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Abstract: Neurodegenerative diseases are accompanied by oxidative stress and mitochondrial dys-
function, leading to a progressive loss of neuronal cells, formation of protein aggregates, and a
decrease in cognitive or motor functions. Mitochondrial dysfunction occurs at the early stage of
neurodegenerative diseases. Protein aggregates containing oxidatively damaged biomolecules and
other misfolded proteins and neuroinflammation have been identified in animal models and pa-
tients with neurodegenerative diseases. A variety of neurodegenerative diseases commonly exhibits
decreased activity of antioxidant enzymes, lower amounts of antioxidants, and altered cellular
signalling. Although several molecules have been approved clinically, there is no known cure for
neurodegenerative diseases, though some drugs are focused on improving mitochondrial function.
Mitochondrial dysfunction is caused by oxidative damage and impaired cellular signalling, including
that of peroxisome proliferator-activated receptor gamma coactivator 1α. Mitochondrial function
can also be modulated by mitochondrial biogenesis and the mitochondrial fusion/fission cycle.
Mitochondrial biogenesis is regulated mainly by sirtuin 1, NAD+, AMP-activated protein kinase,
mammalian target of rapamycin, and peroxisome proliferator-activated receptor γ. Altered mito-
chondrial dynamics, such as increased fission proteins and decreased fusion products, are shown in
neurodegenerative diseases. Due to the restrictions of a target-based approach, a phenotype-based
approach has been performed to find novel proteins or pathways. Alternatively, plasma membrane
redox enzymes improve mitochondrial function without the further production of reactive oxygen
species. In addition, inducers of antioxidant response elements can be useful to induce a series of
detoxifying enzymes. Thus, redox homeostasis and metabolic regulation can be important therapeutic
targets for delaying the progression of neurodegenerative diseases.

Keywords: neurodegenerative diseases; oxidative stress; neuroinflammation; mitochondrial dysfunction;
mitochondrial biogenesis; mitochondrial dynamics; plasma membrane redox enzymes

1. Introduction

Neurodegenerative diseases comprise a wide range of diseases with heterogeneous
aetiologies and exhibit degenerative processes commonly accompanied by oxidative stress
and mitochondrial dysfunction [1]. Mitochondrial dysfunction is a major risk factor associ-
ated with aging and the initiation and progression of neurodegenerative diseases, such as
Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS),
and Huntington’s disease (HD). Neurodegenerative diseases are characterised by irre-
versible, progressive loss of neuronal cells, formation of protein aggregates, and a decline
in cognitive or motor functions [2]. Neurodegenerative diseases are induced by imbalanced
redox homeostasis and impaired energy metabolism [3], as hypothesised by several aging
theories, including the free radical theory [4], the mitochondrial dysfunction theory [5], the
genetic theory [6], and the telomere shortening theory [7].

The brain has a high demand for molecular oxygen and consumes about 20% of
inhaled oxygen to maintain its function. More than 50% of the ATP produced in the brain
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is used to restore the resting membrane potential coupled to the Na+/K+ ATPase pump [8].
The brain contains large amounts of transition metals (e.g., copper and iron), which are
responsible for the production of reactive oxygen species (ROS) [3]. In addition, brain
cell membranes are enriched with polyunsaturated fatty acids, which are prone to lipid
peroxidation. However, levels of antioxidant enzymes/molecules are relatively lower than
in other organs. As a result, the brain is more sensitive to oxidative stress than any other
part of the body.

The brain uses around 20% of the body’s glucose-derived energy and relies heavily
on mitochondrial ATP production [9]. Therefore, normal brain mitochondrial function is
required to maintain crucial physiological processes, such as synaptic transmission. Because
deficits in mitochondrial function have been identified in many neurodegenerative diseases,
maintenance of normal mitochondrial function during aging can be a way to prevent
the progression of neurodegenerative diseases. In addition, the inflammatory process is
identified to be closely associated with multiple pathways of neurodegenerative diseases.
Inflammatory responses in the peripheral system can lead to consequent neuroinflammation
and neurodegeneration [10]. This review discusses mitochondrial dysfunction associated
with oxidative stress, neuroinflammation, and metabolic regulation, and will suggest a new
approach to prevent the progression of neurodegenerative diseases.

2. Oxidative Stress and Redox Enzymes in Neurodegenerative Diseases
2.1. Alzheimer’s Disease

AD is the most common neurodegenerative disease affecting the elderly population
and is characterised by selective, progressive death of cholinergic neurones, leading to the
loss of cognitive functions and behavioural impairment. AD is an age-related disease, but
can also be found in some young populations. The pathology of AD includes two types of
protein aggregates, extracellular senile plaques containing amyloid β (Aβ) and intracellular
neurofibrillary tangles formed from hyperphosphorylated tau [11,12]. Along with tau,
the accumulation of oligomerised Aβ peptides mediates inflammation in neuronal cells,
causing neurodegeneration. These protein aggregates induce deterioration in synaptic
transmission, cholinergic denervation, and depleted acetylcholine.

Transition metals, such as iron, zinc, and copper, are known to produce ROS in
cells. Aβ interacts with transition metals and is responsible for normal cellular signalling.
However, Aβ can be aggregated through complexing with redox active copper [13]. Tau
also is aggregated and phosphorylated after binding to zinc and iron [14]. High zinc levels
in the neocortex and hippocampus in AD patients show the key role of zinc in redox
homeostasis in the affected brain areas [15,16]. Recently, the putative role of iron in AD
has been examined. Treatment with iron chelator improves cognitive capability, reducing
Aβ aggregation and tau hyperphosphorylation in AD mouse model [17,18]. However,
there remains a dilemma about the use of iron chelators because of iron’s significance
in energy metabolism. Iron-sulphur clusters are essential factors for electron transfer
in mitochondrial respiratory complex I, II, and III [19–21]. The Fenton reaction raises
cellular ROS levels in the condition of high iron, whereas the low levels of iron decrease
mitochondrial activity [22,23]. A recent study shows that lipid peroxidation promoted
by the Fenton reaction leads to a new type of cell death, called ferroptosis [24]. AD
post-mortem studies demonstrate typical features of ferroptotic cell death, including the
increase of 4-HNE and the decrease of glutathione [25–27]. Inflammation in response to
the formation of Aβ aggregates disrupts zinc homeostasis, leading to the release of zinc
from the cerebrum and increased oxidative stress [28]. Although diverse functions of zinc
make researching the mechanism between zinc and AD difficult, a recent study mentions
that the supplement of zinc can reduce AD progression by lowering NLRP3-dependent
inflammation [29]. As considered by an aforementioned study, low zinc may increase Aβ

level in the brain of transgenic mice harbouring amyloid precursor protein with Swedish
mutation and mutant human presenilin 1 (APPSwe/PS1∆E9) [30].
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ROS and oxidative stress play a crucial role in AD, as identified by oxidative stress induced
by Aβ and oxidative damage, such as DNA/RNA oxidation (e.g., 8-hydroxydeoxyguanosine,
8-hydroxyganosine), protein oxidation (e.g., carbonylated proteins), and lipid peroxidation
(e.g., 4-hydroxynoneal, malondialdehyde) [31–33]. Oxidative stress induced by accumu-
lated Aβ inhibits complex IV activity, resulting in mitochondrial dysfunction and ATP
depletion [31–33].

In addition, levels of antioxidants and antioxidant enzymes are decreased in AD
models and patients with AD, suggesting an altered equilibrium between ROS production
and antioxidant capacity. Vitamins C and E are decreased in the plasma of patients with
mild cognitive impairment (MCI) or mild AD and in the cerebral spinal fluid of AD
patients [34,35]. Glutathione (GSH) levels are also decreased in MCI and AD brains [36,37].
Glutathione S-transferase (GST), involved in GSH metabolism, is found in a modified
carbonylated form in aged dog brains and C. elegans expressing Aβ [38,39] and in a nitrated
form in MCI brains [40]. In particular, levels of superoxide dismutase (SOD), glutathione
peroxidase, and catalase are decreased in the cortex of AD patients, whereas SOD levels
(not activity) are increased in the hippocampus and amygdala [37]. Peroxiredoxins (Prxs),
which remove hydrogen peroxide, are also affected by oxidative/nitrative stress. Prx2
oxidation is caused by Aβ in SAMP8 mice, while Prx2 level is increased in AD brains from
SAMP8 mice and human [41,42]. Moreover, Prx6 is oxidatively modified in MCI brains [40].

At present, three choline esterase inhibitors (donepezil, rivastigmine, and galantamine)
and one N-methyl-D-aspartate antagonist (memantine) approved by the Food and Drug
Administration (FDA) have been used to treat AD in association with a Ginkgo biloba
extract (EGb761, antioxidant) [43,44]. However, there is no known cure for AD. These drugs
can delay AD progression, but induce common side-effects, including nausea, vomiting,
and diarrhoea.

2.2. Parkinson’s Disease

PD is the second most common neurodegenerative diseases (ND) after AD in aged
people. PD is characterised by the irreversible death of dopaminergic neurones in the
substantia nigra (SN), causing postural instability, tremor, rigidity, and bradykinesia. The
hallmark of PD is protein aggregates called Lewy bodies (LB) containing α-synuclein [45].
Mitochondrial dysfunction was explained first in PD pathogenesis as inhibition of mito-
chondrial complex I by 1-methyl-4-phenylpyridinium (MPP+), which is a metabolite of
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), causing parkinsonism [46]. Other
toxic molecules, such as paraquat and 6-hydroxydopamine, can cause the symptoms of
PD [47,48]. Oxidative stress and ROS are responsible for the pathogenesis of sporadic
forms of PD. A high level of Fe2+ in the SN of PD patients promotes lipid peroxidation
through the Fenton reaction, leading to nigral cell death [49]. Other transition metals (e.g.,
copper, zinc, and manganese) can cause neurodegeneration [50–52]. In addition, nitric
oxide (NO) produced by neuronal nitric oxide synthase (nNOS) or inducible NOS (iNOS)
inhibits mitochondrial complexes I and IV, resulting in enhanced production of ROS [53,54],
consistent with enhanced levels of nNOS and iNOS in basal ganglia of post-mortem PD
brains [55,56]. Deletions in mitochondrial DNA (mtDNA) have been found in the SN
of elderly people and PD patients [57]. NO can induce lipid peroxidation by forming
S-nitrosothiol compounds, resulting in PD phenotypes in mice treated with maneb and
paraquat [58].

Familial cases of PD can be caused by various mutations in a number of genes, includ-
ing α-synuclein, parkin, PTEN-induced kinase 1 (PINK1), DJ-1, and leucine-rich repeat
kinase 2 (LRRK2) [59]. Both wild-type and mutant forms of α-synuclein aggregate dur-
ing the progression of PD and are enriched in LB [60]. MPTP-treated transgenic mice
exhibit overexpressed α-synuclein and dysfunctional mitochondria, resulting in nigral cell
death [61]. Mutated parkin and PINK1 are related to the accumulation of dysfunctional
mitochondria through reduced clearance of impaired mitochondria [62,63]. DJ-1 is a protein
deglycase, prohibiting the aggregation of α-synuclein by functioning as a chaperone and
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an oxidative stress sensor [64,65]. DJ-1 protects neuronal cells against excessive oxidative
stress. Mutations in DJ-1 are associated with autosomal recessive parkinsonism through
multiple functions, such as an oxidative stress sensor and redox chaperone [66,67]. Mutated
forms of LRRK2 increase cell sensitivity to mitochondrial inhibitors [68]. Therefore, the
close relationships between oxidative stress, mitochondrial dysfunction, and accumulation
of protein aggregates are key to PD pathogenesis.

At present, L-dopa (a natural precursor of dopamine) has been used with carbidopa,
which blocks the conversion of L-dopa to dopamine outside the brain [69,70]. Safinamide,
a monoamine oxidase B inhibitor, is used for patients with idiopathic PD [71]. In addition,
antioxidants targeting the mitochondria can be effective for PD. Mitoquinone (MitoQ),
which is ubiquinone conjugated to triphenylphosphonium (TPP), scavenges peroxyl, per-
oxynitrites, and superoxide radicals [72] and improves mitochondrial membrane potential
(MMP) [73]. These drugs can improve PD symptoms but induce side effects such as fatigue
and dizziness.

2.3. Amyotrophic Lateral Sclerosis

ALS, also called Lou Gehrig’s disease, is the most common type of motor neurone
disease and is characterised by a progressive loss of motor neurones in the spinal cord,
cortex, and brainstem. Oxidative stress, excitotoxicity, and inflammation are believed to
be involved in ALS, although the links between them are not clear. A different type of
protein aggregate (called Bunina bodies) also has been identified in ALS [74]. Mitochondrial
dysfunction is an initiator of ALS. Mutations in Cu/Zn superoxide dismutase (SOD1) affect
its antioxidant activity and cause accumulation of H2O2 and hydroxyl radicals, leading to
the generation of impaired mtDNA and misfolded proteins [75]. Mutant SOD1 localises into
the mitochondria and interacts with voltage-dependent anion-selective channel 1 (VDAC1),
resulting in blockage of the exchange of ions and proteins between the mitochondria
and cytosol [76]. Oxidative damage markers of DNA oxidation (e.g., 8-OHdG) and lipid
peroxidation (e.g., isoprostane) have been identified in the brain of ALS patients [77]. ROS
also cause mtDNA mutations, membrane permeability change, and impaired calcium
homeostasis, leading to ALS [78,79].

Recently, two ALS drugs, riluzole (a glutamatergic neurotransmission inhibitor) and
edaravone (an antioxidant drug), have been approved by the FDA [80].

3. Mitochondrial Dysfunction in Neurodegenerative Diseases

During oxidative phosphorylation, molecular oxygen can be converted to water
through a series of electron transfers. Consequently, these processes can produce a variety
of by-products, such as superoxide (O2

•−), hydrogen peroxide (H2O2), and hydroxyl radi-
cal (OH•). Small amounts of ROS are generated in cells during normal energy metabolism.
In physiological conditions, low-to-moderate levels of free radicals are involved in cellular
homeostasis, signal transduction, synaptic plasticity, and immune response [81] (Figure 1).
Excess amounts of free radicals can be harmful. Free radicals leaked from the electron
transport chain (ETC) can attack DNA, lipids, and proteins in cells, leading to the gen-
eration of modified biomolecules through DNA oxidation, protein oxidation/nitration,
and lipid peroxidation [82–84]. These altered molecules cause impairment of biochem-
ical and physiological functions. Cells can detoxify these toxic molecules through the
antioxidant defence system, such as SOD and reduced glutathione (GSH). When ROS
generation overwhelms the antioxidant defence system (ADS), oxidative/nitrative stress
induces pathophysiological conditions, including aging and age-related diseases [85].
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priate signalling pathways. However, during the aging processes, ROS production is increased due 
to the attenuated antioxidant defence, resulting in decreased proliferation. When ROS levels are 
high, they can induce oxidative-stress-induced damage to biomolecules, causing mitochondrial dys-
function and apoptotic cell death. 

The mitochondria are vulnerable to oxidative/nitrative stress. Mitochondrial DNA 
(mtDNA) is less packed than nuclear DNA, and the mtDNA repair system and antioxi-
dant capacity are lower than those of cytosol [86]. In addition, the mitochondria are the 
primary site of ROS generation during energy metabolism. Therefore, mtDNA and mito-
chondrial proteins are more likely to be damaged by oxidative/nitrative stress, resulting 
in mitochondrial dysfunction, a common feature of many neurodegenerative diseases. 
Mutations in mtDNA (e.g., point mutations, large-scale deletions, tandem duplications) 
are identified in aged brains [87–89] and in patients with AD and PD [90,91]. 

In addition, the level of 8-hydroxyguanine in mtDNA is correlated with mtDNA de-
letions [92]. Altered mtDNA can cause not only transcription errors, but also the synthesis 
of proteins with impaired structures and functions. In addition, GSH and glutathione pe-
roxidase levels are decreased in damaged mitochondria [93–95]. Abnormal mitochondrial 
complexes produced from mutated mtDNA and/or modified by oxidative/nitrative stress 
can induce defects in mitochondrial functions, such as attenuated complex I activity in 
AD, PD, and ALS [96,97]; defective complex II and IV activities in ALS [98]; and altered 
complex III activity in hearts of aged animals [99]. These impairments of mitochondrial 
activity can cause a shortage of ATP production [100,101], consistent with lower mito-
chondrial membrane potential in aged compared with young animals [102,103]. ATP de-
pletion can affect subsequent biochemical processes. 

Peroxisome proliferator-activated receptor gamma coactivator 1 α/β (PGC1α/β) is as-
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protein functioning as NAD-dependent deacetylase [105–109]. 

Figure 1. Regulation of cellular physiology by ROS levels. When ROS levels are very low, the cell
cycle can be arrested, and proliferation is slowed. Under normal ROS levels, cells show normal
cell physiology (e.g., cellular homeostasis, cell division, synaptic plasticity, etc.) by maintaining
appropriate signalling pathways. However, during the aging processes, ROS production is increased
due to the attenuated antioxidant defence, resulting in decreased proliferation. When ROS levels
are high, they can induce oxidative-stress-induced damage to biomolecules, causing mitochondrial
dysfunction and apoptotic cell death.

The mitochondria are vulnerable to oxidative/nitrative stress. Mitochondrial DNA
(mtDNA) is less packed than nuclear DNA, and the mtDNA repair system and antioxidant
capacity are lower than those of cytosol [86]. In addition, the mitochondria are the primary
site of ROS generation during energy metabolism. Therefore, mtDNA and mitochondrial
proteins are more likely to be damaged by oxidative/nitrative stress, resulting in mitochon-
drial dysfunction, a common feature of many neurodegenerative diseases. Mutations in
mtDNA (e.g., point mutations, large-scale deletions, tandem duplications) are identified in
aged brains [87–89] and in patients with AD and PD [90,91].

In addition, the level of 8-hydroxyguanine in mtDNA is correlated with mtDNA
deletions [92]. Altered mtDNA can cause not only transcription errors, but also the synthesis
of proteins with impaired structures and functions. In addition, GSH and glutathione
peroxidase levels are decreased in damaged mitochondria [93–95]. Abnormal mitochondrial
complexes produced from mutated mtDNA and/or modified by oxidative/nitrative stress
can induce defects in mitochondrial functions, such as attenuated complex I activity in AD,
PD, and ALS [96,97]; defective complex II and IV activities in ALS [98]; and altered complex
III activity in hearts of aged animals [99]. These impairments of mitochondrial activity
can cause a shortage of ATP production [100,101], consistent with lower mitochondrial
membrane potential in aged compared with young animals [102,103]. ATP depletion can
affect subsequent biochemical processes.

Peroxisome proliferator-activated receptor gamma coactivator 1 α/β (PGC1α/β) is
associated with mitochondrial dysfunction. PGC1α/β are involved in mitochondrial
biogenesis, and their low levels are the key connectors between defective mitochondria
and telomere shortening [104]. Increased p53 levels induced by DNA damage can inhibit
PGC1α/β resulting in mitochondrial dysfunction and loss of SIRT1 activity, which is a
protein functioning as NAD-dependent deacetylase [105–109].
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Mitochondrial dysfunction found in a variety of neurodegenerative diseases can cause
ATP shortage, resulting in impaired secondary biochemical cascades, such as cellular
signalling and biosynthesis. As a result, progressive mitochondrial dysfunction can lead to
progression of neural cell death, causing symptoms of AD, PD, and ALS.

4. Neuroinflammation in Neurodegenerative Diseases

The brain is a unique organ with an innate and acquired immunity tightly regulated in
association with the peripheral system. The blood–brain barrier (BBB) can protect neurons
against toxic chemicals and ordinary immune responses caused in the peripheral system.
However, during the neuroinflammation process, the BBB becomes permeable and makes
the brain sensitive to activated immune responses [110]. Following a viral infection or
injection of lipopolysaccharide, microglia are first activated, causing the production of
pro-inflammatory cytokines that promote permeabilization of the blood–brain barrier. Sub-
sequently, leukocytes, T cells, and macrophages can be infiltrated into the brain. Impaired
helper (CD4+) and cytotoxic (CD8+) T cells have been identified in the peripheral system of
patients with neurovegetative diseases, suggesting that T cells can be involved in processes
of neurodegeneration through a persistent antigenic challenge [10]. Acute neuroinflam-
mation can be beneficial in response to brain injury by stimulating innate immunity [111].
However, chronic neuroinflammation is harmful to the brain because long-term activation
of microglia releases inflammatory cytokines sustainably. These mediators can induce
oxidative stress and cause the continuous inflammatory cycle [112], leading to prolonged
inflammation, which is deleterious to many neurodegenerative diseases [113,114].

It has been shown that Aβ can directly cause neuronal cell death in AD brains and
indirectly increase ROS production. Aβ aggregates can bind to microglia, causing the pro-
duction of inflammatory cytokines, chemokines, and ROS [115]. Aβ aggregates, fibrillar Aβ,
and neurofibrillary tangles (NFT) can activate the canonical pathway of complements (C3a,
C3b, and C5a) [116]. Increased levels of pro-inflammatory cytokines (e.g., TNF-α, IL-6)
were identified in the brain of AD patients compared with controls [117]. Many studies
using mouse models have shown that Aβ deposition is promoted by activation of microglia
and astrocytes [118]. Released inflammatory cytokines can up-regulate β-secretase [119],
through the signalling pathway by TNF-α-activated nuclear factor kappa B (NF-κB), leading
to increased Aβ production [120]. Neuroinflammation can enhance tau hyperphosphoryla-
tion (IL-6 via a cyclin-dependent kinase 5 pathway, IL-1 via MAPK pathway and NO) [121].
In addition, levels of prostaglandin D2 (PGD2; proinflammatory factor), PGE2, and PGJ2
were higher in the frontal cortex of AD patients than controls. PGD2 and its receptor
were up-regulated in microglia and astrocytes of AD patients and mouse models [122].
Therefore, mechanisms involved in the aggregation of Aβ and tau, the consequent release
of inflammatory cytokines, and increased ROS production can be therapeutic targets for
slowing AD progression.

The administration of wild type and mutant α-synuclein initiated ROS production
through the NADPH oxidase system [123], induced microglial activation and increased
major histocompatibility complex (MHC) class II [124], and caused elevated IL1β, TNFα
and IFNγ [125], and impaired immune profiles in central and peripheral systems [126].
The injection of a 6-hydroxy dopamine (6-OHDA) to rats causes ROS production, inducing
up-regulation of pro-inflammatory cytokines (e.g., IL1β, IL6, TNFα, and IFNγ) and their
receptors and down-regulation of anti-inflammatory mediators (e.g., IL10) [127]. Levels
of DJ1 protein and its gene (PARK7) are higher in astrocytes from PD patients than in
their control neurons [128]. Mutated DJ1 can alter lipid rafts responsible for the membrane
receptor trafficking [129]. These findings show that chronic inflammation by environ-
mental toxins and mutant proteins can aggravate inflammatory responses and then cause
neurodegeneration.

The abnormal proliferation of astrocytes was identified in ALS patients and mouse
models [130] and reactive astrocytes. Activated astrocytes expressed increased levels of
COX2, inducible nitric oxide synthase (NOS), and neuronal NOS [130]. Aberrantly activated
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microglia secreted proinflammatory cytokines (e.g., TNFα, IL1β, and IL12), which can
be neurotoxic to motor neurons [131]. Cytokines released by activated microglia (e.g.,
TNFα, IL1α) can induce the A1 subtype of reactive astrocytes, causing neuronal cell death
in ALS [132].

Neuroinflammation is closely associated with oxidative stress in the pathogenesis of
neurodegenerative diseases. Glial cells and infiltrated immune cells can produce a large
amount of ROS in the brain [133]. Therefore, neuroinflammation is one of the causes of
neurodegenerative disease through inducing oxidative stress and long-term activation of
inflammatory processes.

5. Importance of Mitochondrial Biogenesis and Metabolic Regulation

The fact that dysfunctional mitochondria are identified in many neurodegenerative
diseases suggests that maintaining mitochondrial function can be a good therapeutic target
to delay the progress of such diseases. General approaches to treat diseases linked to
altered mitochondria include conventional measures (e.g., optimised nutrition, dietary
supplements) and symptom-based management. Growing evidence from mitochondria
studies suggests therapeutic targets, such as mitochondrial biogenesis, associated with
metabolic regulation and mitochondrial dynamics related to the fusion/fission cycle.

Mitochondrial biogenesis is a complex process driven by transcription factors and
cofactors and the regulation of energy metabolism required for energetic demands in cells
(Figure 2A). There are two ways to induce mitochondrial biogenesis (targeting upstream
regulators and targeting downstream effectors), although it is difficult to separate the
effects of mitochondria from those of other micro-organelles. Calorie restriction (CR) is
the only reliable method to extend lifespan in a wide range of animals. CR induces crucial
nutrient-sensing pathways, including those of sirtuins, NAD+, AMP-activated protein ki-
nase (AMPK), mammalian target of rapamycin (mTOR), and peroxisome proliferator-activated
receptor γ (PPARγ).
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Figure 2. (A) Mitochondrial biogenesis modulated by SIRT1, NAD+, and AMPK. Energetic stress
(e.g., high NAD+/NADH ratio, increased AMP level) is a good enhancer of mitochondrial biogenesis
by activating SIRT1 and PGC1α. CR elevates NAD+ level directly or by activating PM redox enzymes
or AMPK indirectly. Rafamycin and resveratrol can enhance AMPK activity. (B) The structure of
AMPK and the function of AMPK subunits. Each of the subunits plays a different role in AMPK
activation. AMPK α subunit activates the AMPK complex, AMPK β subunit stabilises the AMPK
complex, and AMPK γ subunit serves as energy-sensor. The activated AMPK complex leads to
lipid metabolic change and maintains mitochondrial homeostasis. Abbreviations: ACC, acetyl-CoA
carboxylase; AMPK, AMP-activated protein kinase; b5R, cytochrome b5 reductase; CD38, ADP ribosyl
cyclase 1; CR, calorie restriction; FOXO, forkhead box transcription factors; MEF2, myocyte-specific
enhancer factor 2; mTOR, mammalian target of rapamycin; NQO1, NADH-quinone oxidoreductase 1;
NR, nicotinamide riboside; PARP, poly(ADP-ribose) polymerases; PGC1α, PPARγ coactivator 1-α;
PPAR, peroxisome proliferator-activated receptor; SIRT, Sirtuin 1.

First, the sirtuin family (also called histone deacetylases) is a major target of CR
and is activated by the elevated level of NAD+. Sirtuin 1 (SIRT1), a mammalian type
of Sir2, stimulates the activity of various transcription factors and cofactors, such as the
tumour suppressor p53 [134], myocyte-specific enhancer factor 2 (MEF2) [135], forkhead
box transcription factors (FOXO) [136,137], and PPARγ coactivator 1-α (PGC1α) [108].
These transcription factors and cofactors are involved in mitochondrial biogenesis and
functions. Resveratrol is not a direct inducer of SIRT1; instead, it stimulates AMPK to induce
high NAD+ levels and activate SIRT1 indirectly [138,139]. Although several mechanisms are
involved in rodent models and humans, resveratrol can increase mitochondrial biogenesis,
lipid profiles, and insulin sensitivity [140,141].

Second, NAD+ is a cofactor for the sirtuin family and effectively balances mitochon-
drial function. Thus, the NAD+ level provides information about a cellular energy state. A
high NAD+ level is modulated by increasing NAD+ synthesis [142] or transfer of electrons
from NADH to other electron shuttles (e.g., oxidised coenzyme Q) [143]. In mice models,
enhanced NAD+ level can be induced by supplementation with NAD+ precursors, such
as nicotinamide mononucleotide (NMN) or nicotinamide riboside [144,145]. Interestingly,
nicotinamide riboside stimulates the mitochondrial form of sirtuin, SIRT3 [144]. Similarly,
inhibition of NAD+-consuming enzymes such as poly(ADP-ribose) polymerases (PARPs),
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or ADP ribosyl cyclase 1 (also called CD38) can elevate NAD+ level and SIRT1 activity,
leading to the increased mitochondrial function and metabolic reprogramming [146,147].
In parallel, the mitochondrial function can be improved by overexpressing NADH-quinone
oxidoreductase 1 (NQO1) or cytochrome by reductase (b5R), which transfer electrons from
NADH to oxidised coenzyme Q in the plasma membrane [148,149]. Given that neurode-
generative disorders are associated with mitochondrial dysfunction by abnormal NAD+

levels [150–153], a method to increase cellular NAD+ levels would be great treatment
strategies for neurodegenerative disorders.

Third, AMPK is a heterotrimeric complex comprising α, β, and γ subunits. Each of
the subunits performs different functions (Figure 2B). AMPKα subunits have a conserved
kinase domain that activates the whole AMPK. A recent study reported that the phosphory-
lation of Thr172 is essential for activating full AMPK [154]. Another recent work suggests
that AMPKβ subunits maintain AMPK activation and lipid metabolism through interac-
tion between carbohydrate binding module (CBM) and glycogen [155]. AMPKγ subunits
play a significant role in energy-sensing of AMPK through cystathionine-β-synthase (CBS)
domain [156]. AMPK activated by an increased AMP/ATP ratio can induce mitochondrial
ATP production and mimic CR. AMPK as a metabolic regulator modulates metabolic
processes and increases lipid peroxidation inhibiting malonyl CoA synthesis, suggesting
that AMPK plays a crucial role in maintaining mitochondrial balance [157]. The AMPK
agonist 5-aminoimidazole-4-carboxamide riboside activates a series of genes responsible for
increasing exercise scores in wild-type mice [158] and attenuates mitochondrial dysfunction
in cytochrome c-deficient mice [159]. Recent work also shows that two natural products
(CMS121 and J147), Alzheimer’s disease (AD) drug candidates, maintain mitochondrial
homeostasis and enhance neuroprotection in cells originated from aging mouse brains
through inhibition of acetyl-CoA carboxylase (ACC)1 by AMPK [160].

Fourth, mTOR is a member of the phosphatidylinositol 3-kinase-related kinase family
and acts as a sensor of levels of cellular nutrients, oxygen, and energy [161]. Inhibition of
mTOR induces AMPK activation and enhanced mitochondrial functions. The treatment
with rapamycin, an mTOR inhibitor, increases lifespan in many organisms [162,163]. Knock-
out of Raptor (a regulatory protein of mTOR) stimulates mitochondrial ATP production in
adipose tissue [164].

Fifth, PPARγ is one of a small family of nuclear receptor genes involved in fatty acid
oxidation and plays multiple roles in metabolic homeostasis. The heterodimerised part
of PPARγ, retinoid X receptor α (RXR α), regulates mitochondrial retrograde signalling
in cybrid cells with a mutation in tRNALeu [165]. This mutation causes decreased RXR
α activity through JUN N-terminal kinase (JNK) activated by ROS. The deficient mito-
chondrial phosphorylation in these cybrid cells is attenuated by retinoic acid, an RXR
agonist. Similarly, inhibition of corepressors of PPARγ, such as nuclear receptor corepressor
1 (Ncor1), increases the mitochondrial number and activity [135], consistent with decreased
fat deposition in adipose tissue [166].

6. Alteration in Mitochondrial Dynamics and the Fusion/Fission Cycle in
Neurodegenerative Diseases

The mitochondria are highly dynamic micro-organelles in cells and change their
size, shape, and location through fission and fusion [167]. Fission and fusion are nor-
mal and continuous processes that occur in a variety of cells. Fission is mediated by the
GTPase activity of dynamin-related protein 1 (Drp1) in the mitochondrial outer mem-
brane. Drp1 promotes mitochondrial division through the creation of chains in association
with mitochondrial dynamics protein 49 (MiD49) and mitochondrial dynamics protein
(MiD51) complexed with mitochondrial fission factor (Mff) and mitochondrial fission
protein 1 (Fis1) [168]. Fusion is facilitated by optic atrophy protein 1 (Opa1), mitofusin 1
(Mfn1), and mitofusin 2 (Mfn2) [168].

The fusion/fission cycle in mitochondria is a balanced system involving the concerted
and sequential binding of fusion proteins (e.g., Mfn1, Mfn2, Opa1) and fission proteins (e.g.,
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Drp1, Fis1) (Figure 3). Interestingly, a recent study suggests mitochondrial DRP1 receptors
(e.g., MFF, MID49, MID51, and FIS1) determine mitochondrial destiny [169]. Especially,
MFF promoted midzone scission events that led to mitochondrial proliferation by interact-
ing with the endoplasmic reticulum (ER). By contrast, FIS1 participates in degrading a small
part of mitochondria at the peripheral region, contacting the lysosome [170]. However,
the role of FIS1 in mitochondrial life has been a controversial issue since its depletion has
a marginal effect on mitochondrial division [169]. In addition, other perspectives mainly
focus on AMPK, which could directly control mitochondrial homeostasis [171]. Especially,
one group demonstrates that inositol can inhibit mitochondrial fission under energy stress
by directly targeting AMPKγ subunits [172]. These recent studies show that diverse factors
participate in maintaining mitochondrial homeostasis.
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Figure 3. Regulation of the fusion and fission cycle in the mitochondria, including mitochondrial bio-
genesis and mitophagy. The mitochondrial fusion/fission cycle is balanced under healthy conditions.
However, under diseased conditions, the levels of fusion proteins are decreased, while amounts
of fission proteins are increased, resulting in a number of dysfunctional mitochondria. Damaged
mitochondria can be combined with lysosomes and degraded. Abbreviations: Drp1, dynamin-related
protein 1; Fis1, mitochondrial fission protein 1; Mff, mitochondrial fission factor; Mfn1/2, mitofucin
1/2; Opa1, optic atrophy protein 1.

The proportion of these fusion or fission proteins involved in mitochondrial quality
control is regulated in response to ROS levels. When mitochondrial antioxidant enzymes
(e.g., SOD, Gpx, Prx) are not sufficient and ROS production is excessive, ROS produced
in the mitochondria can damage mitochondrial biomolecules and cause the loss of mem-
brane potential and impair ATP generation, resulting in further ROS production. DNA
repair enzymes and lipases can restore oxidatively damaged biomolecules. Alternatively,
mitochondrial efficiency can be restored through the fusion cycle [173]. It is hypothesised
that mitochondria can regulate their contents during the fusion cycle to dilute them and
facilitate their repair system. However, when these protective mechanisms are not fully
functional, damaged biomolecules in the mitochondria can affect the other parts of the
micro-organelle, causing the removal of damaged mitochondria via mitophagy in the fission
process. Accumulation of damaged mitochondria induces mitochondrial fragmentation,
leading to apoptosis.
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Mitochondrial dynamics are altered in many neurodegenerative diseases (Figure 3).
The dysregulation of proteins involved in the mitochondrial fusion/fission cycle is asso-
ciated with several neurodegenerative diseases. Increased levels of Drp1 and Fis1 and
decreased levels of Opa1, Mfn1, and Mfn2 have been identified in the frontal cortex of
AD patients [174]. In addition, increased mitochondrial fusion was found in AD mice
with knock-in Drp1+/− [175]. Excessive Drp1 causes increased mitochondrial fission in
cells overexpressing mutant SOD-1 [176]. Changes in levels of Drp1/Fis1 and Opa1/Mfn1
induce loss of motor neurones in ALS models with mutant SOD-1 [177].

Mitophagy is a selective pathway controlling the number and quality of mitochon-
dria under nutrient-enriched conditions, whereas autophagy is a non-selective recycling
process of proteins and micro-organelles (e.g., endoplasmic reticulum, mitochondria) in
response to nutrient-deficient stress [178]. Neuronal cells require essential mediator pro-
teins responsible for mitophagy, such as parkin and PINK1. Impairment of mitochondrial
membrane potential causes PINK1 accumulation at the surface of the mitochondria and
parkin recruitment, which ubiquitinate mitochondrial outer membrane proteins for recog-
nition by autophagosomes [179]. However, mutated parkin or PINK1 in PD cannot recruit
parkin or parkin-mediated mitophagy, causing accumulation of dysfunctional mitochon-
dria [180,181]. Overexpressed parkin or PINK1 can increase the fission process through
ubiquitination of Mfn1 and Mfn2 [182,183].

Conventional approaches for improving mitochondrial function are using synthetic
and semi-synthetic compounds. There are two approaches to treat diseases related to dys-
functional mitochondria: a target-based approach and a phenotype-based approach [184]. A
target-based approach is relatively easy to apply because of its suitability for high-throughput
screening platforms and conservation with human proteins. However, this approach has
a considerable restriction in that a selected compound can bind to a molecule included
in the multiple regulatory pathways linked to mitochondrial homeostasis. For example,
several agonists that increase mitochondrial functions are associated with specific signalling
molecules, such as SIRT1 (e.g., STAC-1, STAC-2) [185], AMPK (e.g., A769662) [186], and
PPAR (e.g., FMOC-L-Leucine) [187]. These isolated targets have disadvantages in applica-
tion to multi-organ physiology and genome-wide screening involving multiple pathways
and relatively broad targets.

In contrast, a phenotype-based approach does not focus on a single pathway but
modulates integrated pathways governing mitochondrial functions. A phenotype-based
approach is challenging to design and apply, but it can help to identify novel proteins
or pathways regulating mitochondrial functions or biogenesis. Immortalised cell lines
exhibit metabolic reprogramming in response to energetic stress through stimulation of
mTOR signalling and inhibition of the AMPK pathway [188]. As a result, immortalised
cell lines lose the normal physiological characteristics of eukaryotic cells and adapt to new
environments to survive. Despite this problem, cell lines are convenient to culture. They
have been used to develop mitochondrial modulators, such as fusion promotors (e.g., M1
hydrazone) [189], metabolic regulators (e.g., meclizine) [190], and anti-mitotic drugs (e.g.,
podophyllotoxins) [184]. Primary cells are more similar to the in vivo system than are
immortalised cells. Primary cells isolated from patients or disease models can be applied
to treat genetic diseases. BRD6897 modulates mitochondrial biogenesis and turnover and
might require the co-culture of different cell types to build complex systems [191].

7. The New Compensatory Mechanism in Response to Mitochondrial Dysfunction

Cells have compensatory mechanisms for cell survival in response to mitochondrial
dysfunction. Limited ATP supply can be caused by strenuous muscle activity (e.g., extreme
exercise) or mitochondrial dysfunction, which is identified in many neurodegenerative
diseases and cells lacking functional mitochondria. Under conditions of energy restriction,
cells can generate additional ATP by enhanced glycolysis coupled to lactate fermentation.
Mitochondria-deficient cells (also called ρo cells) can survive by producing more ATP
through increased glycolysis linked to activated electron transport in the plasma membrane
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when treated with pyruvate and uridine [192,193]. In addition, ρo cells show decreased
production of ROS and increased activity of plasma membrane redox enzymes, such as
NQO1 and b5R compared with the parental cells [194].

Plasma membrane (PM) redox enzymes ubiquitous in all types of eukaryotic cells are
involved in normal cellular physiology and redox homeostasis [143,195]. Previous studies
showed protective roles, such as quinone detoxification, O2

•− scavenging, p53 stabilisation,
and reduction of oxidised α-tocopherol of PM redox enzymes in neuronal cells in response
to oxidative and energetic stress (Figure 4). PM redox enzyme activity is elevated in lym-
phocytes from patients with insulin-dependent diabetes mellitus, whose representative
hallmark is diminished mitochondrial function [196]. When supplemented with a reduced
form of coenzyme Q (CoQ), PM redox enzymes delayed apoptotic cell death in response to
oxidative stress in AD brains through maintenance of redox homeostasis [197,198]. Inter-
estingly, PM redox enzymes can be involved in extending lifespan in yeast and mammals
by enhancing the NAD+/NADH ratio and activating SIRT1 [199,200].
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Figure 4. The PM redox enzymes (NQO1 and b5R) play a crucial role in increasing NAD+/NADH
ratio and decreasing oxidative/metabolic stress. NAD+/NADH ratio is the key factor in inducing cell
survival signalling involving SIRT1, PGC1α, and Nrf2. SIRT1 and PGC1α promote mitochondrial bio-
genesis, and Nrf2 induces ARE expression associated with p300 and FOXO3. Some phytochemicals
can break the Nrf2–Keap1 linkage, inducing detoxifying enzymes. Abbreviations: ARE, antioxi-
dant response element; b5R, cytochrome b5 reductase; CBP, transcriptional coactivators of CREB
binding protein; CR, calorie restriction; FOXO3, O subclass 3 of the forkhead family of transcription
factors. GST, glutathione S-transferase; HO1, heme oxygenase 1; Keap1, Kelch-like ECH-associated
protein 1; MAPK, mitogen-activated protein kinase; NF-kb, nuclear factor kappa-light-chain-enhancer
of activated B cells; NQO1, NADH-quinone oxidoreductase 1; cNQO1, cytosolic NQO1; mNQO1,
membrane-bound NQO1; Nrf2, nuclear factor erythroid-2-related factor 2; PGC1α, peroxisome
proliferator-activated receptor gamma coactivator 1-α; PKC, protein kinase C; SIRT1, silent mating
type information regulation 2 homolog 1.

In contrast, impaired PM redox enzymes and other related compounds are identified
in neurodegenerative diseases. In the hippocampal neurons of triple transgenic mice
containing presenilin 1 (M146V), APPSwe and tau (P301L) transgenes, which lead to amyloid
β plaques and neurofibrillary tangles [201], NQO1 expression is lower than in age-matched
controls [202]. A missense mutation decreases a heterozygous NQO1 activity in codon
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187 due to a C609T polymorphism in the NQO1 cDNA [203,204]. High levels of C/T
and T/T alleles found in AD patients suggest a low level of the C/C allele as a risk
factor for AD [205]. Levels of PM components (e.g., cholesterol, sphingomyelin) are
altered in AD [206]. Levels of oxidised α-tocopherol are significantly enhanced, and total
α-tocopherol content is diminished in AD and vascular dementia [207,208]. In addition,
altered PM enzyme activity and decreased levels of CoQ and α-tocopherol are identified
in the triple transgenic mice [209]. These findings suggest that up-regulated PM redox
enzymes can delay symptoms of neurodegenerative diseases, including mitochondrial
dysfunction. In fact, PM redox enzymes are activated by CR [210,211]. Increased activity
of mitochondrial complexes, higher ATP production, and lower ROS generation were
induced by overexpressed NQO1 or b5R, suggesting efficient electron transport in the
mitochondrial complexes [149]. Similarly, the enhanced mitochondrial complex functions,
the diminished oxidative damage, and the modest lifespan extension were identified in
mice overexpressing b5R [212].

In particular, NQO1 can be a good therapeutic target for neurodegenerative diseases,
including AD, because it is an inducible enzyme responsible for 2-electron transfer without
the production of semi-quinone radicals [213,214]. This protein is expressed by the an-
tioxidant response element (ARE) associated with nuclear factor erythroid-2-related factor
2 (Nrf2) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) [215]
(Figure 4). Under normal conditions, disulphide bonds between Nrf2 and Keap1 remain
stable, and the Nrf2-Keap1 complex moves to the 26S proteasome, where it is degraded.
However, oxidative stress breaks the disulphide bonds, allowing Nrf2 to be phospho-
rylated and translocated into the nucleus. The translocated Nrf2 binds to the ARE and
transcriptional coactivators CREB binding protein (CBP)/p300 in association with FOXO3,
expressing a series of detoxifying enzymes, including NQO1, Prx1, and heme oxygenase 1
(HO-1) [216]. A cytosolic form of NQO1 can translocate into the inner surface of the PM in
response to oxidative/metabolic stress.

In addition, natural compounds, such as phytochemicals, which activate ARE expres-
sion, can be good therapeutic inducers because of their various protective effects against
toxic insults. Sulforaphane increases the resistance of retinal cells to UV-induced photoox-
idative damage [217]. Dietary supplementation with curcumin induces lower ischaemic
damage in gerbils and decreases the level of Aβ in transgenic mice with APPSwe through
reduced oxidative damage and inflammation by HO-1 and p38 MAP kinase [218,219].
Curcumin protects neuronal cells against toxic insults and blocks the formation of Aβ

plaques [220]. Allicin and allium protect hippocampal neurones from Aβ and tunicamycin
via increasing levels of uncoupling proteins [221], decreasing oxidative stress by stimulat-
ing the Nrf2-ARE pathway [222]. Some cytotoxic effects of lipid-soluble ginseng extracts
can be attenuated by the overexpression of NQO1 [223]. These findings suggest that the
induction of detoxifying enzymes, including NQO1 through the Nrf2-Keap1 pathway,
can be a good approach to improve mitochondrial function and delay the progression of
neurodegenerative diseases.

8. Conclusions

The brain acquires nutrients and molecular oxygen to produce ATP in the mito-
chondria. However, the brain has a relatively low antioxidant capacity and consumes
high amounts of oxygen in the mitochondria. In the early stages of neurodegenerative
diseases, oxidative/metabolic stress and neuroinflammation induce mitochondrial dys-
function and dysregulated immune responses in neuronal cells, consistent with altered
mitochondrial dynamics. Consequently, mitochondrial dysfunction accelerates the pro-
gression of neurodegenerative diseases. Neuronal cells can survive following activation of
mitochondrial biogenesis or other compensatory mechanisms, such as PM redox enzymes.
A high NAD+/NADH ratio is a primary factor responsible for maintaining mitochondrial
functions and biogenesis through SIRT1, AMPK, mTOR, and PPARs.
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Therefore, one of the most effective therapeutic approaches for neurodegenerative
diseases is maintaining mitochondrial functions and biogenesis because it is the best way
to delay the progression of neurodegenerative diseases at an early stage. Elevating NAD+

level and ATP production without further ROS production, through NQO1 activation
can be a good target for many neurodegenerative diseases. Taken together, these results
indicate that specific ARE induction, stimulated cell survival signalling, and improved
mitochondrial function can be a promising therapeutic strategy for the prevention and
treatment of neurodegenerative diseases.
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