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Abstract

The HIV-1 matrix protein p17 is a structural protein that can act in the extracellular environment to deregulate several
functions of immune cells, through the interaction of its NH,-terminal region with a cellular surface receptor (p17R). The
intracellular events triggered by p17/p17R interaction have been not completely characterized yet. In this study we analyze
the signal transduction pathways induced by p17/p17R interaction and show that in Raji cells, a human B cell line stably
expressing p17R on its surface, p17 induces a transient activation of the transcriptional factor AP-1. Moreover, it was found
to upregulate pERK1/2 and downregulate pAkt, which are the major intracellular signalling components involved in AP-1
activation. These effects are mediated by the COOH-terminal region of p17, which displays the capability of keeping PTEN, a
phosphatase that regulates the PI3K/Akt pathway, in an active state through the serin/threonin (Ser/Thr) kinase ROCK.
Indeed, the COOH-terminal truncated form of p17 (p17A36) induced activation of the PI3K/Akt pathway by maintaining
PTEN in an inactive phosphorylated form. Interestingly, we show that among different p17s, a variant derived from a
Ugandan HIV-1 strain, named S75X, triggers an activation of PI3K/Akt signalling pathway, and leads to an increased B cell
proliferation and malignant transformation. In summary, this study shows the role of the COOH-terminal region in
modulating the p17 signalling pathways so highlighting the complexity of p17 binding to and signalling through its
receptor(s). Moreover, it provides the first evidence on the presence of a p17 natural variant mimicking the p17A36-induced
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signalling in B cells and displaying the capacity of promoting B cell growth and tumorigenesis.
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Introduction

The three-dimensional structure of HIV-1 matrix protein p17, a
132 amino acid (aa) structural protein, has been determined by
nuclear magnetic resonance and X-ray crystallography. Individual
folded p17 molecules result composed of five major o-helixes and a
highly basic platform consisting of three B strands [1,2]. This
partially globular protein presents four helixes centrally organized
to form a compact globular domain capped by the B-sheet. Basic
residues exposed from the B strands, generally conserved among
different HIV-1 strains, are implicated in cell membrane binding
[1]. The fifth helix (H5) in the COOH-terminus of the protein,
projects away from the packed bundle of helixes to expose
COOH-terminal residues essential for early steps during the HIV-
1 infectious cycle. The most distinguishing feature when
comparing X-ray and NMR solved conformation of pl7 is the
folding of H5 and results obtained from Verli et al. [3] suggest that
the biological form of this protein may have its COOH-terminal
portion partially unfolded.

Converging evidences suggest that p17 is generated along all the
virus life cycle and plays a critical role in viral replication [4,5,6,7].
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In vitro experiments have shown that pl7 is released by infected
cells into the extracellular space [8] and this may occur via
alternative secretion pathways [9,10] or exocytotic pathways [11].
However, the release of pl7 in the HIV-infected microenviron-
ment through mechanisms of virus disintegration or lysis of
infected cells cannot be ruled out. P17 is detected at nanomolar
concentrations in the plasma of HIV-I-seropositive individuals
[12] and in several anatomical compartments such as lymph nodes
[13] and brain [14] of patients naive for or successfully treated
with highly active anti-retroviral therapy (HAART). Recent
reports have also shown that HIV-1 transcription is efficiently
induced by different stimuli [15] even in the presence of protease
inhibitors [16], providing the evidence that pl7 is continuously
synthesized and released even under HAART.

Besides its well established role in the virus life cycle, increasing
evidences suggest a role for exogenous pl7 in deregulating the
biological activity of different immune cells, which may be relevant
in the context of viral pathogenesis. Indeed, pl7 is able of
influencing the activation, the differentiation status and the
proliferative capacity of different target immune cells as T cells
[17,18], NK cells [19], monocytes [20] and plasmacytoid dendritic
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cells [12]. Functional activities of p17 depend on the expression of
a specific receptor for pl7 (pl7R) on the surface of different
immune cells and on the activation of specific signalling pathways
triggered by interaction between the NHy-terminal region of p17
and p17R [18]. In particular, experiments performed on primary
human monocytes have shown that pl7 selectively activates the
transcriptional factor AP-1 and triggers these cells to produce
monocyte chemotactic protein-1 (MCP-1) [20].

The viral protein shows tendency to oligomerize, forming
trimers of different crystal forms [21]. However, this occurs just at
high millimolar concentration, as in the intracellular compart-
ment, during viral assembly in the proximity of cell surface. At
nanomolar concentration, as in the blood of HIV-1-infected
individuals [12], the p17 is present in monomeric form [21]. In
this study, we investigate the biological activity of monomeric pl7
protein derived from the HIV-1 BH10 (clade B) on Raji cells, a
human B cell line stably expressing p17R on cell surface. Here we
demonstrate that in these cells p17 transiently activates the cellular
transcriptional factor AP-1 by downregulating the Akt pathway,
through activation of PTEN (phosphatase and tensin homolog
deleted on chromosome 10), a phosphatase which antagonizes
PI3K activity. Activation of PTEN was found to be triggered by
the Ser/Thr kinase ROCK, a downstream effector of RhoA,
already known to control PTEN activity [22,23,24]. All these
effects were found to be mediated by the H5 in the p17 COOH-
terminus, and by the cooperation of at least two distinct functional
epitopes on the viral protein. Activation of PI'EN and inhibition of
Akt are important events in regulating cell cycle progression and
proliferation [25] and are responsible for the antiproliferative
effect exerted by p17 on B cells. On the contrary, a p17 variant
derived from a Ugandan HIV-1 strain, named S75X, was found to
trigger opposite signalling pathways, which induce B cell growth
and malignant transformation. This finding suggests that pl7
derived from divergent HIV-1 strains may exert a distinct
biological activity on B cells and possess a different pathogenetic
potential.

Results

HIV-1 p17 oligomerization in solution is dependent on
ionic strength

In order to simulate the conditions present in biological fluids
and analyze pl7 biological activity after binding to pl7R, we
investigated the conditions to maintain purified recombinant p17
preparations in a monomeric form. To this aim we performed gel-
filtration experiments to evaluate if osmolarity of the solution
could influence the p17 aggregation status. As shown in Figure 1A,
the increase of ionic strength resulted in a drastic reduction of p17
oligomerization, with pl7 in a monomeric form already at 0.6 M
NaCl (upper panel). The retention volume of the p17 monomer is
equal to 8.25 ml, according to that of myoglobin contained in the
standard for calibration, which has a molecular weight of 17,000
Daltons. Lowering the ionic strength of the solution by dialysis
against PBS (0.13 M), we observed a gradual process of pl7
oligomers formation, with a volume of retention in gel-filtration of
5.36 ml (lower panel). Stability of these pl7 oligomeric forms is
extremely high since they are stable and detectable by Western
blot under denaturating conditions. This finding allowed us to
study the development of the pl7 oligomerization process in
solution under different NaCl concentrations (0.5, 0.2 and 0.1 M)
by western blot and to establish the molecular weight of the
resulting oligomers. Western blot analysis, performed using the
monoclonal antibody (mAb) MBS-3 which recognizes the
functional epitope AT20 (aa 9-28) in the pl7 NHy-terminal
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Figure 1. HIV-1 p17 oligomerization in solution depends on
ionic strength. (A) Analysis of p17 by gel-filtration under different
NaCl concentration. P17 is present in monomeric form from 0.5 to 1 M
of NaCl with retention volume of the p17 monomer equal to 8.25 ml
(upper panel). Lowering the ionic strength of the solution by dialysis
against PBS (0.13 M), we observed a gradual process of p17 oligomers
formation, with a volume of retention in gel-filtration of 5.36 ml (lower
panel). The panels are representative of four independent experiments
with similar results. (B) Western blot analysis of p17 under different NaCl
concentration (0.5, 0.2 and 0.1 M). In western blot analysis both
monomeric and trimeric p17 are recognized by mAb MBS-3. The
detection of an approximately 40.000 Dalton band (trimeric p17)
increases with the decreasing of NaCl concentration (lane A: p17 in NaCl
0.5 M; lane B: p17 in NaCl 0.2 M; lane C: p17 in NaCl 0.1 M), while p17 is
mostly in a monomeric form in a solution containing 0.5 M NaCl. The
blot is representative of four different experiments with similar results.
(C) Solid-phase ELISA to evaluate p17 oligomers formation under
different saline concentration. The p17 polymers formation evaluated as
binding of GST-p17 to p17, detected by mAb anti-GST, decreased by
increasing NaCl concentration in the solution. Bars represent the mean
+ SD of triplicate samples. These results are representative of four
independent experiments with similar results.
doi:10.1371/journal.pone.0017831.g001

region [18,26], revealed that both monomeric and trimeric p17
are recognized by this mAb (Figure 1B). Under reducing
conditions, pl7 is mostly in monomeric form in a solution
containing 0.5 M NaCl (lane a), whereas it is detected as an
approximately 40.000 Daltons band in solutions containing lower
NaCl concentrations, 1.e., 0.2 M (lane b) and 0.1 M (lane c). A

March 2011 | Volume 6 | Issue 3 | e17831



further confirmation of the dependence of pl7 aggregation status
by the ionic strength was obtained by ELISA, allowing the binding
of GST-pl7 to pl7 as antigen on the solid-phase under different
NaCl concentrations. As shown in Figure 1C, binding of GST-p17
— but not GST alone — to pl7, as detected by an anti-GST mAb,
increased concomitantly to the decreased NaCl concentration in
the solution.

Monomeric and trimeric p17 bind to p17R and show
similar biological activity

We performed binding studies of monomeric and trimeric p17
expressed on Raji by flow cytometry. Binding of p17 to Raji cells
was detectable at doses of proteins as low as 50 ng/ml (Figure 2A).
However, saturation of pl7Rs on Raji cells, evidenced by flow
cytometry as the maximum increase in mean fluorescence
intensity, was achieved with both monomeric and trimeric p17
at a dose ranging from 200 to 400 ng/ml (Figure 2A). Binding
studies of monomeric and trimeric pl7 to pl7Rs expressed on
human primary B cells confirmed the same results obtained with
Raji cells (Figure 2B). No binding of monomeric and trimeric p17
to H9 cells, a human lymphoblastoid cell line lacking p17R, was
observed at any dose tested (Figure 2C).

It is known that p1l7-treated human monocytes release MCP-1
in cell culture supernatant [20]. To assess whether monomeric and
trimeric pl7 preparations were able to induce MCP-1 production
in human monocyte cultures, purified cells were grown in the
presence or in the absence of the above p17 forms (1 pg/ml). GST
was used in this experiment as negative control protein.
Supernatants were collected at 48 h after stimulation and screened
by ELISA for the quantification of MCP-1. Both monomeric and
trimeric pl7 preparations were able to induce similar peaks of
MCP-1 production. Unstimulated cells — as well as GST-
stimulated cells — released approximately 50 pg/ml of MCP-1
whereas a significant increase in the chemokine release was
triggered by stimulation of cells with either monomeric
(980 pg=193) or trimeric (996 pg*=185) pl7 preparations
(Figure 2D). Statistical analysis of data showed no difference
between MCP-1 production induced by monomeric and trimeric
pl7 preparations. This finding attests for the capability of p17 to
exert biological activity independently of its aggregation status.

The COOH-terminal region of p17 is not directly involved
in p17R binding

To assess whether different epitopes play a role in the
interaction of pl7 with its cell receptor, we took advantage of a
set of anti-pl7 mAbs developed in our laboratory. As expected,
pl7 binding to Raji cells (Figure 3A) was completely blocked by
mAb MBS-3 (Figure 3B), which recognizes a linear epitope (aa 9—
18) within the BH10-derived AT20 functional epitope [18,26].
Other anti-pl7 mAbs, and among them one named MK-1 [18],
didn’t show any neutralizing activity (data not shown). Surpris-
ingly, mAb MK-18 showed a strong neutralizing activity
(Figure 3C) despite its inability to recognize the AT20 peptide
by solid-phase ELISA (data not shown). To identify the pl7
functional region recognized by mAb MK-18 epitope mapping
was performed with a series of decapeptides that completely
spanned the pl7 protein. The solid-phase peptides were
individually screened for reactivity to mAb MK-18. Data obtained
showed that the MK-18 binding region was in the p17 COOH-
terminus and was included between aa 115 and 132 (data not
shown). Comparison of NMR and X-ray structures of p17 [1,21]
evidenced a strong flexibility of its COOH-terminal region, in
particular of the H5, that can come in close contact with the
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globular head. A structural contact between NHy- and COOH-
terminal regions of p17 is confirmed by the development of a mAb
recognizing a discontinuous epitope corresponding to aa 12-19
and aa 100-105 [27]. Therefore, the capability of displacing the
binding of pl7 to Raji cells by mAb MK-18 could be then
attributed to the close proximity of the COOH-terminal region to
the functional AT20 epitope located in the globular head of the
viral protein and then ascribed to a phenomenon of steric
hindrance. To better characterize the binding of p17 to Raji cells,
we evaluated the capacity of a p17 protein lacking its fifth helix in
the COOH-terminus to interact with cells. To generate the
truncated form of the p17 protein we performed the deletion at the
COOH-terminus of the BH10 p17 gene according to its secondary
structure. A 96 aa long truncated form of p17 — named p17A36 —
was produced and purified, whereas any attempt to purify other
two COOH-terminal truncated forms of pl7, the 90- (p17A42)
and 85- (p17A47) aa long proteins was unsuccessful due to the
predominance of hydrophobic stretches that turned these proteins
into completely insoluble molecules. We have then evaluated the
capability of pl17A36 molecule to exert biological activity and
shown that it was similar to p17 in its ability to bind p17R on Raji
cells. Figure 3D shows specificity of binding of biotinylated
p17A36 to pl7Rs expressed on Raji cells since pl7A36/Raji cell
interaction was inhibited by mAb MBS-3 (Figure 3E) but not, as
expected, by mAb MK-18 (Figure 3F).

P17A36 induces a stronger and more prolonged AP-1
activation than full-length p17 in Raji cells

Then we investigated if p17A36 retains the biological properties
of the full-length p17. It has been recently shown that p17 activity is
linked, at least in human primary monocytes, to the activation of the
transcription factor AP-1 [20]. We verified whether p17 binding to
Raji cells was followed by a similar increase in the AP-1 DNA-
binding activity. Preliminary data obtained by EMSA showed that
nuclear extracts from untreated Raji cells had a basal level of AP-1
DNA-binding activity and pl7 activated AP-1 DNA-binding
activity in a dose-dependent manner with a peak at 1 pg/ml dose
(data not shown). Time-course analysis using 1 pg/ml of pl7
showed that the activation of AP-1 DNA-binding activity is also
time-dependent with a peak (2.6%£0.26 fold increase) at 1 h after
treatment and gradually decreased at 4 h after stimulation with p17
(Figure 4). The specificity of protein-DNA complexes was confirmed
by competition experiments using an excess of specific unlabeled
oligonucleotides. Moreover, pre-treatment of p17 with the neutral-
1zing mAb MBS-3 blocked AP-1 activation (data not shown).
Parallel experiments were run to assess the capability of p17A36 to
activate  AP-1. Similarly to pl7, dose finding experiments
established that optimal activation of AP-1 in Raji cells was
achieved using p17A36 at the concentration of 1 pug/ml (data not
shown). As shown in Figure 4B we found that pl7A36 had a
stronger and more prolonged AP-1 activation than the full-length
counterpart. In fact, activation of AP-1 DNA-binding activity by
p17A36 started already at 30 min (1.4%0.26 fold increase), with a
peak (2.2£0.25 fold increase) at 1 h after treatment and persisted up
to 4 h after stimulation (1.6£0.25 fold increase) (Figure 4B).

P17 and p17A36 show a different pattern in modulating
the Akt signalling pathway

The MAPK/ERK and PI3K/Akt pathways are the major
intracellular signalling modules, which are known to regulate
different cellular processes including cell proliferation, survival and
malignant transformation [28,29], and represent the upstream
factors involved in AP-1 transcription factor activation [30,31].
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Figure 2. Binding of monomeric and trimeric p17 to p17R and induction of MCP-1 production. (A, B, C) Biotin-conjugated monomeric
and trimeric p17 at 50 (black line), 200 (grey line) and 400 ng/ml (dotted line) was allowed to react with Raji (A), primary B cells (B) and H9 (C). Cells
incubated with biotinylated GST were used as negative control (solid histogram). Binding of p17 to cells was detected by using APC-conjugated
streptavidin. Data were analyzed using CELLQUEST Software and displayed as histograms. These results are representative of four different
experiments with similar results. (D) Purified human monocytes were treated or not with GST, monomeric and trimeric p17 at a concentration of
1 pug/ml. Culture supernatants were collected 48 h after the stimulation of culture and analysed for the presence of MCP-1 by a standard quantitative
ELISA. Bars represent the mean = SD of four independent experiments performed in triplicate. Statistical analysis was performed by Wilcoxon
matched pairs test. *** P<<0.001, statistically different compared with GST.

doi:10.1371/journal.pone.0017831.g002
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Figure 3. Inhibition of p17 and p17A36 binding to its cellular receptor p17R. Biotin-conjugated p17 and p17A36 were allowed to react with
Raji cells in the absence (A, D) or in presence of anti-p17 mAbs MBS-3 (B, E) or MK-18 (C, F). The interaction of biotinylated-p17 and -p17A36 with
p17R was detected in Raji cells by using APC-conjugated streptavidin (grey histogram). Cells incubated with biotinylated GST were used as negative
control (black histogram). Data were analyzed by using CELLQUEST software and displayed as histograms. The percentage of cells, which interact
with p17 and p17A36 cells is given in the upper right corner of each panel. These results are representative of four different experiments with similar

results.
doi:10.1371/journal.pone.0017831.g003

Since pl7A36 shows a stronger and more prolonged AP-1
activation than the full length protein, we explored the capability
of p17 and p17A36 to differently modulate the phosphorylation
status of ERK1/2 and Akt. Raji cells stimulated for 5 min with
the proteins showed activation of ERK1/2, as evidenced by the
increase of ERK1/2 phosphorylation (Figure 5A and 5B). On
the contrary, the two proteins showed a different phosphoryla-
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tion pattern of Akt kinase: pl7 significantly inhibited the
activation of Akt as shown by the decreased phosphorylation
state of the kinase (Figure 5A), whereas pl17A36 induced a dose-
dependent increase of Akt phosphorylation (Figure 5B). In
conclusion, our data show that either p17 or pl7A36 induce an
analogous activation of ERK1/2 but show an opposite effect on
the activation of Akt.
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Figure 4. AP-1 activation in p17- and p17A36-treated Raji cells. (A, B) Nuclear extracts obtained from Raji cells collected after p17 and
p17A36 treatments (1 ug/ml) were analysed for their binding activity to oligonucleotides specific for the transcription factor AP-1 and Oct-1. (A)
Representative EMSA autoradiograms using nuclear extracts (10 pug per sample) from Raji cells collected at specific times 0.5, 1, 2 and 4 h after p17
and p17A36 treatment, and AP-1-specific radiolabeled oligonucleotides are shown. NS: p17-untreated cells. Protein-DNA complex specificity was
confirmed by competition with an excess of unlabelled oligonucleotide probes. DNA-binding activity to Oct-1 was used as loading control. (B) The
panel represents the densitometric analysis of changes in DNA-binding activity of AP-1 relative to Oct-1, expressed as fold of induction over p17-
untreated cells. Ratios were expressed on a logarithmic scale in base 2. Bars represent the mean *+ SD of four independent experiments. Statistical
analysis was performed by two-way ANOVA. Bonferroni’s post test was used to compare data: *** P<<0.001.

doi:10.1371/journal.pone.0017831.g004

P17 and p17A36 differentially regulate Akt
phosphorylation by influencing PTEN activity
Down-modulation of PI3K/Akt pathway is known to be
operated by PTEN, which antagonizes PI3K activity [25,32,33].
Therefore, the different effects of pl7 and pl7A36 on Akt
phosphorylation may be dependent on the activation status of
PTEN. The phosphorylation of PTEN regulates its own stability,
activity and potentially its interaction with other proteins
[34,35,36]. Ser/Thr phosphorylation has been implicated in the
regulation of PTEN and there is a tight correlation between
increased phosphorylation and PTEN inactivation [33,37].
Therefore, we assessed the possibility that PI'EN, after treatment
with pl7A36 or pl7, could be present in Raji cells in a different
phosphorylation status. As shown in Figure 5C, treatment of cells
with pl17A36 led to increased Ser/Thr phosphorylation of PTEN
respect to unstimulated cells, while in contrast pl7 stimulation

@ PLoS ONE | www.plosone.org

reduced lightly the Ser/Thr phosphorylation level of PTEN.
These data indicate that pl7A36 inhibits PTEN activity by
increasing Ser/Thr phosphorylation levels and, consequently, its
ability to down-modulate Akt phosporylation. On the contrary,
pl7 treatment keeps PTEN in an active state, as attested by the
low levels of pAkt. Therefore, the effects of p17 and p17A36 and
on PISK/Akt signalling have to be ascribed to a different
modulation of PTEN activity.

P17-induced activation of PTEN is mediated by ROCK
Recently, RhoA-associated kinase (ROCK), a downstream
effector kinase of RhoA [38], has been reported to be involved in
positive regulation of PTEN activity [22,23,24]. Indeed, ROCK
can activate PTEN and target it to the plasma membrane, through
an unknown mechanism, but most likely involving a physical
interaction with PTEN, presumably by direct phosphorylation [22].
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lysates shows that p17 inhibits the activation of Akt and induces the activation of ERK1/2 (A), as shown by the respective phosphorylation state at any
concentration tested, verified by densitometric analysis and plotting of the pAkt/ERK1/2 and pERK1/2/ERK1/2. On the contrary, p17A36 induces the
activation of Akt and ERK1/2 (B), as shown by the increased phosphorylation at any concentration, verified by densitometric analysis and plotting of
the pAkt/ERK1/2 and pERK1/2/ERK1/2. In the left panel blots from one representative experiment of four with similar results are shown. In the right
panels, values reported for phosphorylation of Akt and ERK1/2 are the mean =+ SD of four independent experiments. (C) Cells were treated for 5 min
with 1 ug/ml of p17A36 (lane 2) and p17 (lane 3). Untreated cells were used as control (lane 1). Western blot analysis of Raji lysates shows that
p17A36 induces an increase of Ser/Thr pPTEN in contrast to p17, as verified by densitometric analysis and plotting of the pPTEN/ERK1/2. In the left
panel one representative blot of four with similar results is shown. In the right panel values reported for Ser/Thr pPTEN are the mean = SD of four

independent experiments.
doi:10.1371/journal.pone.0017831.g005

Since p17 is able to keep PTEN in an active state, we examined
if p17 stimulation of Raji cells could activate PTEN through a
pathway involving RhoA and ROCK. In particular, we
determined whether pre-treatment with ROCK inhibitor Y-
27632 [39,40] was able to reverse the effects of p17 stimulation.
The presence of Ser/Thr pPTEN and pAkt was thus assessed in
the cytosolic extract of cells treated for 1 or 3 min with p17 in the
presence or in the absence of Y-27632. The levels of Ser/Thr
pPTEN and pAkt, which decrease in response to pl7 stimulation
(Figure 6), increased in cells pre-treated with ROCK inhibitor
(Figure 6), similarly to cell treated with p17A36 only (Figure 5C
and 5B), indicating inactivation and stabilization of PI'EN in the
cytoplasm. The finding that pharmacological inhibition of ROCK
mimicked the same signalling of pl17A36, identifies the RhoA/
ROCK pathway as the major target of pl7-mediated signalling,
and establishes for the first time that pl7 activates PTEN via its
COOH-terminal tail.

@ PLoS ONE | www.plosone.org

The HIV-1 p17 variant S75X shows a similar activity to
p17A36 in modulating ERK1/2 and Akt signalling
pathways in Raji and human primary B cells

We have recently described that different recombinant pl7
proteins derived from Ugandan HIV-1 clade A and C isolates
(S75X, S85X, S92X and S012X) are all capable of binding to p1 7R
on Raji cells, despite differences in their primary aa sequence as
compared to the BHI1O0-derived protein [26]. Therefore we
wondered if, upon their binding to pl7R on Raji cells, S75X,
S85X, 892X and S012X recombinant proteins trigger signalling
pathways similar to the ones induced by pl17A36. Stimulation of
Raji cells for 5 min with different concentrations (ranging from
0.05 pg/ml to 1 pg/ml) of S85X, S92X and SO012X variants
induced signalling pathways which resembled that triggered by
pl7(data not shown). Interestingly, S75X induced an increase in the
phosphorylation status of ERK1/2 and Akt at every dose tested
(Figure 7A). A side by side comparison of signalling pathways
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triggered by pl7, pl7A36 and S75X (0.1 pg/ml) confirmed the
capability of S75X to induce, similarly to p17A36, an increased
phosphorylation of ERK1/2 and Akt (Figure 7B). These results
highlight that one full length p17 variant, among the recombinant
proteins we tested, displayed a pl17A36-like activity despite the
presence of the fifth helix H5 in the COOH-terminus of the protein.
Taken together these data demonstrate that pl7s derived from
different HIV-1 isolates can differently impact on the signalling
pathways leading to B cell proliferation.

These results were also confirmed using primary human B cells.
Indeed, p17 was found to inhibit the activation of Akt, whereas
pl7A36 and S75X increased the phosphorylation status of Akt
(Figure 7C).

P17, p17A36 and S75X show different effects on colony
formation

Several studies have established a link between the PI3K/Akt
pathway and human cancers [25,41,42]. To assess the capacity of
pl7A36 and S75X to induce cell growth and malignant
transformation of B cells, compared to pl7 one, we evaluated
their influence on the capability of Raji cells to form colonies in
soft agar. At any concentration tested (0.05, 0.1 and 0.2 pg/ml)
pl7 significantly inhibited the colony-forming ability of Raji cells
compared to untreated control cultures (Figure 8). The colony
number decreased from 152*25 to 107£17, from 158*13 to
82+19, from 151£15 to 11519 with 0.05, 0.1 and 0.2 ug/ml of
pl7, respectively. On the contrary, pl7A36 and S75X, used at the
same concentrations, induced a significant increase of number of
colonies compared to untreated cells (Figure 8). In fact, when cells
were treated with pl7A36 the colony number increased to
210%21 (0.05 pg/ml), to 239%17 (0.1 ug/ml), to 251%22
(0.2 pg/ml), and when S75X was used the colony number
increased to 194%24 (0.05 pg/ml), to 212*16 (0.1 pg/ml), to
242%+18 (0.2 pg/ml). This result demonstrates the selective anti-
proliferative activity of p17 but, more interestingly, the capacity of
p17A36 and of the natural variant S75X to increase cell growth
and malignant transformation of Raji cells.

@ PLoS ONE | www.plosone.org

Discussion

The HIV-1 matrix protein pl7 has tendency to oligomerize,
forming trimers of different crystal forms [21] but this occurs at high
millimolar concentrations only. At nanomolar concentrations, as in
the blood of HIV-l-infected individuals [12], pl7 is present in
monomeric form [21]. In our study, in order to reproduce conditions
of p17/pl7R interaction in biological fluids, we explored different
conditions to obtain pl7 protein preparations in a monomeric state
and found that osmolarity of the solution influenced p17 aggregation.
Data obtained showed that both monomeric and trimeric forms of
pl7 were able to interact with pl7R and, as expected, to induce
similar biological activities. This finding proves that pl7 activity is
independent from its aggregation form.

The functional pl7 epitope involved in pl7R binding was
previously found to be located at the NHy-terminal region of the
viral protein [18] and spans from aa 9 to 28, thus including a
major portion of the polybasic region [26]. Indeed, an anti-p17
mAb (MBS-3), which recognizes this functional epitope on the
native p17 protein, was found to block the p17/pl17R interaction
and, as a consequence, all p17 biological activities [18].

Using a monomeric pl7 preparation we performed experiments
aimed to study pl17/p17R interaction in the presence of different
pl7 mAbs. Among many tested, mAb MK-18, a mAb recognizing
an epitope in the COOH-terminal region located between aa 115
and 132, showed a potent p17 neutralizing activity. Thus, to better
characterize the involvement of the p17 COOH-terminal region
in the pl7R binding, we evaluated the ability of a COOH-
terminal truncated form of p17 (pl7A36) to interact with pl7R.
Data obtained showed that p17A36 is a functional protein, being
able to bind to pl7R expressed on Raji cells. The use of the
p17A36 protein has then unveiled that the binding of pl7 to its
cellular receptor does not involve the COOH-terminal region of
the viral protein. Since NMR and X-ray analysis have evidenced a
close proximity of the flexible H5 a-helix to the functional AT20
epitope on the globular head [1,21] we hypothesize that the
capability of mAb MK-18 to displace binding of p17 to pl17R is
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doi:10.1371/journal.pone.0017831.g007

likely due to mechanisms of steric hindrance. However, to better
define a possible role of the H5 o-helix in the pl7 biological
activity, we investigated the signalling events triggered by pl7 and
p17A36 protein preparations in Raji cells.

We previously demonstrated that the MCP-1
stimulated by p17 in monocytes was primarily dependent on the
activation of the transcriptional factor AP-1 [20], an indicator of
external stimuli, as several signal transduction pathways converge
to this molecule. However, the signalling pathways triggered by
pl7 have never been elucidated.

Here we show that following pl7R interaction, pl7A36 was
capable of inducing a stronger and more prolonged AP-1

expression

@ PLoS ONE | www.plosone.org

activation than the full length BH10-derived p17 protein. This
finding was attesting for a functional p17 COOH-terminal region
capable of triggering a signalling cascade which is distinct from the
one evoked by the globular head. Therefore, we investigated the
key signalling pathways, PISK/Akt and MAPK/ERK, which are
involved in AP-1 activation [30,31] and play a pivotal role in basic
cellular functions such as cell growth, survival, migration,
angiogenesis and tumorigenesis [28,29,42]. Data obtained show
that both pl7 and pl17A36 proteins induce the activation of
ERKI1/2, but they play opposite effects on the Akt signalling
pathway. In particular, the Akt pathway was strongly activated in
pl7A36 stimulated cells, whereas it was inhibited in cells
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not stimulated were used as negative control. The cell growth was
analyzed by using MTT. Data represent the average number of colonies
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statistical significance between control and treated cultures was
calculated using one-way ANOVA performed separately for each
concentration of p17 variants, across the three groups. Bonferroni’s
post test was used to compare data: ** P<<0.01, *** P<<0.001.
doi:10.1371/journal.pone.0017831.g008

stimulated with p17. This finding allowed us to hypothesize that a
NH,-terminal epitope of p17 may be responsible for an activation
signal on PI3K/Akt signalling pathway opportunely balanced by a
second inhibitory signal promoted by the COOH-terminal region.

Akt activation 1s known to require the formation of PIPs,
produced by PI3K action, in order to be translocated to the cell
membrane [43]. In normal mammalian cells the levels of PIP; are
tightly controlled by the combined effects of PI3K regulation and
the action of phosphatases. PTEN is a lipid phosphatase, involved
in regulation of cell growth, survival, invasion and tumor
progression that inhibits PI3K-dependent activation of Akt by
dephosphorylating PIP; to PIPy [32,43,44]. Inhibition of PTEN
function results in increased PIP3 levels and subsequent Akt
hyperactivation/phosphorylation [45,46,47]. PTEN possesses a
COOH-terminal non catalytic regulatory domain that contains
multiple putative phosphorylation sites [34,48], which play an
important role in its complex regulation and in the control of its
biological activity [49]. Phosphorylation of the COOH-terminal
region stabilizes PTEN protein in an inactive “closed” conforma-
tion, blocking the translocation of PTEN to the intracellular face
of the plasma membrane [34,50] and effectively inhibiting the
dephosphorylation of the substrates of PI'EN. The demonstration
that pl7A36 increases the Ser/Thr phosphorylation levels of
PTEN indicates that it is capable of stabilizing the phosphatase in
an Inactivated phosphorylated closed state and, consequently, of
increasing Akt phosphorylation. On the contrary, pl7 treatment
keeps PTEN phosphatase in a not phosphorylated active state.
Therefore, we can conclude that the opposite effects of pl17A36
and p17 on PI3K/Akt signalling are due to a different capability of
the two proteins to modulate PTEN activity.

Recent studies have implicated the RhoA/ROCK pathway in
the control of PTEN, whereby the Ser/Thr kinase ROCK,
through an unknown mechanism, activates PI'EN [22,23]. In our
experiments ROCK inhibitor Y-27632 [39,40] completely
abrogates pl7 effects on PTEN and Akt phosphorylation,
suggesting that the HIV-1 matrix protein, through its COOH-
terminal region, down-modulates the PI3K/Akt cascade by
activating PTEN via the RhoA/ROCK pathway.

There is no evidence, up to date, on the presence of COOH-
terminal truncated forms of p17 in HIV-1 infected patients. The
HIV-1 matrix protein p17 is well conserved across other retroviral

@ PLoS ONE | www.plosone.org

10

HIV-1 Matrix Protein p17 Activity in Human B Cells

proteins. However, we recently produced four recombinant pl7
proteins derived from Ugandan HIV-1 clade A and C isolates,
already identified in GenBank (S75X, S85X, S92X and S012X)
containing major mutation points in their primary aa sequence, as
compared to the BH10-derived protein [26]. Therefore, we have
tested the hypothesis on the occurrence of a natural pl7 variant
with a biological activity similar to p17A36 in terms of ability to
activate the Akt signalling pathway. Indeed, among pl7s derived
from Ugandan HIV-1 isolates, S75X was the only one found to
up-regulate the PI3K/Akt signalling pathway. Interestingly, data
obtained by soft agar growth assay show that S75X, like p17A36,
possesses the capability of inducing cell growth and malignant
transformation of B cells, whereas the BH10-derived p17 shows an
antiproliferative activity according to its Akt signalling pathway.
Therefore, specific mutations within the p17 primary aa sequence
are required to generate signalling pathways critical for B cell
proliferation and cancer insurgence. However, if we focus our
attention to the entire protein sequences, we can observe that
compared to the BH10-derived pl7, the Ugandan variant S75X
displays major substitutions that are not limited to the region that
is truncated in pl7A36, but scattered throughout the whole
protein sequence (Figure 9). Conformational studies and develop-
ment of site-specific mutagenesis on the BHI10-derived pl7
framework are needed to understand how mutations in the
primary sequence of S75X are linked to PI3K/Akt signalling
pathway activation, B cell growth and tumorigenesis.

Activation of the Akt signalling pathway is a hallmark of
different types of malignancies and intensive studies on the PI3K/
Akt pathway have firmly established a central role for Akt in
tumorigenesis and cancer progression [25,41,42]. We know that
patients with HIV-1 infection have a risk of developing B-cell
lymphoma [51]. Consequently, a dysregulation of the PI3K/Akt
signal transduction pathway in B cells, as shown for pl17S75X,
might contribute to the development of lymphoma in HIV-1-
infected individuals.

The identification of pl7 variants with possible oncogenic
potential may represent not only a prognostic marker for the
emergence of B-cell lymphoma in HIV-1-infected patients, but
also a focal point for the development of effective anti-cancer
therapies. In fact, the PISK/Akt pathway might represent a
promising therapeutic target [41], since significant progress has
been made in developing small-molecule kinase inhibitors
targeting the binding of pleckstrin homology (PH) domain of Akt
to PIP; or PIPy, which prevent Akt activation and membrane
translocation [52,53].

In conclusion, pl7 exhibits a high degree of plasticity and
diversity that allows formation of distinct ligand-receptor interac-
tions capable of selectively activating or deactivating a variety of
signalling pathways and appears to possess multiple, seemingly,
conflicting targeting signals. The recently reported interest in
drugs [54] and vaccines [55] specifically designed to block pl7
function confirms the importance of this protein for HIV-1
infection and AIDS pathogenesis. Identification of new functional
epitopes in the HIV-1 matrix protein, responsible of its
extracellular actions, might be useful not only for a better and
more detailed understanding of the molecular basis of its biological
activities, but also for the development of new therapeutic
strategies aimed to exogenously regulate pl7 functions.

Materials and Methods

Cell cultures
Human lymphoblastoid cell lines Raji and H9 were obtained
from the American Type Culture Collection (ATCC, Milano,
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Italy) and cultured in RPMI 1640 containing 10% fetal calf serum,
100 U/ml penicillin 50 ug/ml streptomycin and 1 mM L-
glutamine. Before each experiment, cells were starved for 24 hours
by serum deprivation (Phenol red-free RPMI containing 1% L-
Glutamine).

Human primary B cell preparation and cultures

Peripheral blood mononuclear cells (PBMCs) were freshly
isolated from healthy donors, who gave informed consent to this
research according to the Helsinki Declaration, by Ficoll gradient
(GE Healthcare, Milano, Italy). B cell-enriched population was
obtained from PBMCs by negative selection using human B cell
Isolation kit from Miltenyi Biotec (Bologna, Italy). All of the above
procedures were done under sterile conditions using reagents
prepared in endotoxin-free water for clinical use. Purity of the
resulting B cell population was assessed by staining with CD19-PE
or PE-control IgG antibody (BD Biosciences, Buccinasco, Italy) for
30 minutes at 4°C and resulted 98% (+3%) CD19". Viability of
the purified cells was consistently higher than 98%. Freshly
isolated B cells were resuspended at a density of 10° cells/ml in
prewarmed RPMI 1640 without FCS and then stimulated for
5 minutes at 37°C with recombinant p17, pl7A36 and S75X at
concentration of 0.1 pg/ml.

Recombinant proteins

The coding sequence of HIV-1 matrix protein clade B isolate
BHI10 pl7 (aa 1-132) [56] was amplified by Polymerase Chain
Reaction (PCR) with specific primers that allowed us to clone the
pl7 sequence into the BamH]1 site of the prokaryotic expression
vector pGEX-2T (GE Healthcare). The coding sequences of HIV-
1 matrix proteins derived from Ugandan clade A and C isolates
(575X, S85X, S92X and S012X) were amplified by PCR and
cloned into BamHI1 and EcoRI sites of the same vector as
previously described [42]. P17A36, was cloned into BamHI and
EcoRI sites of the same prokaryotic expression vector. The
glutathione S-transferase (GST) fusion proteins were expressed in
Escherichia coli and purified by using glutathione—agarose beads and
thrombin, as described previously [18]. The recombinant proteins
and GST were further purified (>98%) by reverse-phase Fast
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Performance Liquid Chromatography (FPLC). The absence of
endotoxin contamination (<0.25 endotoxin U/mlL) in protein
preparations was assessed by Limulus amoebocyte assay (Associ-
ates of Cape cod Inc, Falmouth, MA). Purified p17 and p17A36
were also biotinylated by using AH-N-Hydroxysuccinimido-biotin
(AH-NHS-biotin; SPA, Milan, Italy) according to the manufac-
turer’s instructions.

Dimensional analysis of p17 by gel-filtration

Experiments were performed using the AKTA purifier
instrument (GE Healthcare) on Bioselect column (Bio-Rad
Laboratories, Milano, Italy), by calibrating the instrument with a
protein standard (Bio-Rad).

Western blot analysis for identification of p17 monomers
and trimers

Equal amounts of p17 protein in solution under different NaCl
concentrations (0.5, 0.2 and 0.1 M) were resolved on a 12% SDS-
polyacrylamide gel and then electroblotted onto a nitrocellulose
membrane. The blots were incubated overnight at 4°C with mAb
MBS-3 (purified in our laboratory), then the complex antigen-
antibody was detected by incubation with peroxidase-coupled goat
anti-mouse IgG (Thermo Scientific, Milano, Italy) for 1 h at room
temperature and finally revealed using the ECL System (Santa
Cruz Biotechnology, Heidelberg, Germany).

Solid-phase ELISA under different NaCl concentration
Each well of 96-well microtiter plates (Maxisorp; Nunc,
Roskilde, Denmark) was coated with 1 ug/ml of pl7 in PBS
(100 pl/well corresponding to 100 ng of protein) for 16 h at room
temperature. Wells were then saturated with 200 pl/well of PBS
containing 2% bovine serum albumin (BSA) for 1 h at 37°C. After
washing four times with PBS containing 0.1% Tween-20, 100 pl
of a solution at decreasing concentration of NaCl (1, 0.5, 0.2 and
0.1 M) of p17-GST (equal to 1 pg of p17-GST) was added to each
well. The plates were incubated overnight at 4°C. The polymer
formation between pl7 adsorbed to solid-phase and p17-GST in
solution, at different saline concentrations, was evaluated with a
goat antibody anti-GST (GE Healthcare) and a secondary
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antibody horseradish peroxidase (HRP)-labeled anti-goat (DAKO,
Milano, Italy). The signal was detected by adding tetramethyl-
benzidine substrate (IMB, Sigma) and colorimetric reaction was
stopped with HyS 2N.

Measurement of MCP-1

Supernatants of primary blood monocytes, purified as described
previously [20], cultured for 48 h in the presence or absence of
pl7 at 1 pg/ml were assayed for the presence of monocyte
chemoattractant protein (MCP)-1 using ELISA kits purchased
from Endogen (Milano, Italy) according to the manufacturer’s
mstructions. GST was also used in the experiment as negative
control protein.

Flow cytometry

Staining of cells for pl7R expression was performed as
previously described [18]. Briefly, the cells were incubated for
30 min on ice with biotin-conjugated recombinant pl7 (mono-
meric or trimeric) at concentrations of 50, 200 and 400 ng/ml.
After washing with PBS containing 1% FCS, they were incubated
for 30 min on ice with allophycocyanin (APC)-conjugated
streptavidin (BD Biosciences). All data obtained were analysed
with CellQuest software (BD Biosciences).

Binding and neutralization assays

Raji cells were incubated for 30 min on ice with different
amounts of biotinylated pl17 or pl7A36, ranging from 50 to
400 ng/ml. Cells were then washed with cold PBS and further
incubated for 30 min on ice with APC-conjugated streptavidin
(BD Biosciences). Biotinylated-GST was used as negative control
of the binding assay. Neutralizing anti-p17 mAb MBS-3, MK-1
and MK-18 were used in blocking assay. All data obtained were
analyzed with CellQuest Software.

Extraction of nuclear proteins

For each treatment condition, nuclear extracts of Raji cells were
prepared from 1 or 2x107 cells. The cells were washed with ice-
cold PBS and lysed on ice for 10 min in 5 x packed cell volume of
lysis buffer containing 10 mM Hepes pH 7.9, 1.5 mM MgCl2,
10 mM KCI, 0.1 mM EGTA, 1 mM DTT, 0.2% Nonidet P-40
and protease inhibitor cocktail (Sigma-Aldrich). The nuclei were
then pelleted by centrifugation at 3000 rpm at 4°C for 10 min and
re-suspended in 3 X packed nuclear volume of high-salt buffer
containing 20 mM Hepes pH 7.9, 1 mM EDTA, 1 mM EGTA,
420 mM NaCl, 20% glycerol, 1 mM DTT and a protease
inhibitor cocktail. The suspension was rocked for 20 min at 4°C,
gently vortexed and subsequently centrifuged at 10000 rpm for
30 min at 4°C. The supernatant/nuclear extracts were collected
and stored in aliquots at —80°C. The protein concentration was
determined by using the Bio-Rad protein assay kit (Bio-Rad).

Electrophoretic mobility shift assay (EMSA)

Nuclear extracts (10 pg of protein per sample), obtained as
described above from Raji cells treated or not with pl17 (0.05
1 pg/ml) and p17A36 (0.05—1 pg/ml), were incubated with 32P-
labelled AP-1 probe [57], and the mobility of DNA-protein
complexes (EMSA) was analysed as described previously [58].
Protease activity was stopped by the addition of ice-cold complete
medium. For competition experiments, a 100-fold excess of
specific unlabelled probe was incubated with nuclear extracts
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before addition of the radiolabeled probe. For loading controls, the
nuclear extracts were analysed also for the DNA-binding activity
of octamer-1 (Oct-1), whose site is present in many housekeeping
genes [57]. Autoradiographic signals were quantified by Molecular
Dynamics Phospholmager (MDP) analysis (Typhoon 8600;
Molecular Dynamics, Sunnyvale, CA).

Western blot analysis

3x10° cells were transferred into 10 cm dishes, treated with
recombinant pl17, S75X, S85X, S92X and S012X or pl17A36 at
different concentrations 0.05, 0.1, 0.5 and 1 ug/ml, then lysed in
200 pl of 10 mM Hepes (pH 7.9), 10 mM KCI, 1.5 mM MgCl,,
0.5 mM EGTA, 0.5 mM EDTA, 0.6% NP40, containing a
mixture of protease inhibitors (Complete Mini Roche) and
phosphatase inhibitors (sodium vanadate, PAO and sodium
fluoride). When indicated, the cells were pre-treated at 37°C for
20 min with Y-27632 (25 pM). Equal amounts of total proteins
were resolved on an 11% SDS-polyacrylamide gel and then
electroblotted onto a nitrocellulose membrane. The blots were
incubated overnight at 4°C with 1) mouse mAb pAkt (Santa Cruz
Biotechnology), 2) mouse mAbs pERK1 and pERK2 (Santa Cruz
Biotechnology), 3) rabbit polyclonal ERK antibody (Santa Cruz),
4) mouse mAb PTEN (Santa Cruz Biotechnology), 5) rabbit mAb
pPTEN (Ser380/Thr382/383) (Cell Signaling Technology, Dan-
vers, MA). The antigen-antibody complex was detected by
incubation of the membranes for 1 h at room temperature with
peroxidase-coupled goat anti-rabbit IgG or goat anti-mouse IgG
(Thermo Scientific) and revealed using the ECL System.

Soft Agar anchorage-independent growth assay

Raji cells (20000/well) were plated in 4 ml of 0.35% agarose,
5% charcoal-stripped FBS in phenol red-free RPMI 1640, with a
0.7% agarose base in six-well plates. Two days after plating,
medium containing the proteins as indicated was added to the top
of the layer and replaced every four days. After 10 days, 300 pl of
3-[4, 5-Dimethylthiazol-2-y1]-2, 5-diphenyltetrazolium bromide
(MTT, Sigma) were added to each well and allowed to incubate at
37°C for 4 h. Plates were then placed in 4°C overnight and
colonies >50 um diameter were counted.

Statistical analysis

Data obtained from multiple independent experiments are
expressed as the mean = SD. Data were analyzed for statistical
significance using Wilcoxon matched pairs test, one-way and two-
way ANOVA when appropriate. Bonferroni’s post test was used to
compare data. Differences were considered significant at P<<0.05.
Statistical tests were performed using GraphPad Prism v.5 Software.
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