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Abstract

Purpose: To evaluate the accuracy of the sub-classification of renal cortical neoplasms using molecular signatures.

Experimental Design: A search of publicly available databases was performed to identify microarray datasets with multiple
histologic sub-types of renal cortical neoplasms. Meta-analytic techniques were utilized to identify differentially expressed
genes for each histologic subtype. The lists of genes obtained from the meta-analysis were used to create predictive
signatures through the use of a pair-based method. These signatures were organized into an algorithm to sub-classify renal
neoplasms. The use of these signatures according to our algorithm was validated on several independent datasets.

Results: We identified three Gene Expression Omnibus datasets that fit our criteria to develop a training set. All of the
datasets in our study utilized the Affymetrix platform. The final training dataset included 149 samples represented by the
four most common histologic subtypes of renal cortical neoplasms: 69 clear cell, 41 papillary, 16 chromophobe, and 23
oncocytomas. When validation of our signatures was performed on external datasets, we were able to correctly classify 68 of
the 72 samples (94%). The correct classification by subtype was 19/20 (95%) for clear cell, 14/14 (100%) for papillary, 17/19
(89%) for chromophobe, 18/19 (95%) for oncocytomas.

Conclusions: Through the use of meta-analytic techniques, we were able to create an algorithm that sub-classified renal
neoplasms on a molecular level with 94% accuracy across multiple independent datasets. This algorithm may aid in
selecting molecular therapies and may improve the accuracy of subtyping of renal cortical tumors.
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Introduction

Renal epithelial tumors are a diverse group of neoplasms that

have been sub-classified based on histologic morphology [1]. The

four most common types of renal cortical neoplasms are clear cell

renal cell carcinoma (RCC) (63–89%,), papillary RCC (7–19%),

chromophobe RCC (2–6%), and oncocytoma (5–7%) [2,3]. Clear

cell tumors are most commonly associated with mutations in the

VHL tumor suppressor gene, familial and a subset of papillary

(type I) tumors are associated with dysregulation of the MET

proto-oncogene, and familial chromophobe tumors and oncocy-

tomas are associated with dysregulation of the BHD gene

[4,5,6,7,8].

Improved understanding of the genetic alterations and down-

stream molecular pathways of the histologic subtypes of renal

epithelial neoplasms has led to the development of targeted

molecular therapies and the tailoring of treatment and follow-up to

the subtype of the tumor. Knowledge of the aggressiveness of

histologic subtypes has aided in determining which patients may

be candidates for surveillance, as some non-clear cell subtypes are

associated with a more indolent course [3]. The FDA has

approved a number of targeted therapies for clear cell histology

and there are now promising clinical trials underway for papillary

histology [9,10].

The ability of sub-classification to aide in prognostication and

selection of appropriate treatment emphasizes the importance of

accuracy in the sub-typing of renal cortical tumors. Unfortunately,

diagnostic concordance between pathologists may be suboptimal.

This has recently been demonstrated by Kummerlin et al, who

showed that pathologists disagreed on the sub-classification of non-

clear cell tumors in up to 50% of cases [11]. While immunohis-

tochemistry is a valuable adjunct, most markers lack either

specificity or sensitivity, and even combinations of markers achieve

only 78–86% agreement with morphology-based sub-classification

[12].

In the current study, we used meta-analysis of gene expression

microarray data in an attempt to provide a link between

histopathologic diagnosis and molecular characteristics. By
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incorporating data from multiple institutions, we aimed to

generate a large enough dataset to create a highly genereralizeable

set of signatures that represent the molecular correlate of the four

major sub-types of renal epithelial tumors.

Materials and Methods

Dataset search
The Gene Expression Omnibus (GEO) and Array Express

databases were searched for published microarray datasets

involving renal neoplasms. Search terms were: ‘‘kidney tumors,’’

‘‘kidney cancer,’’ and ‘‘renal cell carcinoma.’’ Selected datasets

included the four major types of renal cortical neoplasms: clear

cell, papillary, chromophobe, oncocytoma.

We included only datasets that utilized the Affymetrix platform

because this platform has demonstrated the best inter-institution

agreeability [13]. All studies processed samples similarly according

to the Affymetrix protocol. Datasets without a reference to a

publication describing the source of their tissue and IRB approval

were excluded. All studies without feature-level extraction output

files (.CEL files) were excluded in an attempt to prevent

confounding effects of different algorithms used in data pre-

processing [14]. Samples within each dataset with a histologic sub-

classification other than the four most common types of renal

epithelial tumors listed above were also excluded. If a sample was

noted to have features of another histology (i.e. clear cell with

papillary features), the sample was excluded. All the datasets

included in our training and validation samples were comprised of

snap-frozen samples from surgically removed primary tumors;

none of the studies used tissue from biopsies and none of the

samples were derived from metastatic sites.

Normalization and Filtering
Raw data from each dataset were imported into BRB array

tools (http://linus.nci.nih.gov/BRB-ArrayTools.html). Each data-

set was normalized independently using the GC-RMA algorithm

[15,16]. Each dataset was filtered so that genes were excluded

when less than 20% of expression data had at least a 1.5 -fold

change in either direction from gene’s median value, and when the

percent of data missing or filtered out exceeded 50%. Genes

passing the filtering criteria from each dataset were intersected

using the MergeMaid package for the R environment (http://

www.r-project.org) to identify common genes across multiple

datasets. Next, the ‘‘IntCor’’ function of MergeMaid was used to

perform integrative correlation analysis, whereby the correlation

of expression values across samples within one dataset, and across

multiple datasets, was evaluated [17]. All genes with an integrative

correlation coefficient of less than 0.5 were excluded. Thus, the

final list of genes included in our analysis represented the genes

with the least amount of variability across multiple datasets.

Algorithm Construction and Meta-Analysis
Multi-dimensional scaling was performed to determine the

differences in gene expression between datasets. Unsupervised

hierarchical clustering analysis was then performed on each

dataset independently to look for clustering patterns consistent

across multiple datasets. To maximize the differences between the

classes, and thus augment our predictive power, we sought to

create signatures that could be applied in an algorithm that would

mimic the natural clustering of samples in unsupervised analysis.

The creation of predictive signatures consisted of two steps as

previously described by Dobbin et al: 1) Differentially expressed

genes between classes were identified 2) The genes with the highest

discriminatory ability were selected from the differentially

expressed genes [18]. To identify differentially expressed genes

across multiple datasets, we employed a non-parametric ‘rank

product’ method implemented in the RankProd package for the R

environment [19]. This method has been shown to have higher

sensitivity and specificity than other types of meta-analytic tools for

microarrays [20]. Class comparison analysis using RankProd

identified differentially expressed genes between two classes in

each signature in the algorithm. We pre-specified a significant p-

value and pfp (‘‘percent false prediction’’ - a measure of false

discovery rate) as less than 0.001. Once differentially expressed

genes were identified, feature selection was performed using a pair-

based pairs method in BRB-array tools termed ‘‘greedy pairs’’

[15,21]. We set the number of pairs at 25 for each signature,

resulting in 50 gene signatures. We then decreased the number of

pairs to 12 (24 gene signatures) and then to 5 (10 gene signatures)

to determine the effect of decreasing the size of the signature to on

the accuracy of sub-classification.

Validation
We began validating our signatures by performing k-fold cross-

validation on the training set using the tools provided by BRB-

array tools [15]. We then searched the Gene Expression Omnibus

and Array Express databases using the same search criteria as

before to identify independent datasets that could be used for

validation. We included all datasets that met our criteria and that

were not used in the training set and again excluded all samples

without an associated reference describing the source of tissue and

IRB approval. We also validated our signatures on one of our own

datasets from a prior IRB-approved study [22]. Finally, we applied

our signatures in a sequential fashion according to our algorithm

and used the nearest centroid classification and the Bayesian

compound covariate predictors to evaluate the efficacy of the

signatures in our algorithm [15,23,24]. The error rate was

determined by misclassification at any step during the algorithm.

Results

Training set
A search of public databases identified four datasets that utilized

the Affymetrix platform and included samples with the four major

subtypes of renal epithelial tumors. The associated GEO accession

numbers are as follows: GSE 15641, GSE11024, GSE11151, and

GSE2109. One dataset, GSE2109 was excluded because it was not

associated with a peer-reviewed publication describing the source

of the samples. A summary of the three remaining datasets are

shown in Table 1 [25,26,27].

Table 1. Summary of datasets included in training set.

GEO ID GSE15641 GSE11024 GSE11151

PubMed ID* 16115910 18519660 19445733

Institution Beth Israel Van Andel Heidelberg

Chip type HG U133A HG U133Plus2.0 HG U133Plus2.0 Total

Clear cell 32 11 27 70

Papillary 11 10 19 40

Chromophobe 6 6 4 16

Oncocytoma 12 7 4 23

Total 61 34 54 149

*Pubmed ID of associated reference.
doi:10.1371/journal.pone.0021260.t001
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Normalization and Filtering
After normalization, 10,092, 19,601, and 23,870 genes passed

filtering criteria for GSE 15641, GSE11024, GSE11151, respec-

tively. Intersection of the genes using probe set IDs revealed 8,247

genes common to all three datasets after filtering. Integrative

correlation analysis identified 2,932 genes with an integrative

correlation coefficient less than 0.5. These genes were discarded,

leaving 5,315 genes to be used in the creation of our signatures.

Multi-Dimensional Scaling
Multi-dimensional scaling of samples revealed differences in

average gene expression values between datasets (Figure 1). The

differences between datasets indicated the need for statistical

methods that take the different sources of the data into account.

Algorithm Creation
Unsupervised clustering was performed independently for each

dataset and revealed consistent trends, as is illustrated in Figure 2A.

The first division separated datasets into samples of clear/papillary

and chromophobe/oncocytoma. Within these two primary

divisions, samples were separated into clusters of clear cell,

papillary, chromophobe, and oncocytoma at intermediate branch

points. Knowledge of clustering was used in creating the

algorithm; we applied our signatures at the branch points observed

in the natural clustering pattern in order to maximize the

differences between our samples. The algorithm (Figure 2B)

consisted of three signatures. The algorithm was applied to

samples in a two-step process using the first signature to separate

samples into clear cell/papillary or chromophobe/oncocytoma.

One of the two remaining signatures was then applied to the

sample depending on the results of the first signature, which

separated the sample into one of the four sub-types of renal

epithelial neoplasms.

Meta-Analysis and Signature Creation
Class comparison analysis was performed to identify differen-

tially expressed genes for each signature. Thus, three separate class

comparison analysis comparison analyses were performed using

the RankProd package. Class comparison analysis between clear/

papillary and chromophobe/oncocytoma identified 2,008 differ-

entially expressed genes. There were 1,408 differentially expressed

genes in the clear cell vs. papillary class comparison, and 432

differentially expressed genes in the chromphobe vs. oncocytoma

class comparison. The greedy pairs feature selection process chose

the most predictive genes among each list of differentially

expressed genes to create our final signatures.

Validation
K-fold cross-validation using the nearest centroid classifier in

BRB-array tools resulted in a correct classification rate of 99% for

the clear cell/papillary versus chromophobe/oncocytoma com-

parison, 98% for the clear cell vs papillary comparison, and 95%

for the chromophobe vs oncocytoma comparison. Search of the

Gene Expression Omnibus database for independent validation

datasets identified 4 independent datasets from three separate

institutions that met our search criteria [28,29,30,31]. We also

used ten of our own clear cell samples from patients with known

VHL mutations [22]. None of the samples in the validation

datasets were part of the original training set. We first applied our

50 gene signatures as shown in Figure 2B using the nearest

centroid classification predictor, and the correct classification rate

was recorded. A summary of the results of correct classification

based on our algorithm are shown in Table 2. Sixty-eight of the 72

samples were correctly classified. Of note, 49 of the total 52 (94%)

of the non-clear cell histologies were correctly classified. The size

of the signatures was decreased to 24 and then to 10 by decreasing

the number of pairs of genes in the ‘‘greedy-pairs’’ function. As

shown in Table 3, decreasing the number of genes in each

signature did not affect the misclassification rate during validation.

The results of the Bayesian compound covariate predictor are also

shown in Table 3. The percent of incorrectly classified samples

was lower with the Bayesian compound covariate predictor than

with the nearest centroid, but when the un-classified samples were

added, the two methods had similar results. Similar to the nearest

centroid predictor, the Bayesian compound covariate model

maintained discriminatory ability as the number of genes

decreases. The full composition of these signatures may be found

in Table S1.

Discussion

Until reliable biomarkers and molecular prognostic tools gain

widespread acceptance in the evaluation of renal masses,

histopathologic diagnosis remains an important factor in prognos-

tication, selection of treatment options, and inclusion in clinical

trials. Unfortunately, pathologists often disagree on sub-classifica-

tion of renal neoplasms based on morphology alone, with

discordance rates as high as 50% in the non-clear-cell histologies

[11]. This leads to reliance on immunohistochemistry, but

immunohistochemistry and morphology are often at odds [12].

In this study, we attempted to improve the molecular correlate to

morphology by developing gene expression signatures to aid in the

classification of the most common types of renal cortical

neoplasms.

Although sub-classification of renal neoplasms by molecular

signatures has been described previously, the methods used lacked

extensive external validation and were not amenable to being

translated into clinically useful tests [28,32]. In a study by Yang

Figure 1. Multi-dimensional scaling of gene expression profiles
from samples from different institutions. Red: GSE 11024, Green:
GSE 11151, Blue GSE 15641.
doi:10.1371/journal.pone.0021260.g001
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et al., diagnosis of 16 samples was based on hierarchical clustering

among samples from prior studies. Furge et al. split a sample of

cDNA arrays into two groups: a training set and a validation set. A

1018-set signature was used to predict the histology of their

validation set through the use of a nearest shrunken centroid

classifier [28]. While these studies demonstrate the feasibility of

molecular signatures in the sub-classification of renal tumors,

molecular signatures need to be reasonably sized and they need to

undergo rigorous external validation before they are clinically

useful [33].

A search of published datasets affords the opportunity to build

large datasets, but the differences in gene expression values

between datasets must be addressed. We limited our inter-dataset

variation by excluding all studies that did not utilize the Affymetrix

platform. Nevertheless, multi-dimensional scaling of the samples in

our study revealed obvious differences in gene expression values

between studies. Thus, we were obligated to ensure our statistical

analysis considered the differences between datasets in addition to

the differences between tumor types.

We took several measures to reduce the effects of inter-study

variation. First, we performed an integration correlation analysis

to discard all the genes with poor correlation and high variability

within a given study and across studies. Second, when identifying

differentially expressed genes to be included in our classifier, we

used meta-analytic techniques that took the differences between

datasets into account. This methodology may have the advantage

of identifying the genes that are most consistently associated with

the various histologies across multiple datasets, thus increasing the

generalizability of the signatures in our algorithm. Finally, to

maximize our power to distinguish between classes, we exploited

the differences inherent in the biology of these tumors by utilizing

knowledge of their natural clustering pattern. Interestingly, the

initial branching observed in unsupervised clustering of all three

datasets revealed clustering of clear and papillary RCC separate

Figure 2. Clustering of renal epithelial tumors. A) Natural clustering pattern of renal epithelial tumors, demonstrated with GSE11024. B)
Algorithm used to sub-classify renal epithelial tumors according to their molecular characteristics closely mimics the natural clustering pattern.
doi:10.1371/journal.pone.0021260.g002

Table 2. Summary of validation set and results of classification algorithm.

GEO ID# GSE8271 GSE12090 GSE7023 GSE6344 —

Institution V.A.I. Cornell V.A.I. M.C. N.C.I.

Pubmed ID* 18773095 17145811 17409424 17699851

Chip type HG U133Plus2.0 HG U133Plus2.0 HG U133Plus2.0 HG U133A HG U133Plus2.0 Total Correct Classification (%)

Clear Cell — — — 10 10 20 19/20 (95%)

Papillary — — 14 — — 14 14/14 (100%)

Chromophobe 10 9 — — — 19 17/19 (90%)

Oncocytoma 10 9 — — — 19 18/19 (95%)

Total 20 18 14 10 10 72 68/72 (94%)

*Publication associated with dataset.
V.A. – Van Andle Institute.
M.C. – Mayo Clinic, Jacksonville.
N.C.I. – National Cancer Institute.
doi:10.1371/journal.pone.0021260.t002
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from chromophobe RCC and oncocytomas. This clustering

pattern may be explained by the site of origin of these tumors.

Chromophobe tumors and oncocytomas are derived from cells in

the distal tubule whereas clear cell and papillary tumors are

thought to arise from cells in the proximal tubule [34]. Within

each sub-branch, the tumors further differentiate based on their

histologic family. Therefore, while creating an algorithm, we

sought to maximize the differences between samples while

minimizing variance by applying our signatures at the first and

second branch points.

We validated our signatures using the most stringent methods

available to us [35]. Within our training set, we used a complete k-

fold cross-validation process, completely re-recreating our training

set each time samples were excluded [15]. However, because the

ultimate test of a signature is its performance on completely

independent samples, we also created a validation set with samples

that were not included in the development of our signatures. These

samples were procured at different centers, the tissue was handled

differently after procurement, the microarray experiments were

conducted in different laboratories, and the slides were read by

different pathologists. Despite these potential sources of error, our

classifier still maintained a 94% correct classification rate.

The ability to perform both cross-validation and independent

validation allowed us to study the effects of different classification

methods on the rate of correct classification. The two different

classifier types, nearest centroid and Bayesian compound covariate

predictor, had similar rates of misclassification/non-classification,

but their utility may differ depending on the purpose of the user. If

the goal is a dichotomous decision about molecular similarity

between a given sample and the molecular signatures described in

this study, the nearest centroid model is preferable. However, if

avoiding false negatives is a priority and the user is willing to

accept a number of non-classified samples, the Bayseisan

compound covariate predictor may be preferable. An added

advantage of the Bayesian compound covariate predictor is that

the user is able to evaluate a numeric probability of a sample’s

membership in a given class.

Our gene signatures were resilient to changes decreasing

signature size. Our ten gene signatures performed almost as well

as our 50 gene signatures, demonstrating the robust nature of our

analyses. Similar to the MammaPrintH signature platform that is

being evaluated to determine the use of gene signatures in early

stage breast cancer patients who may benefit from adjuvant

chemotherapy, our signatures may potentially be used in a clinical

setting [36]. We are considering a clinical trial to test the use of our

algorithm in clinical practice, and the potential utilities are

numerous. It may be used as a helpful adjunct to pathologists

when the diagnosis are not obvious, it may improve the diagnostic

accuracy of percutaneous renal biopsies (when the paucity of the

tissue limits adequate evaluation of morphologic patterns), and it

may help direct treatment options. For example, separating benign

oncocytomas that may safely be observed from chromophobe

tumors with malignant potential may be aided with the use of our

signatures. Of most importance, our potential ability to achieve

correct diagnosis in the majority of cases is intriguing and

promising.

While the purpose of the analysis was to identify the transcripts

most useful in differentiating different histologic subtypes,

evaluation of the lists of transcripts revealed several interesting

findings. First, the genes coding for some of the traditional

immunohistochemical markers for differentiating tumors were

found within the signatures. For example, in the 50 gene signature

that differentiated clear/papillary from chromophobe/oncocyto-

ma, the clear cell marker Vimentin was identified. In the 25 gene

signature that differentiated chromophobe from oncocytoma, the

chromophobe-specific marker Cytokeratin 7 was included [34].

Thorough evaluation of each of the genes in the signatures is

outside the scope of this study, although we did note that several of

the genes included had a known role in oncogenesis. For example,

PAX-8 was listed as over-expressed in clear cell tumors relative to

papillary. PAX-8 has been implicated in Wilm’s tumors [37].

SCRN1, a marker of colorectal cancer, was also over-expressed in

ccRCC relative to papillary [38]. Some of the genes in the

signatures may be ‘‘observers’’ rather than ‘‘drivers’’. For example,

the over-expression of aquaporin 6 in chromophobe tumors

relative to oncocytomas is unlikely to have any direct effect on

tumor growth or invasion, but is nonetheless a good marker - this

is the second study to show differential expression of this gene

between chromophobe RCC and oncocytomas [39].

We acknowledge several limitations of this study. First, while the

study includes the most common types of renal cortical tumors,

not all histologic subtypes are represented in our model. For

example, we excluded collecting duct RCC, clear cell RCC with

papillary features, and tubulo-papillary RCC. We felt that most of

these sub-types are either very rare or represent heterogeneous

histologies. We also did not separate papillary tumors into type I

and type II. These tumors may represent a continuum rather than

separate entities, and papillary type II may include eosinophilic

tumors of many origins [40]. We also did not performed analysis of

normal renal parenchyma. Normal renal parenchyma can be

readily distinguished from a solid renal tumor on H&E stain.

Therefore, we focused on differentiating different types of RCC.

Furthermore, while we validated the robustness of this signature

by examining the performance of our signature in outside datasets,

the true performance of the signature will have to be confirmed in

a set of unclassified renal cortical neoplasms. Indeed, this may

Table 3. Results of validation with multiple methods and multiple signature sizes.

NC* Training NC* Validation BCCP** Training BCCP** Validation

Misclassification 50 genes 2.7% 5.6% 2.0% 4.2%

Misclassification 24 genes 1.3% 6.9% 2.0% 4.2%

Misclassification 10 genes 2.7% 5.6% 1.3% 5.6%

Non-classified 50 genes — — 0.7% 1.3%

Non-classified 24 genes — — 2.0% 2.7%

Non-classified 10 genes — — 6.0% 4.2%

*NC – Nearest Centroid.
**BCCP – Bayesian Compound Covariate Predictor.
doi:10.1371/journal.pone.0021260.t003
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prove to be the most useful utility of these signatures. Finally, we

did not incorporate stage and grade of the tumors into our

algorithm as this information was not available for all studies.

While the lack of centralized pathology review may be

considered as a limitation of our study, it is an inherent feature

of this study that may also be its strength, since the samples

analyzed were derived from multiple institutions in two countries.

Our 94% accuracy when validated on external datasets is likely

due to the use of data from multiple sources making our results

more generalizable. The strong performance of our signature even

in the non-clear histologic subtypes is best explained by the fact

that we were not evaluating the genes that correlated with a

histologic subtype defined by one pathologist, but rather the

integration of molecular profiling with morphology as determined

by multiple pathologists at various academic institutions.

We hope that our future studies will help address the current

shortcomings in subclassification of renal cortical tumors, support

the clinical utility of our algorithm, and move the field closer

towards personalized medicine for patients with renal cortical

neoplasms.

In summary, the use of meta-analytic techniques has facilitated

the creation of signatures that have accurately differentiated renal

cortical neoplasms. Sequential application of three signatures,

according to an algorithm that utilized the natural differences in

gene expression between tumor subtypes, correctly classified renal

epithelial tumors from five institutions with 94% accuracy. Our

algorithm may potentially be used as a adjunct for pathologists

when the diagnoses are not obvious in order to improve the

diagnostic accuracy of percutaneous renal biopsies and to help

direct treatment options.

Supporting Information

Table S1 Gene Signature. ccRCC - Clear Cell Renal Cell

Carcinoma; pRCC - Papillary Renal Cell Carcinoma; chRCC -

Chromophobe Renal Cell Carcinoma; ONCO – Oncocytoma.

(XLS)
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