCBClassification. Standard GEP ABC/GCB classification is done using
Wright’s naive Bayes classifier. This method is not included on hemaClass.org, but is used in
the current study for comparison of results from our elastic net classifier.

Bayesian compound covariate classification [36] with probeset list, weights and prior proba-
bilities as describedby [7] was used to perform ABC/GCB classification (specific details
obtained by personal communication with George Wright). In addition to this the probesets
were brought to the same scale as Lenz et al.’s [7] probesets by a rescaling of the probeset-wise
standard deviation.

REGS classification. In the paper by [10] REGS classifiers were established for prediction
of resistance to the drugs C, H, and O. The classifiers were established on BCELL26 using regu-
larized logistic regression analogous to the procedure described for the aforementioned ABC/
GCB classifier. The number of microarray probes and corresponding genes for each of the
REGS classifiers is shown in S5 Table.

The probability of resistance to the combination therapy, pCHO, was estimated based on the
probabilities of drug resistance toward each of the three drugs: PC, PH, and PO, respectively.
This probability is calculated as the posterior probability of being resistant, given resistance
towards each of the individual drugs under the assumption of conditional independence and
uniform priors. The formula is also known as Graham’s formula:

PCHO ¼
PCPHPO

PCPHPO þ ð1 � PCÞð1 � PHÞð1 � POÞ
:

Derivation of the formula is shown in S1 Text section S2. If a drug is left out in the combination
therapy the drug is simply removed from the formula. This appoach to resistance to the combi-
nation therapy was used in [10].

When a tumour sample is classified according to the REGS classifiers the associated gene
expressions are rescaled probe-set wise by the standard deviation of DLBCL14 divided by the
standard deviation of the cohort, InLab, or ExLab RMA reference dataset.

Resistance classifiers for other chemotherapeutic drugs and diseases are also available on
hemaClass.org, though established elsewhere [37–39]. The Rituximab sensitivity classifier of
[39] and [40] uses an elastic net approach, as above, but with three classes. The Melphalan sen-
sitivity classifier of [37] uses sparse partial least squares to classify samples as either “sensitive”,
“intermediate” or “resistant”. This classifier was developed for multiple myeloma (MM)
patients and was thus based on other data [37].

hemaClass.org: Microarray Normalization and Classification
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BAGS classification. The BAGS classifier established by [9] was based on multinomial
regression regularized by an elastic net penalty. The classifier was trained on the Tonsil dataset
in a manner similar to the ABC/GCB classifier. The BAGS classifier uses 327 probes corre-
sponding to 205 Ensembl Gene IDs.

When a tumour sample is classified according to the BAGS classifier the associated gene
expressions are rescaled probe-set wise by the standard deviation of the Tonsil data divided by
the standard deviation of the cohort, InLab, or ExLab one-by-one reference dataset. The rescal-
ing is performed to make the data comparable to the Tonsil dataset.

Inter-method reproducibility assessments

To evaluate the reproducibility of the class probabilities obtained through cohort or reference
based RMA normalization, Pearson’s correlation coefficient for the logit-transformed probabil-
ities and 95% confidence interval (CI) were calculated for each classifier and dataset. The iden-
tity and total least square regression lines were compared to assess bias in the estimated
probabilities [41]. Total least squares regression was used as errors are present in both classifi-
cation probabilities.

For each classifier the associated categories were obtained by thresholding the estimated
probabilities. The ABC/GCB classifier was thresholded by 0.1 and 0.9, i.e. a tumour sample was
classified as ABC when the estimated probability exceeded 0.9, GCB when it was below 0.1,
and unclassified otherwise. For the BAGS classifier a tumour was classified as the class N, CB,
CC, M, or PB with the highest probablity, if the associated probability exceeded 0.5 and unclas-
sified when this threshold was not met for any subtype. For the REGS classifiers, C, H, O, and
CHO combined, the thresholds were the 33% and 66% percentile of the estimated probabilities.
The classifiers were applied to datasets using cohort, InLab, and ExLab one-by-one RMA nor-
malization. Confusionmatrices tabulating classifications from cohort normalized data versus
InLab or ExLab normalized data were created, and from these the Accuracy (percent with simi-
lar classification to cohort), Cohen’s weighted κ, and corresponding 95% CIs were computed
to assess the agreement between the determined classes.

Results

Using hemaClass.org

The website is an easy-to-use, interactive interface for the hemaClasspackage with the desired
RMA normalization and the classification methods selected by the user. The usage of the web-
site is largely self-explanatory with context-dependent boxes aiding users with further informa-
tion, warnings, or errors. A comprehensive tutorial and guide to both the website and package
is provided on the website or by runningvignette(“howto”) in R. Uploaded patient sam-
ples are normalized and classified depending on settings chosen by the user.

Table 2. Comparison of ABC/GCB classification performed using Wright’s naive Bayes classifier [36]

and the established elastic net classifier both based on cohort normalization. The second column

shows the accuracy of the classifiers with 95% CI. The third column shows the Cohen’s weighted κ with 95%

CI.

Dataset Accuracy Cohen’s κ
CHEPRETRO 0.94 (0.87, 0.98) 0.94 (0.88, 1.00)

MDFCI 0.78 (0.68, 0.86) 0.77 (0.66, 0.88)

IDRC 0.82 (0.79, 0.86) 0.80 (0.76, 0.85)

LLMPP R-CHOP 0.91 (0.86, 0.94) 0.90 (0.85, 0.96)

doi:10.1371/journal.pone.0163711.t002
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ABC/GCB classification

In order to classify patients as ABC/GCBbased on the implemented one-by-one normalization
method a classifier based on the regularised logistic regression was established. The classifica-
tions were evaluated in the four clinical cohorts CHEPRETRO, MDFCI, IDRC, and LLMPP
R-CHOP, which have all been classified according to Wright’s naive Bayes classifier [7, 9, 36].
The rates of agreement between the two classifiers based on cohort normalized data are shown
in Table 2. Note that unclassified samples were included in the estimation of this rate i.e. a
patient classified as ABC by one classifier but unclassified by the other is considered an error.
The table also includes the alternative measure of agreement, Cohen’s weighted κ, where mis-
classifications involving the unclassified group are weighted by 1/2. High agreement between
the two classifiers are observed for CHEPRETRO and LLMPP R-CHOP, while the accuracy
and Cohen’s weighted κ are lower for IDRC and MDFCI. The accompanying confusion matri-
ces are shown in the first rows of S1 Table.

The logit probability of being ABC estimated using the established cohort-based classifier
was compared to the corresponding estimate obtained through the ExLab one-by-one normal-
ized classification scheme in Fig 2A for CHEPRETRO. The probabilities estimated through the
two methods are very similar, but values from ExLab normalization are slightly uncalibrated
(or biased) and skewed downwards, indicating that different cut points might be used for the
classifications. For InLab one-by-one normalization this error and bias is greatly minimized as
shown in Fig 2B.

For both methods, patients are classified as ABC when the estimated probability exceeds 0.9
and GCB when it is below 0.1. In Table 3 the resulting classifications for the four validation
datasets are compared in terms of accuracy and Cohen’s weighted κ for cohort, using either
Wright’s Bayes classifier or the elastic net classifier, against InLab or ExLab RMA reference
normalization. For ExLab normalization CHEPRETRO and LLMPP R-CHOP both show a
high Cohen’s weighted κ and accuracy considering that misclassifications involving unclassi-
fied samples count as errors, while values are moderate for MDFCI and IDRC when comparing
to cohort based classifications for both the elastic net and Wright’s classifier. The reduced rate
of agreement and Cohen’s weighted κ using ExLab one-by-one normalization in IDRC may be
due to the samples being FFPE although this seems to be remedied by InLab one-by-one nor-
malization. Accuracy and Cohen’s weighted κ are very high when comparing InLab based clas-
sifications to cohort based classifications for the elastic net classifier, but values are still
moderate for MDFCI when comparing against Wright classifications. The accompanying con-
fusion matrices for the elastic net classifier are shown in the lower part of S1 Table. Note that
changes in predicted classes are mainly due to shifts into NC from ABC or GCB. Direct dis-
agreements between the classifiers are seemingly rare and only occurs in the IDRC dataset.

REGS classification

The probability of sensitivity towards each of the three drugs C, H, and O was estimated using
hemaClass.org for both InLab and ExLab one-by-one normalization. The logit probabilities of
sensitivity are plotted against those obtained by cohort based normalization in Fig 2 for CHE-
PRETRO data. Panels C, E, G, and I show the plots based on ExLab normalization and panels
D, F, H, and J show the plots for the InLab based normalization. The probabilities obtained by
ExLab and cohort based normalization are comparable, but similar to the other classifiers
ExLab normalization leads to slightly skewed and biased probabilities, indicating that different
cut points should be considered. The probabilities obtained by the InLab one-by-one normali-
zation resembles the cohort based to a great extent, indicating that similar well-calibrated prob-
abilities are obtainable for different laboratories by supplying an InLab reference set.
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Based on the estimated probabilities, the patients were categorised as sensitive, intermediate,
or resistant based on the thresholds specified in Section. The classes obtained by hemaClass.
org are compared to those obtained by the cohort based approach in Table 3 in terms of rate of
agreement and Cohen’s weighted κ. Low to moderate rates of agreement are observed for the
ExLab normalized data, and again the InLab one-by-one approach yielded higher agreement
with classifications obtained from cohort based normalization. The associated confusion matri-
ces for InLab and ExLab one-by-one normalization are shown in S3 and S4 Tables,
respectively.

BAGS classification

The BAGS classifier was evaluated in a manner similar to the ABC/GCB classifier. The logit
probability of a patient’s tumour originating from one of the five subpopulations was estimated

Fig 2. Comparison of logit probabilities for the ABC/GCB and REGS classifiers obtained through

InLab or ExLab one-by-one normalization against cohort normalization. The areas marked with green

indicate patients with similar classification between cohort based normalization and ExLab one-by-one

normalization (A, C, E, G, I), or InLab one-by-one normalization (B, D, F, H, J). The areas marked with red

indicate complete misclassifications. For ABC/GCB and REGS the white areas indicate unclassified and

intermediate sensitivity, respectively, in at least one of the classifiers. The dashed and solid line show the

identity and total least squares line, respectively.

doi:10.1371/journal.pone.0163711.g002

Table 3. Comparison of classifications obtained using cohort based normalization against Exlab and InLab reference based normalization. The

classifications are compared in terms of accuracy, Cohen’s weighted κ, and Pearson’s correlation coefficient r all supplied with 95% CIs. The comparisons in

the first and last three columns are based on the ExLab and InLab reference based normalization method, respectively. For ABC/GCB classification, results

from InLab or Exlab classification with the elasitic net classifier is compared against ABC/GCB classes for cohort normalized data obtained using both

Wrights Bayes classifier and the elastic net classifier.

ExLab RMA pre-processing InLab RMA pre-processing

Accuracy Cohen’s κ Pearson’s r Accuracy Cohen’s κ Pearson’s r

ABC/GCB (Wright)

CHEPRETRO .89 (.80, .94) .89 (.79, .98) - .97 (.88, 1.) .97 (.90, 1.) -

MDFCI .63 (.52, .73) .52 (.40, .64) - .72 (.59, .83) .71 (.55, .86) -

IDRC .67 (.63, .71) .62 (.56, .67) - .84 (.80, .87) .82 (.77, .86) -

LLMPP R-CHOP .83 (.77, .87) .82 (.74, .89) - .88 (.83, .92) .88 (.82, .93) -

ABC/GCB

CHEPRETRO .88 (.79, .94) .87 (.78, .97) .999 (.998, .999) .98 (.91, 1.) .98 (.93, 1.) 1. (.999, 1.)

MDFCI .69 (.59, .78) .68 (.53, .82) .998 (.998, .999) .98 (.91, 1.) .98 (.85, 1.) 1. (.999, 1.)

IDRC .65 (.61, .69) .62 (.57, .68) .986 (.983, .988) .93 (.91, .95) .93 (.90, .96) .993 (.991, .994)

LLMPP R-CHOP .82 (.77, .87) .82 (.74, .89) .999 (.999, .999) .94 (.90, .97) .94 (.90, .98) .991 (.988, .993)

BAGS

CHEPRETRO .58 (.47, .69) .56 (.28, .84) - .78 (.65, .88) .74 (.33, 1.) -

MDFCI .54 (.43, .64) .48 (.17, .79) - .80 (.68, .89) .83 (.30, 1.) -

IDRC .52 (.47, .56) .41 (.32, .50) - .79 (.75, .83) .79 (.62, .96) -

LLMPP R-CHOP .56 (.49, .62) .53 (.36, .70) - .88 (.82, .92) .88 (.60, 1.) -

REGS

CHEPRETRO .73 (.68, .78) .71 (.64, .77) .934 (.920, .946) .84 (.79, .88) .83 (.76, .89) .992 (.990, .994)

MDFCI .60 (.55, .65) .55 (.48, .61) .824 (.788, .855) .90 (.86, .94) .89 (.83, .96) .997 (.996, .997)

IDRC .52 (.49, .54) .33 (.30, .36) .660 (.635, .685) .85 (.84, .87) .84 (.81, .86) .981 (.979, .983)

LLMPP R-CHOP .58 (.54, .61) .50 (.46, .54) .810 (.786, .831) .90 (.87, .92) .89 (.85, .92) .992 (.990, .993)

doi:10.1371/journal.pone.0163711.t003
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by means of cohort, InLab, and ExLab one-by-one normalization. The logit probabilities esti-
mated by the ExLab normalization are plotted against logit probabilities from cohort based
normalization in Fig 3 panels A, C, E, G, and I for CHEPRETRO. The correlations between the
logit probabilities are highly significant, but also skewed and biased. The logit probabilities esti-
mated using InLab one-by-one normalization are plotted against logit probabilities for the
cohort based normalization in Fig 3 panels B, D, F, H, and J for CHEPRETRO. The InLab one-
by-one normalization removes much of the aforementioned bias.

Based on the probabilities estimated by means of each of the three normalization methods
the patients of the four clinical cohorts are grouped into the BAGS. The rates of agreement
between the cohort based, and InLab or ExLab based classifications are shown in Table 3 along
with Cohen’s weighted κ. For the BAGS classifier low rates of agreement were also found when
comparing results from ExLab normalization with cohort normalization, while InLab normali-
zation again led to improved agreement. The associated confusion matrices are shown in S2
Table.

Discussion

Despite the enormous amount of resources spent on developing molecular based cancer classi-
fication systems, most of these are still not available in daily clinical practice. To allow for fast
validation of our recent findings [9, 10], we have developed an easily accessible web application
that permits other users to apply ABC/GCB, BAGS, and drug resistance classification to their
own datasets. Since GEP classifiers rely on RMA normalized data, we also implemented a refer-
ence based RMA normalization that allows samples to be pre-processed one-by-one instead of
in entire cohorts.

One-by-one normalization was done using both an external RMA reference (ExLab) and a
mimicked laboratory specific reference (InLab). Classifications obtained through one-by-one
pre-processing performed by hemaClass.org were then compared to those obtained using
cohort based normalization in four clinical cohorts. The results showed that a one-by-one
array analysis approach is feasible and performs comparably with the whole cohort based
method when an InLab reference is used, while differences between ExLab and cohort normal-
ized classifications were too large to be satisfactory. Users are thus encouraged to supply their
own reference for RMA pre-processing. It seems that this approach allows for a realistic appli-
cation of microarray based lymphoma classification for research projects, and after suitable
standardisation and calibration, even for clinical use.

The poorer results for ExLab one-by-one normalization and classification is likely caused by
not accounting for lab-specific batch effects in the normalization process. To check for incor-
rect normalization hemaClass.org calculates the inter-quartile range (IQR) of the relative log
expression (RLE) [42] across probe-sets of one-by-one normalized arrays. Large values of the
RLE IQR indicates low-quality arrays resulting from e.g. incorrect laboratory procedures for
cohort normalized data, but can also indicate normalization against an improper reference for
one-by-one normalized data, and can thus be used in cases with uncertainty of the validity of a
user supplied reference. Based on the validation in S1 Text section S6 we recommend removing
samples from the analysis if the RLE IQR exceeds a value of 0.6. Users are, however, still

Fig 3. Comparison of logit probabilities for the BAGS classifier obtained through ExLab or InLab

one-by-one normalization against cohort normalization. The coloured regions in the figure correspond

to a threshold probability of 0.5. The dashed and solid line show the identity and total least squares line,

respectively.

doi:10.1371/journal.pone.0163711.g003
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encouraged to take proper precautions when selecting an RMA reference. For labs using a fixed
InLab reference, the RLE IQR could also be used as a means of statistical process control. If
RLE IQR values start to increase over time, this could indicate changes in laboratory proce-
dures that might have to be adressed.

The present treatment algorithms for DLBCL are based on disease stage and clinical risk
stratification without accounting for the underlying tumour-biology [43] and does not rou-
tinely account for the enormous variations in tumor biology between patients. The CHOP
combination therapy (cyclophosphamide, doxorubicin, vincristine, and prednisone) has been
the backbone of DLBCL therapy for decades with the only significant improvement being the
addition of monoclonal CD20 antibodies (Rituximab) [44]. Despite the addition of antibody
therapy to conventional chemotherapy only 55% of patients with poor risk disease achieve
durable remission [45]. Thus, the need for new therapeutic options in DLBCL is obvious. Cur-
rently a number of new drugs have shown promising activity in DLBCL, but their role outside
clinical trials have not been defined. These drugs are different from conventional chemothera-
peutic compounds by targeting specific deregulated cell-cycle pathways [46]. An important
example is inhibition of the NF-κB pathway by proteasome inhibitors (i.e. bortezomib). Inter-
estingly, the constitutive activation of the NF-κB pathway is characteristic for the ABC subtype
of DLBCL which consequently enhances the effect of bortezomib in this subtype [47].

With the increasing number of new drugs likely to become available over the next years and
the fact that their efficacymay vary between subsets of patients defined by gene expression pro-
files, the current treatment of patients based on disease stage and clinical information alone
will not be sufficient. hemaClass.org provides an example of fast processing of complex molec-
ular information in a way that is simple and readily at hand for clinicians.

From a practical perspective a couple of challenges have to be addressed. First, the prognos-
tic potential of the classifiers in these types of analyses has been established on specific tissues,
which means one has to trust that the right tissue has been extracted and handled correctly
through all the steps in the laboratory ending up with a reference array data set of sufficient
quality. Our reference data have for instance been controlled by looking at the frequency of
ABC/GCBs and BAGS classes and their survival curves as well as tissue control by experienced
pathologists. Second, one has to address the need for a reference dataset for one-by-one RMA
pre-processing established under similar conditions as the samples one wishes to classify. How-
ever, calibration of laboratory equipment is a well-known issue for many experimental tech-
niques used in molecular biology like qPCR, mass spectrometry, immunohistochemistry, and
flow cytometry. An important part of the calibration is that samples should be calibrated
towards a dataset consisting of a representative set of tissue samples. We suggest that these
challenges could be addressed by establishing a central tissue bank with officially approved
data, e.g. by an international medical consortium, for the specific disease, similar to The Gene
Expression Barcode [48] where consensus data for many tissues can already be found.

Alternatively the frozen RMA (fRMA) approach suggested by [30] could be used. This
approach allows samples to be RMA normalized one-by-one against a frozen reference estab-
lished across many different tissues and laboratories, taking the variation across laboratories
and tissues for single probes into account. The current implementation of fRMA does not cen-
ter and scale the data, so it cannot be used with the classifiers implemented in hemaClass.org,
but had the training data for the classifiers been normalizedwith fRMA this might eliminate
the need for centering and scaling sample data.

Another limitation of the current web application is that hemaClass.org only works with
AffymetrixHG-U133 Plus 2.0 microarrays. This can, however, be circumvented by either re-
annotation to HUGO Gene Nomenclature Committee (HGNC) approved symbols as sug-
gested by [14] or by re-annotated chip definition files as suggested by [49]. At the moment we
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are working on extending the web application to other array types along these lines. In the
future, gene expressions will likely be measured using RNA-seq technology instead of microar-
rays. By summarizing the expression levels at gene-annotations rather than affymetrix probes
and scaling the data it might also be possible to use microarray based classifiers with RNA-seq
data. Alternatively the transcriptome, for the training data used for establishing the BAGS and
REGS classifiers, would have to be measured with RNA-seq and the classifiers retrained.

Traditionally ABC/GCB classification has been achieved using the naive Bayes classifier of
[36] which is based on cohorts, MAS5.0 normalized arrays, and a Bayesian approach assuming
an equal amount of ABC and GCB patients. However, a classifier based on logistic regression
regularized by an elastic net penalty was implemented to make the classification more adapt-
able to RMA normalization and one-by-one processing. This classifier proved to be quite com-
parable with the naive Bayes classifier over the four studied datasets confirming the strong and
stable signal of the ABC/GBCsubclasses of DLBCL.

Under the validation of the one-by-one method one should notice that the unclassified is
treated as a class in its own right. This implies a lower accuracy compared to an approach
where the unclassified are left out of the validations. The latter approach seems reasonable as
changing classifications to unclassified is less serious than changing real classes. Despite the
disputed properties of Cohen’s κ the conservative approach is retained and the issue is
addressed using a Cohen’s weighted κ approach. Given that an idealised approach is problem-
atic to formulate, readers are encouraged to consider the confusion matrices in the supplemen-
tary material to make an overall evaluation of the performance.

ABC/GCB, BAGS, and REGS are only a part of the GEP-based armamentarium of methods
for stratifying lymphoma patients into risk groups [50–52] and it would be interesting to
extend the tool to include other classification systems. For a comprehensive review see [53]. To
our knowledge only a few other classification methods have been made easily accessible as
either web or desktop applications. Hopefully, this research will inspire bioinformaticians and
statisticians to make their cancer classification methods easily accessible for usage, speedy vali-
dation, critical reviews, and mutual inspiration.

Conclusion

Although high throughput technologies in molecular biology have been around for almost two
decades, only a few of the numerous biomarkers identified have undergone extensive validation
and made it into the clinic [54]. It is our hope that making our own findings publicly available
in this way will speed up validation and testing of BAGS and REGS by other researchers with-
out having to delve into extensive bioinformatics implementations. Although hemaClass.org is
still separated from the clinic we believe that a web based tool and suggestion for a clinical ref-
erence sample will bring cancer classification closer to the clinic. Hopefully, this work can also
spawn interesting discussions on the clinical requirements of GEP based diagnostic and prog-
nostic tools.

All material for reproducing this paper and its results is found at https://github.com/
oncoclass/hemaclass-paper.Comments, suggestions, bug reports, and other issues are warmly
welcome at https://github.com/oncoclass/hemaclass/issues or by mail to the corresponding
author.

Supporting Information

S1 Text. All supplementary figures and tables, derivation of Grahams formula, detailed
information on regular and one-by-one RMA normalization, and calculationof the RLE
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value and it’s impact on classification accuracy.
(PDF)

S1 Table. Confusion tables for the ABC/GCB classifiers.The columns represent cohort
based normalisztion using the ABC/GCB classifier based on elastic net. The first part of the
table compares Wright’s method for ABC/GCB classification with the elastic net based. In the
second and third part ExLab and InLab reference based normalization is compared to cohort
based normalization using the ABC/GCB classifier based on elastic net.
(PDF)

S2 Table. Confusion tables for the BAGS classifier. ExLab and InLab reference based normal-
ization are shown in the columns and cohort normalization in the rows.
(PDF)

S3 Table. Confusion tables for the REGS classifiers.ExLab normalization is shown in the
rows and cohort normalization in the columns.
(PDF)

S4 Table. Confusion tables for the REGS classifiers. InLab normalization is shown in the
rows and cohort normalization in the columns. Note, 30 samples were used as reference data
and hence not present in this table.
(PDF)

S5 Table. Number of probes used in the classifiers and the number of corresponding
HGNC and Ensembl gene IDs.
(PDF)

S6 Table. Optimal thresholds for RLE IQR.
(PDF)

S1 Fig. Ten fold cross validation for the parametersα and λ in a logistic regression regular-
ized by elastic net. In panels A and B the deviance is plotted against the model parameter α
and regularization parameter λ, respectively. In Panel C the regularization curves are shown.
Black and grey curves represent selected and non-selected probe-sets, respectively. Positive and
negative coefficients indicate that high expression values for the associated gene are related to
ABC and GCB, respectively. The red line indicates the model chosen through 10 fold cross vali-
dation. The gene symbols for the 20 probe-sets associated with the largest absolute coefficients
in the chosen gene expression predictors are displayed in Panel C.
(TIFF)

S2 Fig. Absolute value of the median (A) and IQR (B) RLE values for different RMA nor-
malizations of the CHEPRETRO dataset and ROC curves for using these values to separate
between an InLab and Exlab RMA reference (C, D).
(TIFF)

S3 Fig. Absolute value of the median (A) and IQR (B) RLE values for different RMA nor-
malizations of the LLMPP R-CHOP dataset and ROC curves for using these values to sepa-
rate between an InLab and Exlab RMA reference (C, D).
(TIFF)

S4 Fig. Absolute value of the median (A) and IQR (B) RLE values for different RMA nor-
malizations of the LLMPPCHOP dataset and ROC curves for using these values to separate
between an InLab and Exlab RMA reference (C, D).
(TIFF)
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S5 Fig. Absolute value of the median (A) and IQR (B) RLE values for different RMA nor-
malizations of the IDRC dataset and ROC curves for using these values to separate between
an InLab and Exlab RMA reference (C, D).
(TIFF)

S6 Fig. Absolute value of the median (A) and IQR (B) RLE values for different RMA nor-
malizations of theMDFCI dataset and ROC curves for using these values to separate
between an InLab and Exlab RMA reference (C, D).
(TIFF)

S7 Fig. Proportion of samples retained (A, C, E), and accuracy(B, D, F) of BAGS classifica-
tion (percent similar with cohort based) against increasing RLE IQR thresholds for differ-
ent references in CHEPRETRO. The vertical linemarks the suggested threshold of 0.6.
(TIFF)

S8 Fig. Proportion of samples retained (A, C, E), and accuracy(B, D, F) of ABC/GCB classi-
fication (percent similar with cohort based) against increasing RLE IQR thresholds for dif-
ferent references in CHEPRETRO. The vertical line marks the suggested threshold of 0.6.
(TIFF)

S9 Fig. Proportion of samples retained (A, C, E), and accuracy(B, D, F) of REGS(com-
bined) classification (percent similar with cohort based) against increasing RLE IQR
thresholds for different references in CHEPRETRO. The vertical line marks the suggested
threshold of 0.6.
(TIFF)

S10 Fig. Proportion of samples retained (A, C, E), and accuracy(B, D, F) of BAGS classifi-
cation (percent similar with cohort based) against increasing RLE IQR thresholds for dif-
ferent references in LLMPP R-CHOP. The vertical line marks the suggested threshold of
0.6.
(TIFF)

S11 Fig. Proportion of samples retained (A, C, E), and accuracy(B, D, F) of ABC/GCB clas-
sification (percent similar with cohort based) against increasing RLE IQR thresholds for
different references in LLMPP R-CHOP. The vertical linemarks the suggested threshold of
0.6.
(TIFF)

S12 Fig. Proportion of samples retained (A, C, E), and accuracy(B, D, F) of REGS(com-
bined) classification (percent similar with cohort based) against increasing RLE IQR
thresholds for different references in LLMPP R-CHOP. The vertical line marks the sug-
gested threshold of 0.6.
(TIFF)
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