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Wnt signaling plays crucial roles in development and tissue homeostasis, and its
dysregulation leads to various diseases, notably cancer. Wnt/β-catenin signaling is
initiated when the glycoprotein Wnt binds to and forms a ternary complex with the
Frizzled and low-density lipoprotein receptor-related protein 5/6 (LRP5/6). Despite
being identified as a Wnt co-receptor over 20 years ago, the molecular mechanisms
governing how LRP6 senses Wnt and transduces downstream signaling cascades are
still being deciphered. Due to its role as one of the main Wnt signaling components,
the dysregulation or mutation of LRP6 is implicated in several diseases such as
cancer, neurodegeneration, metabolic syndrome and skeletal disease. Herein, we will
review how LRP6 is activated by Wnt stimulation and explore the various regulatory
mechanisms involved. The participation of LRP6 in other signaling pathways will also
be discussed. Finally, the relationship between LRP6 dysregulation and disease will be
examined in detail.
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INTRODUCTION

Wnt signaling has crucial roles in development and tissue homeostasis (Nusse and Clevers, 2017).
The interaction between Wnt, Frizzled, and lipoprotein receptor-related protein 5/6 (LRP5/6)
activates Wnt signaling. If the main output of Wnt signaling activation is stabilization of the
transcriptional activator β-catenin, the pathway is known as canonical Wnt or Wnt/β-catenin
signaling (hereafter referred to as “Wnt/β-catenin signaling”). In the absence of Wnt, the scaffold
protein Axin together with adenomatous polyposis coli (APC), glycogen synthase kinase 3β

(GSK3β), and casein kinase 1 alpha (CK1α) form the so called destruction complex that binds
cytoplasmic β-catenin, leading to its phosphorylation by CK1α and GSK3β. Phosphorylated
β-catenin is ubiquitinated by the SCFβ-Trcp E3 ubiquitin ligase complex, a process that targets
it for proteasomal degradation (Aberle et al., 1997; Kitagawa et al., 1999; Liu et al., 2002). In
the presence of Wnt, the β-catenin destruction complex is recruited to the plasma membrane
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and inactivated (Figure 1A). As a result, β-catenin is stabilized
and then translocates to the nucleus to activate the expression
of target genes involved in cell proliferation, differentiation,
stem cell self-renewal and many other biological processes
(MacDonald et al., 2009). In non-canonical Wnt signaling, Wnt
(e.g., Wnt5a) transduces signaling without β-catenin stabilization
by activating alternative downstream cascades such as JUN
kinase, planar cell polarity (PCP), or calcium signaling (Kikuchi
et al., 2009). It is well known that dysregulation of Wnt signaling
causes developmental disorders and several diseases such as
cancer (Nusse and Clevers, 2017). Notably, hyper-activation of
β-catenin, due to mutations in APC, AXIN, or CTNNB1 (gene
for β-catenin), is a well-known risk factor for carcinogenesis,
especially colon cancer (Bugter et al., 2021).

The type I single transmembrane protein LRP6 is a member of
the LDLR gene family of receptors that is highly conserved among
species (Pinson et al., 2000; Tamai et al., 2000; Wehrli et al., 2000).
The extracellular region of LRP6 contains four YWTD (Tyr-
Trp-Thr-Asp)-type β-propellers, followed by EGF-like domains
(E1–E4), and three LDLR type A domains (Cheng et al., 2011),
and its intracellular region contains five PPPS/TP (Pro-Pro-
Pro-Ser/Thr-Pro) motifs (Tamai et al., 2004). Formation of the
Wnt-FZD-LRP6 ternary complex at the plasma membrane (i.e.,
Wnt-on state) induces phosphorylation of the intracellular region
of LRP6 (MacDonald and He, 2012). Phosphorylation of LRP6
is therefore considered a hallmark of Wnt/β-catenin signaling
activation. Contrary to Wnt, the secreted Wnt modulator
Dickkopf (Dkk) binds to LRP6 and promotes its membrane
clearance, thereby functioning as an LRP6 antagonist (Mao B.
et al., 2001; Mao et al., 2002). Owing to its importance in
Wnt/β-catenin signaling transduction, mutation or dysregulation
of LRP6 is implicated in several diseases (Joiner et al., 2013).
LRP5, which is a paralog of LRP6 and shares 71% sequence
conservation (Tamai et al., 2000), plays a similar role as LRP6
in transducing Wnt/β-catenin signaling (Mao J. et al., 2001);
however, the biological functions of LRP6 and LRP5 differ
significantly (Joiner et al., 2013). In this review we will mainly
focus on LRP6. We will describe the molecular mechanisms
governing Wnt-dependent LRP6 activation, and discuss how
LRP6 function is regulated by various factors. We will also discuss
LRP6’s role in the regulation of downstream Wnt/β-catenin
signaling, provide examples of its involvement in Wnt/β-catenin-
independent pathways, and illustrate how dysregulation or
mutation of LRP6 can lead to several diseases.

CORE MECHANISMS OF LRP6
ACTIVATION VIA Wnt STIMULATION

In 2000, LRP6 was identified as a co-receptor for Wnt and FZD
to transduce Wnt/β-catenin signaling (Pinson et al., 2000; Tamai
et al., 2000; Wehrli et al., 2000). The extracellular domain of LRP6
interacts with Wnt and activates Wnt/β-catenin signaling at the
plasma membrane. LRP6 with a truncated extracellular domain is
constitutively active and can potentiate Wnt/β-catenin signaling
independently of Wnt (Liu et al., 2003). Conversely, LRP6 with a
truncated intracellular domain acts as a dominant-negative form,

inhibiting Wnt/β-catenin signaling (Tamai et al., 2000). There
are five PPPS/TP motifs in the LRP6 intracellular domain, and
the serine/threonine residues in these motifs are phosphorylated
upon Wnt stimulation (Tamai et al., 2004). GSK3β and CK1γ

are the main kinases that phosphorylate the PPPS/TP motifs and
their flanking regions, respectively (Davidson et al., 2005; Zeng
et al., 2005). Dishevelled (DVL) proteins are essential for Wnt-
induced LRP6 aggregation with FZD, and the complex formed
between LRP6, FZD, and DVL relies on the DIX and PDZ
domains of DVL (Zeng et al., 2008; Figure 1B). In the Wnt-
on state, additional Wnt/β-catenin signaling components such as
Axin, CK1α, and GSK3β form a complex with LRP6 known as
the signalosome (Bilic et al., 2007). Signalosome formation leads
to further LRP6 phosphorylation by GSK3β that in turn promotes
more aggregation of Wnt/β-catenin signaling components (Zeng
et al., 2008). The end result is increased dissociation of β-catenin
away from the destruction complex, allowing it to accumulate
in the cytoplasm and then translocate to the nucleus (Cselenyi
et al., 2008; Wu et al., 2009). Wnt3a-induced activation of
LRP6 is rapid, and aggregation of components involved in
Wnt/β-catenin signaling can be observed as early as 30 min
by live cell imaging (Bilic et al., 2007). Another important
player in the signalosome is PIP5K1, a phosphatidylinositol
phosphate kinase whose activation is mediated by FZD and DVL
(Pan et al., 2008). Activation of PIP5K1 leads to production
of phosphatidylinositol 4,5-bisphosphate (ptdIns(4,5)P2), which
in turn induces aggregation and phosphorylation of LRP6 (Pan
et al., 2008; Figure 1C). Hence, non-protein components such
as phospholipids can also play crucial roles in LRP6-mediated
Wnt/β-catenin signaling.

REGULATION OF LRP6 FUNCTION AND
DOWNSTREAM SIGNALING

Phosphorylation
As described above, in the presence of Wnt, the five
PPPS/TP motifs in the intracellular domain of LRP6 are
mainly phosphorylated by GSK3β and CK1γ. However,
additional ligands, kinases or interacting proteins have also
been shown to regulate LRP6 phosphorylation and thus
influence Wnt/β-catenin signaling. First, we review how these
components affect LRP6 phosphorylation and positively regulate
Wnt/β-catenin signaling. Similar to GSK3β, G protein-coupled
receptor kinases 5 and 6 (GRK5/6), mitogen-activated protein
kinases (MAPKs), such as p38, extracellular signal regulated
kinase 1 and 2 (ERK1/2), and c-Jun N-terminal kinases 1
(JNK1) also interact with LRP6 and induce phosphorylation of
its PPPS/TP motifs (Chen et al., 2009; Červenka et al., 2011;
Figure 2). For example, fibroblast growth factor 2 (FGF2)-
induced ERK activation leads to phosphorylation of the S1490
or T1572 residues of LRP6, resulting in Wnt/β-catenin signaling
activation (Krejci et al., 2012). Parathyroid hormone (PTH), a
crucial factor for bone formation, acts as another LRP6 regulator
by forming a ternary complex with PTH1 receptor (PTH1R) and
LRP6 to facilitate PPPS/TP phosphorylation (Wan et al., 2008).
In addition, several proteins interact with LRP6 and thereby
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FIGURE 1 | Core activation mechanisms of LRP6 via Wnt stimulation. (A) In the absence of Wnt, the scaffold protein Axin together with APC, GSK3, and CK1 form
the β-catenin destruction complex. β-catenin interacts with the complex and is phosphorylated by GSK3 and CK1α (CK1). Phosphorylated β-catenin is ubiquitinated
by SCFβ-Trcp and degraded by the proteasome. Protein levels of β-catenin thus remain low, and β-catenin-dependent transcription of Wnt/β-catenin target genes is
suppressed. (B) Wnt interacts with the FZD and LRP6 receptors. Axin-bound GSK3 and CK1γ phosphorylate PPPS/TP motifs in the intracellular domain of LRP6.
Phosphorylated LRP6 serves as a docking site for Axin, facilitating the interaction between Axin and LRP6 and inhibiting the kinase activity of GSK3. This causes the
dissociation and inactivation of the β-catenin destruction complex, leading to β-catenin stabilization and activation of Wnt/β-catenin target gene transcription.
(C) Treatment of Wnt induces LRP6 aggregates in a DVL-dependent manner. In this condition, FZDs, Axin, and GSK3 can also aggregate with LRP6, generating
LRP6 signalosomes. PIP2 is generated via DVL-bound PIP5K1. PIP2 accelerates the formation of LRP6 signalosomes and phosphorylation of LRP6, resulting in
further activation of Wnt/β-catenin signaling.

enhance its phosphorylation and Wnt/β-catenin signaling by
modulating LRP6 localization or acting as a scaffold for LRP6
and other Wnt components. For instance, the G protein Gβ1γ2
promotes GSK3 localization to the plasma membrane, which
in turn promotes LRP6 phosphorylation (Jernigan et al., 2010).
DVL is well-known for playing a crucial role in signalosome
formation. Ectopic expression of the DVL DIX domain fused
to the LRP6 intracellular domain promotes Wnt/β-catenin
signaling via formation of cytoplasmic signalosomes and
induction of LRP6 phosphorylation, suggesting that stable
LRP6-DVL interactions are essential for the maintenance of
LRP6 phosphorylation (Metcalfe et al., 2010). Interestingly,
transmembrane protein 198 (TMEM198), a previously
uncharacterized seven-transmembrane protein, acts as a
scaffold protein for CK1γ and LRP6 (Liang et al., 2011) and thus
enhances phosphorylation of LRP6 (Figure 2).

Changes in plasma membrane lipid composition can
also affect the phosphorylation of LRP6 and subsequent

Wnt/β-catenin signaling activation. APC membrane recruitment
protein 1 (Amer1) translocates to the plasma membrane in a
PtdIns(4,5)P2-dependent manner, where it recruits Axin, CK1γ,
and GSK3β to promote LRP6 phosphorylation (Tanneberger
et al., 2011). ADP-ribosylation factors 1 and 6 (Arf1/6) switch
to the GTP-bound active form upon Wnt3a treatment, which
facilitates the production of PtdIns(4,5)P2 (PIP2) and subsequent
LRP6 phosphorylation (Kim W. et al., 2013). LY6/PLAUR
domain-containing 6 protein (Lypd6) interacts with LRP6
and induces its localization to lipid rafts (Özhan et al., 2013).
A lipid raft is a specific region in the plasma membrane where
lipid components such as sphingolipid and cholesterol are
enriched and cellular signaling is activated (Sezgin et al., 2017).
Therefore Lypd6 potentiates LRP6 phosphorylation and activates
Wnt/β-catenin signaling (Figure 2).

Next, we review other proteins that influence LRP6
phosphorylation and negatively regulate Wnt/β-catenin
signaling. In contrast to CK1γ, whose phosphorylation of LRP6
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enhances Wnt/β-catenin signaling, CK1ε inhibits Wnt/β-catenin
signaling by interacting with and phosphorylating LRP6
at the S1420 and S1430 residues that are not present in
PPPS/TP motifs (Swiatek et al., 2006; Figure 2). Moreover,
Src and Fer tyrosine kinases phosphorylate LRP6 tyrosine
residues near the PPPS/TP motifs, which leads to reduction
of LRP6 cell surface levels and blockage of signalosome
formation (Chen et al., 2014). It has been shown that several
ligands for LRP6 inhibit its phosphorylation and suppress
Wnt/β-catenin signaling. Wnt5a is mainly involved in non-
canonical Wnt signaling. However, by recruiting Wnt receptors
away from canonical Wnts (e.g., Wnt3a), Wnt5a can inhibit
the phosphorylation of LRP6 and therefore act as a negative
regulator of Wnt/β-catenin signaling (Grumolato et al., 2010;
Sato et al., 2010). Pigment epithelium-derived factor (PEDF)
interacts with the extracellular domain of LRP6, inhibiting
LRP6-FZD interaction and phosphorylation of LRP6 (Park et al.,
2011). Protein interactions in the intracellular region of LRP6
also mediate the inhibition of LRP6 phosphorylation. Merlin,
a main player in the Hippo signaling pathway, interacts with
LRP6 and inhibits its phosphorylation (Kim et al., 2016). Merlin-
induced inhibition of LRP6 phosphorylation is counteracted
by Wnt3a treatment, which, by inducing phosphorylation of
merlin through P21 activated kinase 1 (PAK1), promotes merlin
dissociation from LRP6 (Kim et al., 2016; Figure 2). Overall,
these studies suggest that several proteins, by acting as kinases,
ligands, or binding partners for LRP6, are crucial for regulating
LRP6 phosphorylation and Wnt/β-catenin signaling, either in a
positive or negative manner.

Internalization
Receptor-mediated internalization plays a crucial role in signal
transduction. LRP6 is internalized after binding to ligands,
and internalized LRP6 can either positively or negatively
regulate Wnt/β-catenin signaling. For instance, the secreted
Wnt modulator Dkk1, by forming a ternary complex with the
single transmembrane protein Kremen1/2 and LRP6, internalizes
LRP6 and decreases its plasma membrane levels, leading to
Wnt/β-catenin signaling inhibition (Bafico et al., 2001; Mao B.
et al., 2001; Semënov et al., 2001; Mao et al., 2002; Figure 3A).
Internalization of LRP6 via Dkk1 also leads to decreased LRP6
phosphorylation by CK1γ (Sakane et al., 2010). Angiopoietin-
like 4 protein (ANGPTL4) is another secretory protein that,
by forming a complex with syndecan and LRP6, induces LRP6
internalization and decreases its surface levels (Kirsch et al.,
2017). Similar to ANGPTL4, the secretory protein Bighead
interacts with LRP6 and promotes its endocytosis and lysosomal
degradation, resulting in suppression of Wnt/β-catenin signaling
(Ding et al., 2018). Glycosylation of LRP6 can also influence
its internalization. LRP6 can be fucosylated, a process that
promotes the internalization of lipid raft-localized LRP6. This
process prevents formation of the Wnt-FZD-LRP6 complex
and thus inhibits Wnt/β-catenin signaling (Hong et al., 2020;
Figure 3A). Wnt-activated inhibitory factor 1 protein (Waif1), a
transmembrane protein, interacts with LRP6 and inhibits Wnt3a-
induced LRP6 internalization into endocytic vesicles, thereby

FIGURE 2 | Regulation of LRP6 phosphorylation. Phosphorylation of LRP6
can be regulated by various proteins through distinct mechanisms. PTH
interacts with the extracellular domain of LRP6 and facilitates its
phosphorylation. In contrast, Wnt5a and PEDF interact with the extracellular
domain of LRP6 and inhibit LRP6 phosphorylation. GRK5/6, MAPKs, and
RTKs facilitate phosphorylation of LRP6 in the cytoplasm, and Lypd6
facilitates phosphorylation of LRP6 in the plasma membrane. Src and Fer and
Merlin inhibit phosphorylation of LRP6 in the cytoplasm. Gβ1γ2 and
TMEM198 promote phosphorylation of LRP6 in GSK3 and CK1-dependent
manners, respectively. Arf1/6 facilitates the phosphorylation of LRP6 in a
PIP2-dependent manner.

reducing Wnt/β-catenin signaling (Kagermeier-Schenk et al.,
2011; Figure 3B).

Clathrin, a protein with a prominent role in cellular vesicle
formation, promotes Dkk-mediated LRP6 internalization and
thus acts as a negative regulator Wnt/β-catenin signaling
(Yamamoto et al., 2008). Interestingly, clathrin can also promote
LRP6 internalization in the presence of Wnt. This is because
Wnt3a treatment, by inducing S1579 phosphorylation of LRP6,
enhances LRP6 binding to disabled-2 (Dab2), an interaction that
promotes clathrin-mediated LRP6 internalization (Jiang et al.,
2012). Similar to Dab2, long-term treatment of Wnt3a (6–8 h)
induces phosphorylation of adaptor related protein complex 2
subunit mu 1 (AP2M1) through AP2-associated kinase 1 (AAK1),
and phosphorylated AP2M1 activates clathrin-mediated LRP6
internalization, once again leading to negative regulation of
Wnt/β-catenin signaling (Agajanian et al., 2019). Therefore Dab2
and AAK1 seem to alleviate hyper-activation of Wnt/β-catenin
signaling induced by Wnt stimulation (Figure 3A). Whereas
clathrin is known for having a role in internalization of LRP6
and inhibition of Wnt/β-catenin signaling, it is reported that
clathrin and AP2 act as components of the LRP6 signalosome,
being recruited to the signalosome in a PtdIns(4,5)P2-dependent
manner (Kim I. et al., 2013). In this context, clathrin and
AP2 seem to play a role in cell surface signalosome formation
for activation of Wnt/β-catenin signaling, as well as in LRP6
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FIGURE 3 | Regulation of LRP6 internalization. (A) Interaction between LRP6, DKKs, and Kremen1/2 promotes clathrin-mediated internalization, resulting in
degradation or inhibition of LRP6. ANGPTL4, Bighead, and fucosylation of LRP6 promotes internalization of LRP6 at the extracellular level, thereby inhibiting LRP6
function and Wnt/β-catenin signaling. Dab2 and AAK function at the intracellular level and promote clathrin-mediated internalization of LRP6, resulting in
Wnt/β-catenin signaling suppression. On the other hand, EpCAM inhibits LRP6-DKK-Kremen1/2 complex formation, resulting in Wnt signaling activation.
(B) Interaction among LRP6, FZDs, and Wnt promotes caveolin-mediated internalization, resulting in LRP6 activation and MVB formation. RAB8B, FinA, and TFG
promote Wnt3a-mediated internalization of LRP6 and Wnt/β-catenin signaling at the intracellular level. However, Waif1 compromises Wnt-LRP6 interaction and
inhibits Wnt/β-catenin signaling. APC inhibits Clathrin and AP2-mediated internalization of LRP6 at the intracellular level, resulting in suppression of Wnt/β-catenin
signaling.

internalization. Interestingly, it is reported that APC, a main
component of the β-catenin destruction complex, is also involved
in LRP6 internalization. APC directly interacts with clathrin
and AP2 to inhibit clathrin-induced LRP6 internalization, a
process that generally leads to constitutive ligand-independent
Wnt/β-catenin activation (Saito-Diaz et al., 2018). APC thus
blocks Wnt/β-catenin signaling in two different contexts: in the
cytoplasm, by forming destruction complex, and in the plasma
membrane, by preventing LRP6 internalization (Saito-Diaz et al.,
2018; Figure 3B).

It is well known that several components positively regulate
Wnt/β-catenin signaling by modulating internalization of
LRP6. Epithelial-cell-adhesion molecule (EpCAM) interacts with
Kremen1 and inhibits Kremen1-Dkk2-LRP6 complex formation
and internalization, resulting in activation of Wnt/β-catenin
signaling (Lu et al., 2013; Figure 3A). In the presence of Wnt,
LRP6 together with FZD, Axin, and GSK3β are internalized
in caveolin-enriched vesicles (Yamamoto et al., 2006). GSK3β

is sequestered in complex with LRP6 in multivesicular bodies
(MVBs) and vastly reduces its phosphorylation of β-catenin,
leading to activation of Wnt/β-catenin signaling (Taelman et al.,
2010). There are many components involved in the activation
of Wnt/β-catenin signaling via internalization of LRP6. These
include Rab GTPase RAB8B protein and actin-binding protein
filamin A (FlnA), both of which promote caveolin-mediated
LRP6 internalization (Demir et al., 2013; Lian et al., 2016). Upon
Wnt3a treatment, RAB8B interacts with LRP6 and is recruited to
the signalosome complex, where it enhances caveolin-mediated

internalization of LRP6 and subsequent Wnt/β-catenin signaling
activation (Demir et al., 2013). FlnA interacts with LRP6, and
loss of FlnA impairs internalization of LRP6 and activation of
Wnt/β-catenin signaling, resulting in decreased proliferation of
neural progenitor cells (Lian et al., 2016; Figure 3B). Recently,
LRP6 proximity proteins induced upon short-term Wnt3a
treatment were identified using an LRP6-Apex2 fusion protein
(Colozza et al., 2020). Among them, Trk fused gene protein
(TFG) appears to have an important role in Wnt3a-mediated
LRP6 internalization and activation of Wnt/β-catenin signaling
(Colozza et al., 2020; Figure 3B).

Regulation of LRP6 Maturation and
Stability
Proper folding and maturation are essential for LRP6 to carry
out its functions at the plasma membrane, and there are several
components involved in these processes. Although mature LRP6
is known to be a stable protein (Perrody et al., 2016), its
stability can be altered by extracellular stimuli or regulatory
factors. Mesoderm development LRP chaperone protein (Mesd)
localizes to the endoplasmic reticulum (ER), where it enhances
the maturation and plasma membrane localization of LRP6
(Hsieh et al., 2003; Figure 4). Several proteins are involved
in Mesd-mediated maturation of LRP6. The ER heat shock
protein Grp94 promotes interaction between LRP6 and Mesd,
and Grp94-deficiency suppresses LRP6 maturation (Liu et al.,
2013). The transmembrane glycoprotein CD44 interacts with
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FIGURE 4 | Regulation of LRP6 maturation and stability. The transmembrane
protein LRP6 undergoes several folding and maturation processes to
translocate to the plasma membrane and properly function as a Wnt
co-receptor. Mesd, USP19, GRP94, and GPR37 promote proper folding of
LRP6. Glycosylation and palmitoylation of LRP6 are essential for its
maturation. Mest/Peg1 inhibits glycosylation of LRP6 and immature LRP6 is
mono-ubiquitinated, resulting in ER retention. Folded and mature LRP6
localizes to the plasma membrane, and CD44 promotes membrane
localization of LRP6. ZNRF3 and DVL downregulate LRP6 protein levels, and
USP6 and R-spondins antagonize ZNRF3 function. Extracellular stimuli such
as hypoxia, ER stress, and starvation also degrade LRP6.

LRP6 and promotes Mesd-mediated membrane localization of
LRP6 (Schmitt et al., 2015). The Parkinson’s disease-associated
receptor (GPR37) acts as an additional chaperone for LRP6 and
promotes the maturation and membrane localization of LRP6.
Additionally, GPR37 also inhibits ER-associated degradation
of LRP6 and thereby enhances the protein levels of LRP6
(Berger et al., 2017).

Post-translational modifications (PTMs) have also been found
to be important for regulating LRP6 folding and maturation. By
using an endogenous antibody against LRP6, it has been found
that LRP6 is N-glycosylated, and that N-glycosylation is necessary
for the membrane localization of LRP6 (Khan et al., 2007).
On the other hand, mesoderm-specific transcript/paternally
expressed gene 1 (Mest/Peg1) represses glycosylation and plasma
membrane localization of LRP6 (Jung et al., 2011), resulting in
repression of Wnt/β-catenin signaling. Moreover, palmitoylation
on a juxtamembrane cysteine of LRP6 enables its translocation
from the ER to the plasma membrane (Abrami et al., 2008;

Figure 4). If this process is hindered, mono-ubiquitination on
the K1403 residue of LRP6 is promoted, leading to ER retention
(Abrami et al., 2008). Further studies revealed that LRP6 mono-
ubiquitination can be negatively regulated by the deubiquitinase
USP19. Deubiquitination of LRP6 by USP19 facilitates LRP6
translocation to the plasma membrane through proper folding
and palmitoylation (Perrody et al., 2016).

The R-spondin family members are secreted proteins that
influence LRP6 stability (Wei et al., 2007). R-spondins are high
affinity ligands for the Leucine-rich repeat-containing G-protein
coupled receptors 4/5 (LGR4/5) and the transmembrane E3
ubiquitin ligases ZNRF3/RNF43 (Carmon et al., 2011; Hao
et al., 2012; Koo et al., 2012). In the absence of R-spondins,
ZNRF3/RNF43 ubiquitinate Wnt receptors and promote their
clearance from the plasma membrane. Binding of R-spondins
to LGR4/5 and ZNRF3/RNF43 induces ZNRF3/RNF43
internalization, leading to Wnt receptor stabilization. R-spondins
thus regulate the activity and phosphorylation of LRP6 by
stabilizing it at the plasma membrane (Carmon et al., 2011;
Hao et al., 2012; Koo et al., 2012). Further studies revealed that
DVL recruits ZNRF3 to the plasma membrane and mediates
ZNRF3-dependent downregulation of LRP6 (Jiang et al.,
2015). Consistently, upregulation LRP6 protein levels was
observed in DVL1/2/3 knockout cells, owing to lack of LRP6
plasma membrane clearance by ZNRF3 (Jiang et al., 2015).
Therefore, DVL seems to have dual role in the regulation of
Wnt/β-catenin signaling since it promotes both aggregation and
destabilization of LRP6 at the plasma membrane. Contrary to
ZNRF3, the deubiquitinase USP6 increases LRP6 membrane
levels and potentiates Wnt/β-catenin signaling by antagonizing
the function of ZNRF3 (Madan et al., 2016).

Cellular stress can influence LRP6 stability. Chemically
induced ER stress or hypoxia reduces the stability of LRP6,
resulting in inhibition of Wnt/β-catenin signaling (Xia et al.,
2019). Moreover, O-GlcNAcylation, a PTM that induces the
attachment of N-acetylglucosamine (GlcNAc) to Ser/Thr
residues, also plays a crucial role in LRP6 stability. During
serum starvation, O-GlcNAcylation of LRP6 is reduced, which is
followed by lysosomal degradation of LRP6 (Jeong et al., 2020;
Figure 4).

β-CATENIN-INDEPENDENT SIGNALING
VIA ACTIVATION OF LRP6

It is generally assumed that the primary output of LRP6 activity
is directly associated with alterations in Wnt/β-catenin signaling.
However, several studies have revealed that LRP6 affects not
only Wnt/β-catenin signaling, but other signaling pathways
as well. These include non-canonical Wnt signaling, Wnt-
dependent stabilization of proteins (Wnt/STOP) signaling, G
protein-coupled receptor (GPCR) and Hippo signaling.

The interaction of GPCR ligands with their associated
receptors initiates GPCR signaling via activation of the G protein
Gα, which mediates the activity of downstream effector proteins.
LRP6 interacts with and promotes membrane localization of the
G protein Gαs (Wan et al., 2011). Moreover, in the presence
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FIGURE 5 | Role of LRP6 as a regulator of other signaling. (A) LRP6 as a regulator of GPCR signaling. In the basal state, LRP6 interacts with G protein Gαs. In the
presence of the GPCR ligand PTH, a LRP6-PTH-PTH1R ternary complex is formed, which promotes aggregation of LRP6 and membrane localization of Gαs.
Production of cAMP is also upregulated in a Gαs-AC-dependent manner. cAMP activates PKA, which promotes phosphorylation of LRP6 and CREB, two
well-known downstream targets of PKA. (B) LRP6 as a regulator of non-canonical Wnt signaling. Wnt5a interacts with ROR1/2 and FZD, resulting in activation of
Rac, a non-canonical Wnt signaling target. Wnt5a can also interact with LRP6. In these conditions, the binding affinity of ROR1/2 and FZD to Wnt5a is reduced. As a
result, Rac becomes inactive and non-canonical Wnt signaling is inhibited. Because LRP6-Wnt5a binding weakens LRP6-Wnt3a interaction, Wnt/β-catenin signaling
is also inhibited. (C) LRP6 as a regulator of Hippo signaling. In a nutrient rich state, LRP6 is O-GlcNAcylated and interacts with Merlin. In this condition, activity of
LATS1/2 is maintained at low levels, resulting in stabilization and activation of YAP. In nutrient starvation conditions, O-GlcNAcylation and protein levels of LRP6 are
both downregulated, and Merlin changes its binding partner from LRP6 to LATS1/2, resulting in activation of LATS1/2. YAP is phosphorylated by LATS1/2 and
becomes inactive. (D) LRP6 as a regulator of Wnt/STOP signaling. In G1/S phase, cyclin Y protein levels are less abundant and the phosphorylation state of LRP6 is
low, resulting in higher GSK3 activity. GSK3-target proteins are thus phosphorylated and targeted for proteasomal degradation. In G2/M phase, cyclin Y protein
levels peak and promote LRP6 phosphorylation, resulting in inactivation of GSK3 and stabilization of GSK3-target proteins.

of GPCR ligands such as PTH, LRP6 stimulates the production
of cyclic AMP (cAMP) via Gαs, and newly generated cAMP
activates protein kinase a (PKA). Previous reports have shown
that PTH facilitates LRP6 phosphorylation and activation of
Wnt/β-catenin signaling in osteoblasts (Wan et al., 2008),
suggesting that LRP6 is involved in both, Wnt/β-catenin and
GPCR signaling, in the context of bone formation (Wan et al.,
2011; Figure 5A).

The extracellular region of LRP6 interacts with Wnt5a, and
this interaction inhibits activation of Rac1, a target protein of
non-canonical Wnt signaling (Bryja et al., 2009). In addition,
Wnt5a treatment interferes with the interaction between Wnt3a
and LRP6, resulting in not only inhibition of Wnt/β-catenin

signaling, but activation of non-canonical Wnt signaling as well
(Bryja et al., 2009; Grumolato et al., 2010; Figure 5B).

Hippo signaling is a crucial regulator of organ size and
cellular homeostasis (Pan, 2010). Activation of Hippo
signaling leads to serial phosphorylation and activation
of STE20-like serine/threonine kinases 1/2 (MST1/2) and
Large Tumor Suppressor 1/2 (LATS1/2). Activated LATS1/2
phosphorylates Yes-associated protein (YAP) and WW
domain containing transcription regulator protein 1 (TAZ).
As a result, phosphorylated YAP and TAZ undergo 14-3-3-
mediated cytoplasmic retention or proteasomal degradation, a
process which blocks their transcriptional activity and thereby
inhibits cell proliferation and survival (Meng et al., 2016).
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It has been revealed that LRP6 is involved in the regulation
of Hippo signaling. YAP/TAZ are incorporated into the
β-catenin destruction complex, and treatment with Wnt3a or
overexpression of LRP6 stabilizes the protein levels of YAP/TAZ
in a similar fashion to β-catenin, leading to increased YAP/TAZ
transcriptional activity (Azzolin et al., 2014). Another study
revealed that loss of LRP6 via serum starvation promotes
the dissociation of Merlin from LRP6, which activates Hippo
signaling by facilitating Merlin-LATS interaction. As a result,
loss of LRP6 enables phosphorylation of YAP, inhibiting its
transcriptional activity (Jeong et al., 2020; Figure 5C).

Recent studies have shown that LRP6 phosphorylation peaks
during the G2/M phase of the cell cycle and that this peak
is dependent on cyclin Y and its cyclin dependent kinase
14 (CDK14). Originally, identified via kinome-wide RNAi
screening in Drosophila cells, the cyclin Y-CDK14 complex
phosphorylates the PPPS/TP S1490 residue of LRP6 (Davidson
et al., 2009). Cyclin Y protein levels peak during G2/M, which
explains the cell cycle dependence of LRP6 phosphorylation
(Davidson et al., 2009). Mechanistically, G2/M phosphorylation
of LRP6 by cyclin Y-CDK14 primes LRP6 for incoming Wnts,
which in turn suppresses the activity of GSK3 and prevents
GSK3 target proteins from proteasomal degradation (Taelman
et al., 2010; Figure 2). Suppression of GSK3 during G2/M
thus leads to an overall increase in protein stabilization,
ensuring proper cell division and growth (Acebron et al.,
2014). Importantly, this new Wnt sub-branch, also known
as Wnt/STOP pathway, is completely dependent on LRP6
(Acebron et al., 2014; Acebron and Niehrs, 2016). Another
player in the Wnt/STOP pathway is Caprin-2, which acts as
a scaffold for LRP6 and cyclin Y and thereby promotes LRP6
phosphorylation during G2/M (Wang et al., 2016). Moreover,
B-cell CLL/lymphoma 9 protein (BCL9) is phosphorylated at
the T172 residue by cyclin dependent kinase 1 (CDK1), and
phosphorylated BCL9 inhibits LRP6 degradation thereby acting
as a positive regulator of Wnt/STOP signaling (Chen et al.,
2018). These data suggest that LRP6 phosphorylation-mediated
Wnt signaling can be transduced in a β-catenin-independent
manner (Figure 5D).

LRP6 DYSREGULATION AND DISEASE

Cancer
Dysregulation of Wnt/β-catenin signaling is highly associated
with cancer, and mutations in AXIN, APC, and β-catenin often
lead to increased cancer formation and metastasis (Bugter et al.,
2021). Similarly, dysregulation of LRP6 is also involved in
cancer. LRP6 is highly expressed in several cancer cell lines and
overexpression of LRP6 promotes cancer cell proliferation (Li
et al., 2004). More specifically, LRP6 is a well-known regulator
of breast cancer: LRP6 expression is frequently upregulated in
breast cancer tissue, and respective overexpression or knockdown
of LRP6 induces or inhibits breast tumorigenesis (Li et al.,
2004; Lindvall et al., 2009; Liu et al., 2010; Zhang et al., 2010).
The role of LRP6 in breast cancer tumorigenesis is highly
dependent on Wnt/β-catenin signaling. If antibodies that block

LRP6-Wnt1 or LRP6-Wnt3a interactions are administered in
mice, Wnt/β-catenin signaling is blocked and breast tumor
growth is suppressed (Ettenberg et al., 2010). In breast cancer
tissue, high expression of the Sry-related HMG box 9 protein
(SOX9) activates Wnt/β-catenin signaling by inducing LRP6
expression (Wang et al., 2013). LRP6 also plays a role in
breast cancer metastasis. N-myc downstream regulated gene-1
protein (NDRG1) interacts with LRP6 and suppresses LRP6-
mediated Wnt signaling activation, resulting in inhibition of
breast cancer metastasis (Liu et al., 2012). Contrastingly, in
the absence of Wnt3a, LRP6 inhibits FZD8-mediated non-
canonical Wnt signaling by interacting with the extracellular
domain of FZD8 (Ren et al., 2015). As a result, breast tumor
metastasis, which is usually promoted by non-canonical Wnt
signaling, is inhibited through the extracellular domain of LRP6
(Ren et al., 2015). Therefore, LRP6 seems to play a dual
role in breast tumor metastasis that depends on the presence
or absence of Wnt.

Another cancer with which LRP6 is highly correlated is
liver cancer. LRP6 is highly expressed in tumors of liver
cancer patients, and overexpression of LRP6 promotes liver
cancer cell proliferation and tumor growth (Tung et al., 2012).
Several components are involved in liver cancer progression via
regulation of LRP6. For example, expression of stearoyl-CoA
desaturase (SCD) is increased in liver tumors, where it promotes
the production of monounsaturated fatty acids (MUFA) (Lai
et al., 2017). MUFA induces expression of LRP6 and activation
of Wnt/β-catenin signaling, which then activates expression of
SCD, functioning as a positive feedback loop (Lai et al., 2017).
Connective tissue growth factor (CTGF) is highly expressed in
liver cancer patients, and CTGF promotes phosphorylation of
LRP6 (Jia et al., 2017). Finally, expression of long non-coding
RNA DLGAP1-AS1 is increased in liver cancer tissue, where it
inhibits miR-26a/b-5p, a negative regulator of LRP6 expression
(Lin et al., 2020).

In colorectal cancer, elevated activity of LRP6 has been
reported. LRP6 phosphorylation was also found to be enhanced
in colorectal cancer tissue from patients (Lemieux et al.,
2015). In colorectal cancer cells, gain of function mutations in
KRAS increase LRP6 phosphorylation, resulting in activation
of Wnt/β-catenin signaling (Lemieux et al., 2015). CD110
receptor-expressing colorectal cancer tumor-initiating cells
(TICs) are activated via thrombopoietin in blood vessels. In
TICs, production of acetyl-CoA is promoted via degradation
of lysine, and the LRP6 K802 residue is acetylated (Wu et al.,
2015). Acetylation of LRP6 leads to its phosphorylation in a
CK1γ-dependent manner, leading to activation of Wnt/β-catenin
signaling. As a result, self-renewal and metastasis of colorectal
cancer TICs are enhanced (Wu et al., 2015). V-set and
transmembrane domain containing 2A (VSTM2A) is a secretory
protein that is lowly expressed in colorectal cancer tissue (Dong
et al., 2019). VSTM2A interacts with the extracellular domain
of LRP6 and inhibits LRP6 phosphorylation, thereby inducing
its lysosomal degradation, and suppressing colorectal cancer
progression (Dong et al., 2019).

In addition to breast, liver, and colorectal cancer, the role of
LRP6 in other cancers has been studied. In prostate cancer, high
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expression levels of caveolin-1 and LRP6 are detected, and these
two proteins activate Wnt/β-catenin signaling and glycolysis
through Akt signaling. The end result is increased prostate
cancer cell proliferation (Tahir et al., 2013). Through mass
spectrometry-based proteomic analyses of mass spectrometry
data, it was identified that LRP6 expression is high in oral
squamous cell carcinoma (OSCC) (Yuan et al., 2017). In addition,
LRP6 increases the protein levels of fibroblast growth factor
8 (FGF8), which can act as an oncogene and promote OSCC
progression (Yuan et al., 2017). LRP6 is also involved in
regulating the activity of cancer-associated fibroblasts (CAFs).
In the stroma of breast, colon, and ovarian cancers, Dkk3
expression and internalization with Kremen1/2 are enhanced,
resulting in upregulation of LRP6 protein levels (Ferrari
et al., 2019). Finally, LRP6 stabilizes not only β-catenin,
but also YAP/TAZ. Stabilized YAP/TAZ enters the nucleus
where it enhances tumorigenic activity in various cancer types
(Ferrari et al., 2019).

Neurodegeneration
Cognitive and behavioral disorders caused by functional neuron
failure and neuronal death are referred to as neurodegeneration.
Representative examples include Alzheimer’s, Parkinson’s,
and Huntington’s diseases. The causes of neurodegeneration
include genetic mutations, protein aggregation, mitochondrial
dysfunction, etc. However, the molecular mechanisms underlying
neurodegeneration still require further elucidation (Gan et al.,
2018). The relationship between Wnt signaling dysregulation
and neurodegeneration has been reported, and several studies
have shown that mutations in LRP6 are associated with
neurodegeneration.

Through genome-wide screening, it was identified that a
single nucleotide polymorphism (SNP) in the 1062 residue of
LRP6, which converts isoleucine to valine (hereafter referred to
as Ile1062Val), leads to reduced Wnt/β-catenin signaling and
is implicated in Alzheimer’s disease (De Ferrari et al., 2007).
In addition, it was also shown that an isoform that skips
the third exon of LRP6 and displays reduced Wnt/β-catenin
signaling activation is significantly augmented in the brains of
patients with Alzheimer’s disease (Alarcón et al., 2013). When
LRP6 is specifically deleted in the forebrain, synapse formation
is suppressed while amyloid-β accumulation and neuronal
apoptosis are promoted, altogether resulting in aggravation of
Alzheimer’s disease symptoms (Liu et al., 2014). Consistently,
in Alzheimer’s disease patients, DKK1 is highly expressed and
causes suppression of LRP6-amyloid precursor protein (APP)-
mediated Wnt/β-catenin signaling, which results in accumulation
of amyloid-β and synapse loss (Elliott et al., 2018). These data
suggest that dysregulation of LRP6 function in the brain leads
to suppression of Wnt/β-catenin signaling and exacerbation
of Alzheimer’s disease symptoms. A positive role of LRP6
for neuronal activity has also been reported. Through genetic
screening, LRP6 was found to localize to excitatory synapses
of mature neurons and promote synaptogenesis (Sharma et al.,
2013), and Wnt3a and Wnt8 have been shown to cooperate with
LRP6 in this process (Avila et al., 2010; Sharma et al., 2013).
Moreover, APP, also known as precursor of amyloid-β, interacts

with LRP6 and activates Wnt/β-catenin signaling, leading to
enhanced synaptic stability (Elliott et al., 2018).

It is well-known that mutations in PARK8 are implicated in
Parkinson’s disease (Kumari and Tan, 2009). LRRK2, a product of
PARK8 gene, interacts with LRP6 and acts as a scaffold between
LRP6 and the β-catenin destruction complex (Berwick and
Harvey, 2012). Pathogenic mutations in LRRK2 lead to reduced
interaction with LRP6, suppressing Wnt/β-catenin signaling
(Berwick and Harvey, 2012).

LRP6 also plays a protective role in brain ischemic injury (Abe
et al., 2013). Compared to wild-type mice, more areas of the brain
are damaged through ischemic injury in LRP6+/− mice. GSK3β

activity and expression of inflammatory marker genes are also
increased in the brains of LRP6+/− mice (Abe et al., 2013).

Metabolic Syndrome
Metabolic syndrome is characterized by abnormal levels of
metabolites (e.g., sugars and lipids) in the body and is highly
associated with cardiovascular disease and diabetes. Risk factors
for metabolic syndrome are diet, low physical activity, aging, and
genetics (Rochlani et al., 2017). The relationship between LRP6
dysfunction and metabolic syndrome has been widely studied.

It is well known that dysregulation of LRP6 is highly associated
with coronary artery disease (CAD) and atherosclerosis. Through
genome-wide analysis of CAD patients, R473Q, R360H, N433S,
and R611C residue mutations in LRP6 were found to be
correlated with CAD pathogenesis, as determined by high
glucose, lipid, and low-density lipoprotein (LDL) levels in blood
vessels (Mani et al., 2007; Singh et al., 2013b). In addition,
the LRP6 R611C mutation, which does not effectively activate
Wnt/β-catenin signaling compared to wild-type LRP6, leads to
low LDL uptake and clearance. Taken together, these data suggest
that LRP6 is a critical modulator of receptor-mediated LDL
endocytosis (Mani et al., 2007; Liu et al., 2008; Ye et al., 2012).

Abnormal proliferation of vascular smooth muscle cells
(VSMC) via activation of PDGF signaling is a well-known
cause of atherosclerosis (Raines, 2004). Wild-type LRP6 interacts
with PDGF receptor-β and causes its lysosomal degradation, a
function that is impaired in the LRP6 R611C form (Keramati
et al., 2011). As a result, VSMC proliferation through PDGF
signaling is increased in Lrp6R611C/R611C mutants (Keramati
et al., 2011). Moreover, VSMCs from Lrp6R611C/R611C mice
exhibit suppressed Wnt/β-catenin signaling but increased non-
canonical Wnt signaling, a shift that results in the activation of
PDGF signaling via SP1 (Srivastava et al., 2015). Consequently,
VSMCs are maintained in an undifferentiated form in the arterial
wall, further increasing their proliferation and causing them to
migrate at accelerated rates (Srivastava et al., 2015). In summary,
impairment of LRP6 activity is highly correlated with CAD
through PDGF signaling. Finally, the miRNA-17∼92 cluster
targets LRP6 and downregulates Wnt/β-catenin signaling, and
deficiency of miRNA-17∼92 in endothelial cells improves blood
flow and arteriogenesis (Landskroner-Eiger et al., 2015).

The LRP6 R611C mutant form is also associated with altered
insulin signaling. R611C mutation of LRP6 in skeletal muscle
suppresses TCF7L2-dependent transcription of the insulin
receptor (IR) and reduces its protein levels. This results in low
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insulin sensitivity and high glucose level in blood vessels, both of
which contribute to type II diabetes (Singh et al., 2013a).

Additionally, Lrp6R611C/R611C mice maintain a high level
of LDL and lipids in the plasma, which induces fatty liver
(Go et al., 2014). In Lrp6R611C/R611C mutant hepatocytes,
IGF/Akt/mTORC1/2 signaling and lipid synthesis are
activated, and treatment with the mTOR inhibitor rapamycin
or recombinant Wnt3a rescue these pathogenic effects
(Go et al., 2014).

Cardiac-specific knockout of LRP6 activates dynamin-
related protein 1 (Drp1) in heart tissue and reduces carnitine
palmitoyltransferase 1b (CPT1b) (Wang et al., 2020).
Since CPT1b is an enzyme involved in lipid oxidation,
downregulation of CPT1b levels due to LRP6 deficiency
causes lipid accumulation in heart tissue and reduces left
ventricular ejection fraction (LVEF), altogether leading to
cardiac dysfunction (Wang et al., 2020).

Inflammation
Organ homeostasis is maintained through the coordinated action
of inflammatory cytokines with host defense function, and
dysregulation of inflammatory cytokines is implicated in immune
disease or cancer (Greten and Grivennikov, 2019). Moreover,
inflammatory cytokines can regulate Wnt/LRP6 signaling. For
instance, long exposure to pro-inflammatory cytokine interferon-
γ or TNF-α induces Dkk1 expression and inhibits Wnt/β-catenin
signaling, leading to increased intestinal inflammation (Nava
et al., 2010). Ileal Crohn’s disease (CD) is a disease that causes
pain, diarrhea, and malnutrition due to chronic inflammation
in the intestine (Koslowski et al., 2012). Genome-wide analysis
from CD patients revealed an association between the Ile1062Val
LRP6 SNP with early disease onset. Lower levels of LRP6 mRNA
were also detected in these patient samples (Koslowski et al.,
2012). Dendritic cell (DC)-specific knockout of LRP5/6 promotes
differentiation of effector T cells and represses regulatory T
cell differentiation, resulting in enhanced anti-tumor immunity
and inhibition of tumor growth, both of which show that fine
regulation of LRP6 is essential for proper immune responses
(Hong et al., 2016).

Skeletal Disease
Bone mass formation and maintenance is regulated by the
activity of osteoblasts, which form bone, and osteoclasts, which
degrade bone. Dysregulation of bone mass leads to osteoporosis
or sclerosteosis, diseases that are heavily influenced by genetic
factors (Regard et al., 2012). For instance, LRP5 mutations
generally lead to decreased bone mass and osteoporosis due
to reduced Wnt/β-catenin signaling (Gong et al., 2001). One
exception is the G171V mutation in LRP5, which increases
rather than decreases bone mass (Babij et al., 2003). LRP6 is
a paralog of LRP5, and studies on the association between
LRP6 and bone homeostasis have also been performed. For
example, heterozygous deficiency of LRP6 in mice leads to
a reduction in bone mineral density (BMD) (Holmen et al.,
2004). Moreover, combination of LRP6 heterozygous deficiency
with LRP5 homozygous deficiency, leads to a greater reduction
in BMD compared to LRP5 homozygous deficiency alone

(Holmen et al., 2004). Tissue-specific ablation of LRP5 and LRP6
in the mesenchyme, which is the precursor of skeletal tissue, leads
to embryonic skeletal defects, similar to the phenotype seen upon
mesenchyme-specific deletion of β-catenin (Joeng et al., 2011).

Several proteins that bind to LRP6 regulate bone formation
via modulation of Wnt/β-catenin signaling. It is well-known
that loss-of-functions mutation in sclerostin (expressed by the
SOST gene) cause sclerosteosis (Balemans et al., 2001). Sclerostin
inhibits Wnt/β-catenin signaling by binding to LRP6 and
disrupting FZD-LRP6 interaction (Li et al., 2005; Semënov et al.,
2005). Biglycan, a type of proteoglycan, activates Wnt/β-catenin
signaling by maintaining the interaction between Wnt3a and
LRP6, and deficiency of biglycan compromises bone formation
(Berendsen et al., 2011).

Parathyroid hormone interacts with PTH1R to promote
LRP6 phosphorylation and activate Wnt/β-catenin signaling
in osteoblasts, leading to increased bone formation (Wan
et al., 2008). Osteoblast-specific knockout of LRP6 reduces
the expression of osteoblast differentiation-related genes and
suppresses bone formation, even in the presence of PTH (Li et al.,
2013, 2016).

Oxidized phospholipids bind to LRP6 and reduce LRP6
plasma membrane levels via clathrin-dependent endocytosis
(Wang et al., 2018). As a result, phosphorylation of LRP6
and Wnt/β-catenin signaling are reduced, inhibiting osteoblast
differentiation (Wang et al., 2018). It has also been shown that
oxidized phospholipid levels are high in patients suffering from
hyperlipidemia, suggesting that LRP6 may have an important
role in the occurrence of osteoporosis via hyperlipidemia
(Wang et al., 2018).

PERSPECTIVES (CLOSING REMARKS)

It has been more than 20 years since LRP6 was discovered as a
co-receptor for Wnt/β-catenin signaling. Most studies focusing
on the mechanisms underlying LRP6-mediated Wnt/β-catenin
signaling have concentrated on phosphorylation events in
the intracellular domain of LRP6. However, recent reports
have determined that additional PTMs such as ubiquitination,
acetylation, and O-GlcNAcylation are also essential for regulating
LRP6 activity. Moreover, LRP6 is involved in multiple signaling
cascades apart from Wnt/β-catenin. These include, but are
not limited to, non-canonical Wnt signaling, GPCR signaling,
cell cycle-related signaling, and Hippo signaling (Figure 5).
Until now, the occurrence of disease via dysregulation of LRP6
has been primarily linked to aberrant Wnt/β-catenin signaling.
However, we suggest that future studies focusing on LRP6
and disease should also investigate the involvement of other
signaling pathways. Moreover, since single point mutations in
LRP6 are linked to multiple diseases, it would be worthwhile
to analyze the cross-talk between these diseases, and to more
thoroughly decipher their connections to LRP6. Considering the
complex mechanisms surrounding the regulation and activation
of LRP6, as well as its important role in disease occurrence,
LRP6 is thus expected to be an attractive therapeutic target
in future studies.
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