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Abstract

Memory generalisations may be underpinned by either encoding- or retrieval-based gener-

alisation mechanisms and different training schedules may bias some learners to favour

one of these mechanisms over the other. We used a transitive inference task to investigate

whether generalisation is influenced by progressive vs randomly interleaved training, and

overnight consolidation. On consecutive days, participants learnt pairwise discriminations

from two transitive hierarchies before being tested during fMRI. Inference performance was

consistently better following progressive training, and for pairs further apart in the transitive

hierarchy. BOLD pattern similarity correlated with hierarchical distances in the left hippo-

campus (HIP) and medial prefrontal cortex (MPFC) following both training schedules.

These results are consistent with the use of structural representations that directly encode

hierarchical relationships between task features. However, such effects were only observed

in the MPFC for recently learnt relationships. Furthermore, the MPFC appeared to maintain

structural representations in participants who performed at chance on the inference task.

We conclude that humans preferentially employ encoding-based mechanisms to store map-

like relational codes that can be used for memory generalisation. These codes are

expressed in the HIP and MPFC following both progressive and interleaved training but are

not sufficient for accurate inference.

Author summary

Integrating information across distinct situations allows both humans and non-human

animals to solve novel problems. For instance, by observing that topaz is hard enough to

scratch quartz, and that quartz is hard enough to scratch gypsum, one can infer that topaz

must be harder than gypsum—even if these materials have never been seen together. This

type of generalisation (transitive inference) can be achieved by combing different pieces

of information either, 1) when an inference is actually needed (retrieval-based generalisa-

tion), or 2) when new information is first encountered (encoding-based generalisation).

We predicted that the use of these generalisation mechanisms depends on the order in
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which information is presented and whether that information was learnt before an over-

night rest. Contrary to our predictions, behavioural and neuroimaging analyses of a tran-

sitive inference task in humans showed convergent evidence for encoding-based

generalisations in all conditions. While these conditions had a large impact on inferential

ability, we found that brain regions involved in memory invariably learnt inferred rela-

tionships between items that had not been seen together. Strikingly, this appeared to be

the case even when participants were unable to make accurate inferences.

Introduction

Humans are readily able to generalise information learnt in one situation and apply it in

another. For example, if we are told that Abuja is generally hotter than Beirut (A>B), and Bei-

rut is hotter than Carlisle (B>C), then we can infer that Abuja is hotter than Carlisle (A>C),

despite never having been given that information directly. This particular type of generalisa-

tion is known as transitive inference.

The hippocampal system and medial prefrontal cortices (MPFC) have long been implicated

in generalising recently learned information for use in new situations. Broadly speaking, con-

temporary models propose that these generalisations may be supported in two different ways:

1) retrieval-based models, and 2) encoding-based models. Despite these opposing views being

present in the literature for many decades [1,2], it is unclear which mechanisms are used to

support memory generalisation or, indeed, whether one is favoured over the other in particu-

lar situations.

Retrieval-based models suggest that the hippocampus encodes pattern-separated represen-

tations that express specific relationships between co-presented items [3]. These models argue

that generalisation is supported by a recursive neural mechanism that rapidly integrates dis-

tinct memories on-the-fly. As such, they predict that the brain only needs to store the origi-

nally presented information, since generalisation occurs as and when it is necessary via the

retrieval of directly learnt information. Retrieval-based models have received support from

both fMRI [4] and behavioural studies [5].

In contrast, encoding-based models suggest that the hippocampal and MPFC systems learn

unified representations that directly express inferred structured relationships between task fea-

tures [6–9]. These ‘structural representations’ are therefore sufficient to support inference

without the need for a specialised inference mechanism. As such, the hallmark of encoding-

based models is that the relationships between events have been abstracted and stored,

enabling generalisation to occur without the need for online integration. Of course, these

knowledge structures may not be created strictly at the point of encoding–it is possible that

they emerge after a period of consolidation or after the same information has been experienced

several times [10–12].

Consistent with encoding-based models, the hippocampus, entorhinal cortex, and medial

prefrontal cortex have been found to encode generalised relationships that were not explicitly

trained [6,13–18]. Additionally, the entorhinal cortex and MPFC are known to represent dis-

tinct sets of stimuli in similar ways provided that there are common relationships between the

stimuli within each set [19–21]. These generalised representations are thought to facilitate

inference and knowledge transfer across related tasks, although their relationship to generali-

sation performance is ambiguous.

Retrieval-based models predict that generalisation performance decreases when inferences

require integrating information over more independent memory traces (so-called, negative
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transitive slopes; see [3]). However, encoding-based models often predict the opposite rela-

tionship, e.g., generalisations are easier when comparing stimuli that are separated by larger

distances in an inferred hierarchy (positive transitive slopes). This is because the information

required to discriminate stimuli based on their relative positions in an abstract task space

becomes increasing salient with larger distances [22]. In support of retrieval-based mecha-

nisms, there is clear evidence of negative transitive slopes when inferences involving distinct

episodic memories [5]. Nonetheless, most studies have reported positive transitive slopes con-

sistent with encoding-based mechanisms, particularly in transitive inference paradigms [9,23–

26].

Aside from retrieval- and encoding-based models, it has been suggested that above-chance

performance on transitive inference tasks can result from stimulus-reward associative learning

simply because, during some training procedures, stimuli at the top of the hierarchy tend to be

selected more often and so are more commonly associated with reward [27–30]. However,

more recent research has shown that these simple associative mechanisms are unable to

account for all transitive inference behaviours [9,23,25,26,31–35]. Moreover, participants in

the current study were able to perform inferences despite receiving a pattern of reinforcement

that was entirely incompatible with stimulus-reward association learning (see https://osf.io/

cteg9). As such, we do not consider these models any further in the current study.

Certain training conditions can have a large impact on how information is retained [36]

and generalises to new situations [37]. For example, categorisation of previously unseen

objects is sometimes improved if exemplars from different categories are presented in an inter-

leaved order, rather than in category-specific blocks, e.g., [38–40]. However, other studies have

shown advantages for blocked training schedules, especially when category differences are

clearly verbalizable, e.g., [41–43]. Potentially resolving this conflict, interleaving has been

shown to aid category generalisation when exemplars are highly similar to one another (both

within- and between-categories), whereas blocking may be best when exemplars are relatively

distinct [44]. As such, it has been suggested that interleaving emphasises between-category dif-

ferences, whereas blocking emphasises commonalities amongst exemplars [37,44].

Despite this, it remains unclear whether and how interleaved vs blocked training influences

the structure of learnt memory representations, or the generalisation mechanisms that are

preferentially employed. Behavioural evidence suggests that blocked training enables the learn-

ing of low-dimensional (compressed) stimulus representations that linearly encode task-rele-

vant features [42]. Additionally, recent research shows that training overlapping

discriminations in an ordered sequence (e.g., A>B followed by B>C and then C>D, so-called

‘chaining’) may improve transitive inference by allowing learners to integrate the discrimina-

tions into a unified mental model [45,46]. Nevertheless, when this integration takes place, and

whether it depends on encoding- or retrieval-based mechanisms has yet to be tested.

We hypothesised that interleaved training would promote the learning of the specific, pat-

tern-separated, pairings and consequently bias the use of retrieval-based inference judgements.

This follows the proposal that interleaved training highlights the differences between items.

Furthermore, it is consistent with the finding that hippocampal pattern separation prevents

interference between overlapping relationships learnt in an interleaved order [47]. In contrast,

we hypothesised that presenting related pieces of information in ordered blocks (hereafter

referred to as ‘progressive training’) should facilitate the use of encoding-based inference

mechanisms. Specifically, progressive training may enable pattern completion between pairs

thereby allowing participants to encode inferred relationships during training [48].

This hypothesis is partly informed by a supplementary analysis demonstrating that, relative

to interleaving, progressive training can bias some artificial neural networks to learn task rep-

resentations that directly encode generalised relationships (see S1 Text). We trained a variety
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of multilayer perceptions (MLPs) on a transitive inference task. When the MLPs were con-

strained to learn low-dimensional (compressed) representations of the discriminations, they

tended to encode the relative value of stimuli (i.e., A>B>C). This aided inference performance

because the MLPs were not equipped with a retrieval-based generalisation mechanism. Given

this result, we predicted that progressive training would facilitate encoding-based inference in

humans and speculated that it may confer a similar performance advantage.

As mentioned, many studies have rereported positive transitive slopes that are indicative of

encoding-based generalisations. However, it is noteworthy that most of these studies have

either employed progressive training schedules [23,26], or provided explicit feedback to

inferred discriminations which can confound distance effects with differences in how often sti-

muli are rewarded [22,24,25]. Here, we directly tested the predictions of retrieval-/encoding-

based generalisation mechanisms following both interleaved and progressive training sched-

ules, in a feedback-free inference test.

In addition to the training schedule, we also manipulated whether participants experienced

an overnight period of consolidation before being tested on their ability to generalise. Sleep-

dependent consolidation has long been implicated in abstracting statistical regularities across

separate memories, possibly because it allows distinct event representations to be replayed

out-of-order [49,50]. In support of this, many studies have shown that memory generalisation

improves following a period of sleep, or even wakeful rest [51–55]. We hypothesised that over-

night consolidation would allow pattern-separated memories of task contingencies to be re-

encoded as structural memory representations, see [56,57]. We therefore predicted that infer-

ences made on items learnt the previous day would depend more on encoding-based mecha-

nisms than inferences on items learnt immediately prior to scanning.

To test these hypotheses, we analysed the effect of training schedule and overnight consoli-

dation on behavioural and fMRI data collected while human participants performed transitive

inferences. We trained a series of ‘premise’ discriminations via either progressive or inter-

leaved presentations within a reinforcement learning task (see Fig 1). Across consecutive days,

34 participants learnt 2 independent sets of premise discriminations (one set per day), each of

which entailed a 1-dimensional transitive hierarchy over 7 visual features

(A>B>C>D>E>F>G). Shortly after training on the second day, participants recalled all the

premise discriminations and made inferences whilst being scanned. As such, we were able to

investigate progressive/interleaved training and inferences based on recent/remote memories

in a full factorial design.

We found that progressive training had a large benefit on inference performance in

humans. Computational models that captured broad predictions of retrieval- and encoding-

based models revealed that our behavioural data are better accounted for by encoding-based

mechanisms. Surprisingly, this did not depend on the experimental factors of interest, namely,

training schedule and overnight consolidation. Next, we tested neurocognitive predictions of

encoding- and retrieval-based models using univariate and multivariate analyses of the imag-

ing data. Retrieval-based models predict the occurrence of BOLD activations that are uniquely

associated with on-the-fly generalisation performance. However, we did not observe any

effects consistent with this prediction. In contrast, a representational similarity analysis (RSA)

supported encoding-based models. Specifically, consistent with multiple encoding-based

accounts, we identified RSA effects in the hippocampus and MPFC suggestive of structural

representations that expressed inferred relationships across the whole transitive hierarchy. In

the MPFC, these effects we only evident for recently learnt contingencies, perhaps suggesting a

time-dependent role of this region. We also found that structural representations in the hippo-

campus and MPFC were associated with different patterns of behavioural performance, per-

haps suggestive of different generalisation processes.
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Fig 1. Illustration of the pre-scanner training and in-scanner behavioural tasks. A) Both before and during fMRI,

participants saw computer-generated images of two buildings with different wall-textures rendered onto their exterior

surfaces. One building concealed a pile of virtual gold (reinforcement) and the location of this reward was perfectly

determined by the combination of wall-textures shown. In the pre-scanner training phase, participants were tasked

with learning the reward contingencies via trial-and-error. A left/right button press was required within 3 seconds of
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Results

Inference performance

Over two consecutive days, we trained participants to make binary discriminations in a rein-

forcement learning task (see Fig 1A). Trials presented two buildings that differed in only one

respect; the wall textures rendered onto the outside of each building. One building contained a

pile of virtual gold (reinforcement) and participants were tasked with learning which wall tex-

ture predicted the gold in order to gain as much reinforcement as possible. We explicitly

trained 2 sets of discriminations with 6 premise pairs in each; ‘A>B’, ‘B>C’ . . . ‘F>G’ (correct

responses indicated to the left of the greater-than sign). As such, the contingencies predicting

reward implied 2 independent transitive hierarchies (A>B>C>D>E>F>G, Fig 1B).

One set of premise discriminations was trained on each day and training sessions were sep-

arated by approximately 24 hours. Prior to the first session, participants were randomly

assigned to either an interleaved or progressive training condition which determined the type

of training they received on both days. Interleaved training involved presenting all 6 discrimi-

nations in a pseudorandom order such that there was a uniform probability (1/6) of encoun-

tering any one on a particular trial (see Fig 1C). In contrast, progressive training involved 6

epochs of different lengths that gradually introduced discriminations and ensured that, once

introduced, they were presented in all subsequent epochs.

After training on the second day, participants underwent fMRI scanning while recalling all

the premise discriminations (from both days) as well as 2 sets of inferred discriminations. As

such, the experiment involved 3 main experimental factors: 1) training method (interleaved vs

progressive), 2) session (recent vs remote), 3) discrimination type (premise vs inferred). Here,

we only report contrasts relating to our a priori hypotheses but a full list of results is available

on the Open Science Framework (OSF, https://osf.io/tvk43/).

Fig 2A depicts estimates of performance for the in-scanner task in terms of the probability

of a correct response. A mixed-effects logistic regression highlighted similar levels of accuracy

for the premise discriminations regardless of training method, session, or their interaction;

largest effect: t(804) = 0.765, p = .445. However, there was a large effect of training method on

inference performance with progressive learners outperforming interleaved learners; t(804) =

5.54, p< .001. This effect was also evident as a main effect of training method (averaged across

both premise and inferred trials), t(804) = 3.83, p< .001, and as an interaction between

method and discrimination type; t(804) = 7.39, p< .001. No main effect of session or a session

by method/discrimination type interaction was detected; largest effect: t(804) = 1.44, p = .149.

the start of each trial. Following this, a feedback animation was shown indicating whether the response was correct or

not. During the in-scanner task, participants were required to respond to still images of the two buildings, yet no

feedback was provided. B) A schematic illustration of the reward contingencies trained before scanning (i.e., the

premise discriminations, red solid lines) and inferred inside the scanner (i.e., inferred discriminations, dashed lines).

Letters denote unique wall textures and the greater than signs indicate the rewarded wall-texture in each premise

discrimination. Taken together the 6 premise discriminations implied a 1-dimensional transitive hierarchy. Inferred

discriminations did not involve the ends of the hierarchy (i.e., A and G) since such challenges can be solved by

retrieving an explicitly trained (featural) contingency (e.g., recalling that A is always rewarded). As such, the set of

inferred discriminations included three trials with a ‘transitive distance’ of Δ2, two trials with a transitive distance of

Δ3, and one trial with a transitive distance of Δ4. Note that participants were trained on two independent transitive

hierarchies on two separate days: one 24 hours before scanning, one immediately before scanning. While equivalent in

structure, the contingencies learnt on each day involved entirely different wall-texture stimuli (counterbalanced across

participants) which were never presented in the same trial. C) and D) On each day of training, premise trials were

ordered in one of two ways: interleaved training involved presented all 6 premise discriminations in pseudorandom

order such that there was a uniform probability (1/6) of encountering any one discrimination on a particular trial

(panel C). In contrast, progressive training involved 6 epochs of different lengths that gradually introduced the

discriminations whilst ensuring that, once a discrimination had been introduced, it was presented in all subsequent

epochs (panel D).

https://doi.org/10.1371/journal.pcbi.1010566.g001
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The logistic regression also examined the effect of ‘transitive distance’, that is, accuracy dif-

ferences corresponding to larger or smaller separations between wall textures along the transi-

tive hierarchy (e.g., B>D has a distance of 2, whereas B>F has a distance of 4). We found an

overall effect of transitive distance, t(804) = 2.11, p = .035, indicating that, in general, as the

separation between wall textures increased, behavioural accuracy also increased. Additionally,

there was a significant 3-way interaction between training method, session and transitive

Fig 2. Humans show better generalisation following progressive training. A) Estimates of the probability of a correct response, Pr(correct), split by trial type

(premise vs inferred) and experimental condition (training method and session). While participants showed comparable levels of performance on the premise

discriminations across conditions (red bars), inference performance varied by training method with progressive learners showing much higher levels of

accuracy (blue bars). B) On inference trials, behavioural performance was positively related to “transitive distance” (the degree of separation between

discriminable features along the transitive hierarchy, see Fig 1B). While the correlation between transitive distance and performance was positive in all

conditions, the association was most consistent for remote discriminations in the progressive training condition. C) Estimates of the mean response time (in

seconds, correct responses only) split by trial type and experimental condition (as in panel A). Response times closely mirrored the probability of a correct

response but showed an additional effect indicating that participants were faster at responding to remote contingencies (overall). D) Response times to

inference trails by transitive distance. While not significant, in general, response times decreased as transitive distance increased. Individual data points reflect

response times across all trials and participants, and error bars/lines represent 95% confidence intervals.

https://doi.org/10.1371/journal.pcbi.1010566.g002

PLOS COMPUTATIONAL BIOLOGY Transitive inference following different training schedules and overnight consolidation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010566 October 17, 2022 7 / 30

https://doi.org/10.1371/journal.pcbi.1010566.g002
https://doi.org/10.1371/journal.pcbi.1010566


distance, t(804) = 3.18, p = .002. This suggested that transitive distance was most predictive of

performance in the progressive-remote condition, t(804) = 3.07, p = .002, relative to all other

conditions which yielded similar distance effects (t-values = 1.99, 1.08, & 1.55, for the inter-

leaved-recent, interleaved-remote & progressive-recent conditions respectively, see Fig 2B).

However, this interaction does not reflect larger performance increases in the progressive-

remote condition as the estimated probability of a correct response was uniformly close to ceil-

ing (only increasing from .921 to .996). Instead, it mainly reflects performance becoming more

consistently accurate (i.e., lower variances in the binomial probability estimate) with larger

distances.

A generalised linear model of response times (correct responses only) produced a comple-

mentary pattern of results (see Fig 2C). Specifically, we detected main effects of training

method and discrimination type indicating shorter response times from progressive learners

and longer response times to inferred discriminations; t(5301) = 2.01, p = .045, and t(5301) =

2.31, p = .021, respectively. These effects were superseded by a training by discrimination type

interaction highlighting that longer response times to inferred trials were more pronounced

for interleaved learners; t(5301) = 5.17, p< .001. Unlike the accuracy data, this analysis

showed a main effect of session indicative of quicker responses to all remote discriminations; t

(5301) = 3.26, p = .001. No other significant main effects or interactions were detected.

Computational models

We predicted that the use of retrieval- and encoding-based generalisation mechanisms would

vary by experiment condition. To test this directly, we created two descriptive models based

on general principles of retrieval- and encoding-based accounts. Under similar assumptions,

each model attempted to predict participants’ inference performance from their responses to

premise trials. The goodness-of-fit for each model was determined by how well it accounted

for the pattern of correct and incorrect responses.

The retrieval-based AND model assumes that correctly inferring a non-trained discrimina-

tion (e.g., B>E) involves retrieving all the directly trained response contingencies required to

reconstruct the relevant section of the transitive hierarchy (e.g., B>C and C>D and D>E; so-

called mediating contingencies). As such, the AND model captures a general prediction of

retrieval-based mechanisms; that inference performance decreases as a function of transitive

distance due to the reliance on more independent memory traces [3–5].

In contrast, the encoding-based OR model assumes that participants can access a unified

structural representation describing the associative distances between all stimuli. Nonetheless,

in order to make a successful inference, knowledge of this associative structure must be evalu-

ated alongside the reward contingencies indicating which of the presented stimuli is higher in

the reward hierarchy. When making an inference (e.g., B>E), it is therefore sufficient to recall

only one of the contingencies indicating which stimulus should be preferred (e.g., B>C), or

which stimulus should be avoided (e.g., D>E).

The AND and OR models predict different levels of performance across inference trials (see

Methods). We measured the fit of these models against participants’ performance data using a

cross-entropy cost function and analysed these goodness-of-fit statistics using a generalised

linear mixed-effects regression with 3 experimental factors: 1) model type (AND vs OR), 2)

training method (interleaved vs progressive), and 3) session (recent vs remote). Fig 3 plots the

cross-entropy statistics by all conditions. The mixed-effects regression highlighted main effects

of model type, t(128) = 8.45, p< .001, and training method, t(128) = 5.53, p< .001, both of

which were qualified by a model type by training method interaction: t(128) = 5.84, p< .001.

No other model terms were significant.
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These results indicated that, relative to the AND model, the OR model provided a better fit

to the inference data in general, although it was less predictive in interleaved learners. None-

theless, the OR model was still preferred over the AND model in interleaved learners, t(128) =

2.63, p = .009. This was also evident when we used Spearman rank correlations to compare the

number of correct responses to each inferred discrimination with the number of correct

responses that would be expected under each model. Specifically, the correspondence between

model predictions and the observed data tended to be higher across participants for the OR

model in both the progressive and interleaved conditions; t(14) = 7.31, p< .001, and t(16) =

5.38, p< .001 (respectively, statistics derived from bootstrapped paired-samples t-tests, see S1

Table). Contrary to our predictions, these results indicate that inference performance is best

accounted for by encoding-based mechanisms in all experimental conditions.

Univariate BOLD effects

Retrieval-based models of generalisation hold that inferences depend on an online mechanism

that retrieves multiple premise contingencies from memory and integrates information

between them. As such, we used a set of linear mixed-effects models to test whether BOLD

responses were larger on inferred trials than on premise trials and whether this effect was mod-

ulated by 5 factors of interest: 1) transitive distance, 2) training method (interleaved vs

Fig 3. Behavioural performance is suggestive of encoding-based generalisation mechanisms. This figure shows goodness-of-fit statistics per participant and

condition for two models of inference performance (lower values indicate a better model fit). The AND model implements a general assumption of retrieval-

based generalisation mechanisms—that inference requires retrieving multiple independent response contingencies in order to evaluate transitive relationships.

In contrast, the OR model realises a general assumption of encoding-based generalisation; specifically, that inferences require the retrieval of a unified

structural representation. In all conditions, average goodness-of-fit statistics were lowest for the OR model indicating that it was a better fit to the behavioural

data (result qualified by a generalised linear mixed-effects model—see text).

https://doi.org/10.1371/journal.pcbi.1010566.g003
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progressive), 3) training session (recent vs remote), 4) inference accuracy, and 5) the slope

relating transitive distance to inference performance (hereafter referred to as the ‘transitive

slope’). The rationale for this latter factor follows from considering that encoding- and

retrieval-based models predict different transitive slopes (being positive and negative, respec-

tively). Given this, the magnitude of the slope can be used to indicate whether BOLD responses

more closely adhere to the predictions of one model or the other.

In comparison to the trained discriminations, inference trials evoked lower levels of BOLD

in the right hippocampus (specifically, more deactivation relative to the implicit baseline); t

(787) = 2.79, p = .005 (S1 Fig). However, this effect was not modulated by training method, t

(787) = 0.31, p = .753, or inference accuracy, t(787) = 0.04, p = .965, and so cannot account for

variation in inference performance. In contrast, BOLD estimates in the superior MPFC did

reflect differences in inference performance. In the left superior MPFC we saw a significant

effect of trial type, again indicating more deactivation on inference trials, t(787) = 3.25, p =

.001. This was qualified by a 3-way interaction between trial type, training method, and infer-

ence accuracy, t(787) = 2.93, p = .003 (Fig 4A and 4B). Similarly, the right superior MPFC pro-

duced a significant interaction between trial type and training method t(787) = 2.76, p = .006,

(Fig 4C and 4D). Overall, these results indicate that the MPFC produced greater levels of

BOLD activity whenever response accuracy was high, regardless of whether participants were

responding to premise or inferred discriminations.

In sum, we found no univariate BOLD effects consistent with the use of retrieval-based gen-

eralisation mechanisms. While activity in the superior MPFC was associated with behavioural

performance, this association was not specific to, or enhanced by novel inferences as would be

expected under retrieval-based accounts, see [58,59]. A full list of statistical outputs relating to

each ROI is available on the OSF (https://osf.io/sdtyk).

Representational similarity analyses

We predicted that the training method and the length of the study-test interval would affect

how response contingencies were encoded by medial temporal and prefrontal systems. Specifi-

cally, we expected that progressive training and longer retention intervals would result in

structural representations of the transitive hierarchy and that this would correspond to better

inference. To test this, we constructed a series of linear mixed-effects models (LMMs) that

aimed to a) identify neural signatures of structural memory representations, and b) reveal

whether they are modulated by each experimental factor (and their interactions).

BOLD responses to each discrimination were first used to estimate representations of indi-

vidual wall-textures via an ordinary least-squares decomposition (see Methods and Fig 5A).

The correlational similarity between wall-texture representations was then analysed in the

LMMs to identify ‘distance effects’ within each hierarchy, i.e., where the similarity between

wall-textures from the same transitive chain (i.e., trained on the same day) scaled with transi-

tive distance (e.g., corr[B,C] > corr[B,D] > corr[B,E]). Moreover, the LMMs tested whether

such distance effects were modulated by 4 factors of interest: 1) training method (interleaved

vs progressive), 2) training session (recent vs remote), 3) inference accuracy, and 4) transitive

slope (as above).

Importantly, the LMMs excluded correlations involving wall textures ‘A’ and ‘G’ at the

extreme ends of each hierarchy. This is because these stimuli were only presented in premise

trials and so their estimated voxel representations may differ from all other representations for

trivial reasons. Additionally, each LMM included an extensive set of fixed- and random-effect

predictors that controlled for nuisance correlations between co-presented wall textures and

correlations resulting from the least-squares decomposition (see Methods).
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Here, we only report main effects and interactions involving the transitive distance predic-

tor since our hypotheses only concerned these terms. Nonetheless, for completeness, we report

all other significant effects in S2 Text and provide a full list of statistical outputs on the OSF

(https://osf.io/29x3q). S2 Text also includes an analysis of hierarchical representations that

generalised across the transitive chains learnt on each day of training (i.e., across recent and

remote conditions). While no significant ‘across-hierarchy distance effects’ were identified, we

detail all other main effects and interactions revealed by this analysis.

In the left hippocampus, we saw a main effect of distance that did not survive our correction

for multiple comparisons; t(652) = 2.61, p = .009. While not reaching our strict criterion for

statistical significance, 27 of the 34 participants exhibited the predicted distance effect in this

region which is significantly more than would be expected by chance alone (p< .001, binomial

Fig 4. Inference performance within- and across- experimental conditions is associated with univariate BOLD activity in the superior MPFC. Panels A

and B show activity in the left superior MPFC. Panels C and D show activity in the right superior MPFC. Bar charts display mean response amplitudes to all in-

scanner discriminations split by trial type (premise vs inferred) and experimental condition (training method and session). Scatter plots display mean response

amplitudes to all inference trials (both recent and remote) as a function of inference performance, split by training method (interleaved vs progressive). In the

left superior MPFC, a main effect of trial type indicated lower levels of BOLD activity on inference trails (panel A). This was superseded by a significant 3-way

interaction indicating larger BOLD responses to inference trials in progressive learners who achieved high levels of inference performance (panel B). The right

superior MPFC showed a significant 2-way interaction between trial type and training method. This indicated that BOLD responses in interleaved learners

were lower on inference trials (relative to premise trials), but comparable to premise trials in progressive learners (panels C and D). Overall, these data indicate

that the MPFC produced greater levels of BOLD activity whenever response accuracy is high. Individual data points indicate discrimination-specific BOLD

estimates for each participant and error-bars indicate 95% confidence intervals.

https://doi.org/10.1371/journal.pcbi.1010566.g004
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test). As such, this effect is consistent with our prediction that representational similarity

between wall textures should be inversely related to their hierarchical distance (see Fig 5B).

The left hippocampus also produced a distance by transitive slope interaction, t(652) = 3.31, p

= .001. Contrary to predictions, this indicated that distance effects were most strongly

expressed in participants who had a relatively low (or negative) transitive slope (see Fig 6A).

As such, the left hippocampus appears to encode structural task representations most strongly

when behavioural performance is less typical of encoding-based generalisation.

In the left superior MPFC, transitive distance was negatively correlated with representa-

tional similarity in the recent, but not the remote, conditions; t(650) = 3.59, p< .001, and t

(650) = 0.113, p = .910 (respectively). This resulted in a significant interaction between transi-

tive distance and training session suggesting the presence of structural representations for

recently learnt stimuli alone, t(650) = 3.00, p = .003 (see Fig 5C). On top of this effect, we saw a

3-way interaction between distance, session and inferential accuracy, t(650) = 4.24, p< .001

(see Fig 6B). This indicated that the strength of structural representations was greatest for par-

ticipants who did not achieve high levels of inference performance (although note that the dis-

tance effect was still significant for the majority of performance scores).

In the right superior MPFC, we also saw a 3-way interaction between distance, session, and

accuracy, t(652) = 2.90, p = .004. Again, this was suggestive of structural representations in

recent condition, but only when generalisation performance was relatively low, and only for

learners in the interleaved training condition. Furthermore, the right superior MPFC pro-

duced a distance by transitive slope interaction that was superseded by a 3-way interaction

between distance, session, and transitive slope, t(652) = 2.79, p = .006, and t(652) = 2.96, p =

.003 (respectively, see Fig 6C). This highlighted that the expected distance effects were only

expressed in the remote condition when participants’ behavioural data was heavily indicative

of encoding-based generalisations. Importantly, this contrasts with the distance effects identi-

fied in the left hippocampus which were strongest when participants’ behavioural data were

less indicative of encoding-based generalisation.

Finally, we report a significant 3-way interaction between distance, session, and training

method in the left inferior MPFC, t(648) = 2.99, p = .003. This was mainly driven by distance

effects in the progressive training condition. Specifically, we observed the predicted negative

correlation between distance and pattern similarity in the recent condition (t = 1.95), but the

opposing (positive) relationship for progressive learners in the remote condition (t = 2.40).

Post-hoc tests indicated that the positive distance effect was principally attributable to high lev-

els of similarity between responses to wall textures ‘B’ and ‘F’ (i.e., those with the largest transi-

tive distance in the analysis). While such an effect may reflect how the stimuli were being

encoded, this pattern of data was not predicted and so we do not draw any inferences based on

this result.

Fig 5. Methods and results for the RSA. A) BOLD responses across voxels (v1, v2, etc.) for each in-scanner

discrimination (A>B, B>D, etc.) were estimated in a set of 1st level models. These were linearly transformed into

representations of specific wall-texture stimuli (A, B, C, etc.) via a least-squares decomposition procedure.

Subsequently, BOLD similarity between wall-textures was estimated, Fisher-transformed, and entered into a mixed-

effects model that implemented the RSA. Nuisance covariates accounted for trivial correlations between co-presented

wall-textures and correlations resulting from the decomposition procedure. Effects of interest modelled the influence

of condition, behavioural performance, and transitive distance. B) In the left hippocampus, transitive distance (i.e., the

separation between wall-textures) was negatively correlated with BOLD similarity across all conditions. As such, this

region appears to encode a structural representation of the transitive hierarchy that is not modulated by training

method (i.e., interleaved vs progressive) or session (recent vs remote). C) The left superior MPFC exhibited a distance

by session interaction suggesting that structural representations were only expressed for recently learnt contingencies.

Individual datapoints indicate pairwise similarity estimates from all participants and shaded error-bars indicate 95%

confidence intervals.

https://doi.org/10.1371/journal.pcbi.1010566.g005
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To validate the distance effects reported above, we ran a series of follow-up tests to examine

whether they could be attributed to higher levels of BOLD similarity exclusively for stimuli

that were shown within the same premise pair (i.e., driven by Δ1 pairs alone). First, we con-

trasted similarity estimates between different levels of the distance factor in a random effects

analysis. Consistent with our a priori predictions, this invariably revealed significant differ-

ences (at uncorrected thresholds) between levels of the distance predictor that did not include

Δ1 pairs. We also re-ran each LMM but excluded similarity estimates between Δ1 pairs. With

the exception of the main effect of distance in the hippocampus, all left lateralised effects

reported above survived our correction for multiple comparisons, t(382) > 2.92.

Taken together, these findings suggest that the hippocampus contributes to memory gener-

alisations by representing structural memory codes following both interleaved and progressive

training. The superior MPFC appears to maintain similar representations, but only for recently

learnt material.

Discussion

We sought to determine whether the use of encoding- and retrieval-based generalisation

mechanisms are influenced by two factors: 1) the order in which task contingencies are learnt

(i.e., interleaved vs progressive training), and 2) whether there has been a period of overnight

consolidation.

Our behavioural analyses demonstrate that progressive training substantially increases gen-

eralisation performance compared with randomly interleaving contingencies. This happens

despite comparable accuracy in remembering the directly trained (premise) contingencies that

generalisations were based upon. However, contrary to our hypotheses, model-based analyses

of the behavioural data revealed that encoding-based mechanisms were preferentially used

across all experimental conditions. Representational similarity analyses of the fMRI data were

also suggestive of the use of encoding-based mechanisms. Here, BOLD pattern similarity in

the hippocampal and medial prefrontal cortices correlated with hierarchical distances between

stimuli. This implies the presence of map-like structural representations that directly express

inferred relationships in an abstract task space. Importantly, these effects were evident follow-

ing both interleaved and progressive training. It therefore appears that humans have a robust

means of learning hierarchical structures regardless of the training method.

In contrast to our results, previous studies have shown that some generalisations are

enhanced by interleaved training when compared to blocked schedules. Zhou et al [60] report

that both humans and connectionist models of the hippocampal system show elevated levels of

memory integration and property generalisation following interleaved training. However, it is

notable that our progressive training procedure represents a middle ground between blocking

and interleaving. Progressive epochs gradually introduce new discriminations while concur-

rently testing those that had been shown previously. Unlike fully blocked schedules, this

Fig 6. Associations between measures of behavioural performance and the magnitude of distance effects in the

RSA. Solid trend lines depict the fitted fixed-effect relationship, while shaded error-bars indicate 95% confidence

intervals. Note that negative distance effects (plotted above the dashed horizontal) represent the predicted association

between transitive distance and BOLD pattern similarity. Individual datapoints depict participant-specific random

slopes for each association. A) Distance effects in the left hippocampus were strongest when participants produced

relatively low transitive slopes (less indicative of encoding-based generalisation). B) Distance effects in the left superior

MPFC were only significant in the recent condition and were strongest when participants did not achieve high levels of

inference performance. C) In contrast to the left hippocampus, distance effects in the right superior MPFC were most

evident when participants produced relatively large transitive slopes (most indicative of encoding-based

generalisation), yet this association was limited to the remote condition. Individual datapoints indicate estimated

distance effects per participant and shaded error-bars indicate 95% confidence intervals.

https://doi.org/10.1371/journal.pcbi.1010566.g006
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protects against ‘catastrophic interference’ [42,61], where new learning results in the forgetting

of previously acquired knowledge. It is therefore possible that progressive training offers the

best of all worlds–enhanced generalisation across different contexts whilst protecting against

catastrophic interference.

To date, state-of-the-art machine learning applications have avoided catastrophic interfer-

ence by relying on interleaved training [62]. Recently, Kirkpatrick et al [46] introduced an

updated loss function for gradient descent that protects previously acquired expertise from cat-

astrophic interference. This cost function incorporates a Fisher information matrix describing

how critical each parameter is to maintaining performance on previously trained objectives. It

is possible that such protections against interference may allow artificial networks to learn task

representations that better support generalisation.

Although progressive training improved inference performance in our study, it appeared to

have very little effect on the mechanisms used to make inferential judgements. Analyses of

both the behavioural and fMRI data suggested that participants principally used encoding-

based mechanisms in all experimental conditions. Moreover, the results of our univariate

fMRI analyses did not meet the predictions of retrieval-based mechanisms. The preference for

encoding-based strategies that we observed may be due to how well the premise pairs were

learnt. Retrieval-based mechanisms are known to explain inference performance when memo-

ries have been acquired in a single episode (i.e., one-shot learning; [5]). Given this, our find-

ings are consistent with proposals that encoding-based generalisation mechanisms directly

encode abstractions whenever information is frequently rehearsed [49].

As noted, we found evidence that transitive hierarchies were represented in the hippocam-

pus and MPFC in the form of map-like structural codes. This supports various models of

memory generalisation that posit representations of physical space can be applied to make

inferences in abstract, non-spatial tasks [7,63,64]. Interesting however, the MPFC only

appeared to represent structural codes for recently learnt stimuli. Furthermore, while we iden-

tified MPFC representations in the majority of participants, they tended to be most strongly

expressed in participants who did not achieve high levels of inferential performance. Both of

these effects may be attributable to the ease with which structural representations could be

accessed and manipulated. It is possible that such operations were more difficult in the recent

condition (note the slower response times in this condition), and when participants found

inferences more difficult, they tended to activate MPFC representations for longer and/or less

efficiently.

Relatedly, BOLD patterns in the MPFC exhibited structural representations even when par-

ticipants performed at chance level on the inference task (see Fig 6B). It therefore appears that

merely having structural representations is not sufficient for good inference performance. Fur-

thermore, while progressive training aided inference performance, we did not detect overall

group differences in the strength of structural representations between training conditions.

Given this, we speculate that progressive exposure may facilitate the use of structural represen-

tations during novel inference, rather than the acquisition of structural representations per se.

This may explain why some types of generalisation benefit from blocked/progressive exposure,

while other forms of generalisation (not dependent on structural codes) do not, e.g., [38–

40,60].

Our finding of structural representations in the absence of above-chance inference perfor-

mance is incompatible with models that propose knowing the relative value of stimuli is all

that is needed to build a hierarchical task representation and make novel inferences (e.g., [6],

and the MLPs reported in S1 Text). Nevertheless, other models can account for this observa-

tion. Neural codes postulated by both the Tolman-Eichenbaum Machine (TEM) and the suc-

cessor representation (SR) model dissociate the learned values of stimuli from structural
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relationships between them [7,63,64]. In the TEM, structural information derived from previ-

ous experience is bound to sensory codes in the hippocampus via a fast Hebbian learning rule.

However, the ability to use these representations for transitive inference depends on additional

path-integration steps that may bottleneck performance. Similarly, SRs can encode the dis-

tance between all stimuli in a transitive hierarchy based on knowledge of which stimuli were

presented in the same premise pairs. However, in order to support transitive inference, SRs

must be combined with a representation encoding the average reward returned by each

stimulus.

We also tested whether individual differences in transitive slopes covaried with the strength

of structural representations in each ROI. We predicted that participants who produced large,

positive transitive slopes (suggestive of encoding-based mechanisms) would most strongly

express structural representations in each ROI. This was indeed the case in the right superior

MPFC. However, the left hippocampus showed an opposing relationship; a significant distance

effect that was strongest for participants who produced negative transitive slopes (see Fig 6).

We are unable to fully interpret these results as they were not predicted a priori and because

the association between transitive slope and the MPFC distance effect was not consistent

across conditions (only being evident in the interleaved, remote condition). However, it is

unlikely that there is a simple relationship between the sign and magnitude of each partici-

pant’s transitive slope, and their use of different generalisation mechanisms.

Aside from a slight decrease in response latencies on both premise and inferred trials, we

did not observe any benefit of overnight consolidation on inference performance (in either

training condition). This finding is in contrast to a similar test by Ellenbogen et al [54] who

found that inference performance increased after a period of sleep. We also did not support

our hypothesis that consolidation would bias the use of encoding-based inference mecha-

nisms. Indeed, contrary to this, we found that structural representations in the superior MPFC

became less evident for transitive hierarchies that were learnt 24 hours before testing. While it

is possible that this effect reflects the consolidation of structural representations outside of the

MPFC, or more efficient processing within the region, additional research will be needed to

clarify the role of consolidation in memory generalisations.

In summary, we show that progressive training dramatically improves transitive inference

and that humans tend to use encoding-based mechanisms to inform inferential judgements

based on well-learnt contingencies. Both the hippocampus and MPFC encode structural repre-

sentations of transitive hierarchies, yet the presence of these representations appears to be

insufficient for successful inference. Taken together, these findings provide strong support for

encoding-based models that predict map-like structural representations underpin spatial and

non-spatial generalisations.

Methods

Ethics statement

All participants gave written informed consent on being recruited into the study and were

reimbursed for their time. The study was approved by the Brighton and Sussex Medical

School’s Research Governance and Ethics Committee (project approval code: 15/131/BIR).

Participants

Right-handed participants were recruited from the University of Sussex, UK. Participants had

either normal or corrected-to-normal vision and reported no history of neurological or psychi-

atric illness. During the study, they were randomly assigned to one of the two between-subject

conditions (i.e., the interleaved or progressive training conditions) such that there were an
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equal number of useable datasets in each. Data from 5 participants could not be included in

the final sample because of problems with fMRI data acquisition (one participant), excessive

motion-related artifacts in the imaging data (three participants), and a failure to respond dur-

ing the in-scanner task (one participant). After these exclusions, the final sample included 34

participants (16 females) with a mean age of 25.9 years (SD = 4.60 years).

Behavioural tasks

Pre-scanner training. We developed a reinforcement learning task designed to train par-

ticipants on pairwise discriminations before scanning. Two different versions of the task were

produced so that each participant could be trained on two occasions; once immediately prior

to scanning (recent condition), and once 24 hours before scanning (remote condition).

Unreal Development Kit (Epic Games) was used to generate a number of unique scenes

within a first-person virtual environment (see Fig 1A for examples). On each trial, a scene

depicted two buildings positioned equidistantly from a start location. One building concealed

a pile of virtual gold (reinforcement), yet the only features that predicted the rewarded location

were the wall textures rendered onto the towers of each building. Participants were tasked with

learning which wall-textures predicted reward in each scene and selecting them in order to

gain as much reward as possible.

In total, seven unique wall textures were used in each version of the task. During training,

these were combined to generate 6 binary discriminations (e.g., A>B, B>C, etc.) that implied

a 1-dimensional transitive hierarchy (A>B>C>D>E>F>G, where each letter denotes a

unique wall texture; see Fig 1B). As such, every wall texture could be assigned a scalar value

representing its utility in predicting reward. Importantly, each wall texture was rendered onto

the left and right buildings an equal number of times to ensure that non-target strategies (e.g.,

always selecting the building on the left) would not result in above-chance performance.

Fig 1 presents a schematic of the training schedule for participants in either the interleaved

or progressive learning conditions. All trials initially depicted the participant at the start loca-

tion, in front of two buildings, for up to 3 seconds. During this time participants were required

to select the building they believed contained the gold via a left/right button press (decision

period). Immediately following a response, a 4-second animation was played showing the par-

ticipant approaching their chosen building and opening its central door to reveal whether or

not it contained gold (feedback period). If no response was made within the 3-second response

window, a 4-second red fixation cross was shown in place of the feedback video.

For participants in the interleaved learning condition, all discriminations were presented in

a pseudorandom order such that there was a uniform probability (1/6) of encountering any

one discrimination on any particular trial (see Fig 1C). Given that ‘chaining’ overlapping trails

in an ordered sequence (e.g., ‘B>C’ followed by ‘C>D’) may facilitate encoding-based general-

isations [45,46], it is noteworthy that our interleaved training schedule presented participants

is relatively few chained sequences. Specifically, out of 360 training trails, there were an average

of 75.12 chains with a length of two, 10.23 chains with a length of three, and a negligible num-

ber of chains (1.51) with a length of four or more discriminations.

For participants in the progressive learning condition, the task was composed of 6 sequen-

tially presented epochs of different lengths which gradually introduced each discrimination

one-by-one. The first epoch exclusively trained the discrimination at the top of the transitive

hierarchy (A>B) across 17 trials. The second epoch involved an additional 14 trials of the

A>B discrimination but also introduced the next-highest discrimination (B>C) across 20 tri-

als (~59%). This pattern continued down the hierarchy such that, after a discrimination had

been introduced, the number of times it was tested in subsequent epochs linearly decreased
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but remained above zero so that all discriminations were tested in the final epoch (see Fig 1D).

Full details of this training procedure are provided on the OSF (https://osf.io/uzyb7/).

Regardless of the training condition that participants were assigned to, all pairwise discrim-

inations were tested 60 times each by the end of the training procedure (i.e., 360 trials in total,

~37 minutes). Before the first training session, participants were briefed on the experimental

procedure and told that the wall textures were the only features that predicted reward. These

instructions specified that each wall texture should be considered as a single separate ‘pattern’,

and that may either conceal the reward or not, depending on the other wall texture presented

within the scene. They were not given any other details regarding the number or type of

discriminations.

In-scanner task. Following the second training session, participants were tested on the 6

directly trained (premise) discriminations, and a set of 6 transitive inferences (e.g., B>D),

whilst being scanned (see Fig 1B). This tapped knowledge acquired during both of the preced-

ing training sessions. Note that the inferred discriminations did not involve wall-texture sti-

muli from the ends of each hierarchy (i.e., A and G). This is because discriminations involving

these terminal stimuli may be made by applying simple feature-based response policies (i.e.,

“Always select A”, “Always avoid G”), without the need to use a generalised value function.

Similar to the training task, all in-scanner trials initially depicted the participant at a start

location in front of two buildings. Participants were instructed to select the building that they

believed contained virtual gold based on what they had learned during training. Guesses were

strongly encouraged if the participant was not confident. Unlike the previous training sessions,

the image of the start location persisted on-screen throughout the 3-second response window

regardless of when/whether a response was made. Importantly, no feedback videos were

shown during the in-scanner task meaning that participants could not (re-)learn the contin-

gencies via external feedback. Following the response window, a fixation cross was displayed

centrally for 3.5 seconds before the next trial commenced.

The in-scanner task tested each premise/inferred discrimination 8 times (the higher value

wall-texture appeared on the left-hand building in exactly 50% of trials). As such, the task

involved a total of 192 trials: 2 trial types (premise vs inferred) x 2 training sessions (recent vs

remote) x 6 unique discriminations x 8 repetitions. Additionally, we included 16 null events

(lasting 6.5 seconds each) in order to facilitate the estimation of a resting baseline. All trials

were presented in a single run and progressed in a pseudorandom order that was determined

by an optimization procedure to enable maximally efficient decoding of trial-specific BOLD

responses (https://osf.io/eczjf/).

Refresher task. As noted, participants were trained on 2 independent sets of premise dis-

criminations in pre-scanner training sessions that occurred approximately 24 hours apart. The

wall-textures used in each session were counterbalanced across participants. Just before enter-

ing the scanner, participants practised each of the directly trained discriminations in a short

refresher task. This ran identically to the training tasks but only included 12 trials of each dis-

crimination (lasting approximately 15 minutes). The refresher was not intended to act as an

additional training phase but served to remind participants of the appearance of all wall tex-

tures so that they were easily identifiable.

Analysis of in-scanner performance

We used a generalised-linear mixed-effects model (GLMM) to characterise the pattern of cor-

rect vs incorrect responses during the in-scanner task. Specifically, this tested the relationship

between response accuracy and 3 binary-coded fixed-effect predictors: 1) trial type (premise vs

inferred), 2) training method (interleaved vs progressive), and 3) training session (recent vs
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remote). Additionally, a continuous (mean-centred) fixed-effect predictor accounted for the

effect of transitive distance on inference trials. All possible interactions between these variables

were included meaning that the model consisted of 12 fixed-effects coefficients in total

(including the intercept term). We also included random intercepts and slopes for each

within-subject variable (grouped by participant), and random intercepts for each unique wall-

texture discrimination (to account for any stimulus specific effects). Covariance components

between random effects were fully estimated from the data.

The outcome variable was the number of correct responses to the 8 repeated trials for each

in-scanner discrimination. This outcome was modelled as a binomial process such that param-

eter estimates encoded the probability of a correct response on a single trial, Pr(correct). To

avoid any biases resulting from failures to respond (1.81% of trials on average), we resampled

missing responses as random guesses with a 50% probability of success. The model used a logit

link-function and was estimated via maximum pseudo-likelihood using the Statistics and

Machine Learning toolbox in MATLAB R2020a (The MathWorks Inc.).

In addition to the model of response accuracy, we estimated a similar GLMM that charac-

terised behavioural patterns in response latencies (correct trials only). This GLMM used

exactly the same fixed- and random-effect predictors as above. Response times were modelled

using a log link-function and the distribution of observations was parameterised by the

gamma distribution. As before, the model was fit via maximum pseudo-likelihood in

MATLAB.

Computational models of inference performance

We predicted that inference performance would vary by experimental condition due to differ-

ences in the way inferences were made, but not because of any differences in performance for

the directly trained discriminations. To test this, we produced two competing models of the

behavioural data referred to as the AND and OR models. Both of these attempted to predict

participants’ inference performance given responses to the directly trained discriminations

alone.

The AND model assumes that correctly inferring a non-trained discrimination (e.g., ‘B>E’)

involves retrieving all the directly learnt response contingencies required to reconstruct the

relevant transitive hierarchy (e.g., ‘B>C’ and ‘C>D’ and ‘D>E’). We refer to these directly

trained discriminations as “mediating contingencies”. As such, this model captures a common

assumption of retrieval-based models of generalisation.

In contrast, the OR model assumes that participants have access to a unified structural

representation describing the associative distances between all stimuli. Nonetheless, in order

to make a successful inference, knowledge of this associative structure must be evaluated

alongside the reward contingencies indicating which of the presented stimuli is higher in the

reward hierarchy. When making an inference (e.g., B>E), it is therefore sufficient to recall

only one of the contingencies indicating which stimulus should be preferred (e.g., B>C), or

which stimulus should be avoided (e.g., D>E).

Note, these models are not intended to be process models that describe how humans solve

the task at the algorithmic level. They are merely intended to describe the data and test whether

the behaviour in each condition better accords with general predictions of encoding and

retrieval models.

To formalise both models, we first computed a likelihood function describing plausible val-

ues for the probability of correctly retrieving each premise discrimination (rp, where the index

p denotes a specific premise discrimination). To do this we assume the probability of observing

kp correct responses, to the n = 8 test trials, depends on a joint binomial process involving rp
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and, if retrieval is not successful, a random guess that yields a correct response with a probabil-

ity of 0.5:

Pr kpjn; rp
� �

¼
Xkp

m¼0

n!

m!ðkp � mÞ!ðn � kpÞ!
rmp ð1 � rpÞ

n� m
ð1=2Þ

n� m
ð1Þ

From this, the likelihood function for the parameter rp (denoted L(rp|kp, n)) is given by

dividing out a normalising constant, c(kp|n), computed by numerical integration:

L rpjkp; n
� �

¼
Prðkpjn; rpÞ
cðkpjnÞ

ð2Þ

Where:

cðkpjnÞ ¼
Z 1

0

Prðkpjn; rÞd r ð3Þ

S2A Fig displays the likelihood function for rp under different values of kp. Based on these

likelihoods, we then sampled random values of rp for each premise discrimination that medi-

ated the generalisation trails. To do this, we used an inverse transform sampling method

where a value of rp was selected such that the cumulative likelihood up to that value (i.e.,
R rp

0
Lðxjkp; nÞdx) was equal to a unique, uniformly distributed random number in the range

[0, 1] (see S2B Fig).

As noted, the AND model assumes that a non-trained discrimination depends on success-

fully retrieving all the reward contingencies that span the transitive hierarchy between pre-

sented stimuli. We denote the set of sampled rp values related to these mediating contingencies

Ai, where the index i denotes a specific non-trained discrimination, and the number of ele-

ments in Ai is equal to the transitive distance. Given the sampled values in Ai, we therefore

computed the probability this for each non-trained discrimination (denoted gandi ):

gandi ¼ k
Y

rp2Ai
rp ð4Þ

The constant term κ is a scalar value in the range [0, 1] that determines the probability of

engaging in memory-guided generalisations rather than simply guessing. This parameter was

fit to the inference data by a bounded nonlinear optimiser (“fmincon”, MATLAB Optimiza-

tion Toolbox, R2020a). Specifically, given the sampled values in Ai, the optimiser was tasked

with finding a single value of κ across all inference trials from a particular participant/condi-

tion that minimised a cross-entropy term (H) relating model predictions to the observed infer-

ence data (see https://osf.io/a6w9t). H was based on Eq 7 and describes the mean log-

probability of observing ki correct responses to all inference trials.

The OR model assumes that performance on the non-trained discriminations depends on

successfully retrieving either of the reward contingencies indicating which stimulus should be

preferred or avoided. We denote the set of sampled rp values related to these two contingencies

Oi, and computed the probability of successful inference under the OR model (gori ) as follows:

gori ¼ kð1 �
Y

rp2Oi
ð1 � rpÞÞ ð5Þ

Note that the value of κ was estimated as above, but independently for each model. We then

computed model-derived probabilities for the number of correct inference responses ki to the
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n = 8 inference trials (similar to Eq 1):

Pr kijn; gið Þ ¼
Xki

m¼0

n!

m!ðki � mÞ!ðn � kiÞ!
gmi ð1 � giÞ

n� m
ð1=2Þ

n� m
ð6Þ

In order to estimate the expected distribution of Pr (ki|n, gi) for each type of inference, we

repeatedly sampled sets of Ri over 10000 iterations using the aforementioned likelihood func-

tions (Eq 2). The cross-entropy H of each model was then taken as the mean negative log prob-

ability over all I inferences in a particular condition, from a particular participant:

H ¼ �
1

I

XI

i¼1
logðPrðkijn; giÞÞ ð7Þ

To analyse condition-dependent differences in the cross-entropy statistics, we entered

them into a GLMM with 3 binary-coded fixed effect predictors: 1) inference model (AND vs

OR), 2) training method (interleaved vs progressive), and 3) training session (recent vs

remote). All possible interactions between these predictors were also included. The GLMM

further contained random intercepts and slopes of each fixed effect (grouped by participant),

with a covariance pattern that was fully estimated from the data. Cross-entropy was modelled

using a log link-function and the distribution of observations was parameterised by the

gamma distribution. The model was fitted via maximum pseudo-likelihood in MATLAB.

Although the gradient of transitive slopes may also be used to differentiate encoding vs

retrieval-based mechanisms [5,26], the approach outlined above explicitly accounts for differ-

ences in premise trial performance that can otherwise confound the analysis. For instance, dis-

criminations between stimuli separated by a larger transitive distance are more likely to

involve reward contingencies that can be remembered either better or worse than most others.

This may have non-linear effects on inferential accuracy thereby obscuring, or even reversing,

the direction of transitive slopes. Our computational models overcome this problem by explic-

itly accounting for the profile of premise trial performance.

MRI acquisition

All functional and structural volumes were acquired on a 1.5 Tesla Siemens Avanto scanner

equipped with a 32-channel phased-array head coil. T2�-weighted scans were acquired with

echo-planar imaging (EPI), 34 axial slices (approximately 30˚ to AC-PC line; interleaved) and

the following parameters: repetition time = 2520 ms, echo time = 43 ms, flip angle = 90˚, slice

thickness = 3 mm, inter-slice gap = 0.6 mm, in-plane resolution = 3 × 3 mm. The number of

volumes acquired during the in-scanner task was 537. To allow for T1 equilibrium, the first 3

EPI volumes were acquired prior to the task starting and then discarded. Subsequently, a field

map was captured to allow the correction of geometric distortions caused by field inhomoge-

neity (see the MRI pre-processing section below). Finally, for purposes of co-registration and

image normalization, a whole-brain T1-weighted structural scan was acquired with a 1mm3

resolution using a magnetization-prepared rapid gradient echo pulse sequence.

MRI pre-processing

Image pre-processing was performed in SPM12 (www.fil.ion.ucl.ac.uk/spm). This involved

spatially realigning all EPI volumes to the first image in the time series. At the same time,

images were corrected for geometric distortions caused by field inhomogeneities (as well as

the interaction between motion and such distortions) using the Realign and Unwarp algo-

rithms in SPM [65,66]. All BOLD effects of interest were derived from a set of first-level gen-

eral linear models (GLM) of the unsmoothed EPI data in native space. Here, we estimated
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univariate responses to the 24 discriminations (i.e., 6 premise + 6 inferred, from each day)

using the least-squares-separate method [67]. To do this, a unique GLM was constructed for

each discrimination such that one event regressor modelled the effect of that discrimination

while a second regressor accounted for all other discriminations. As such, one beta estimate

from each model encoded the BOLD response for a particular discrimination. These models

also included the following nuisance regressors: 6 affine motion parameters, their first-order

derivatives, squared values of the motion parameters and derivatives, and a Fourier basis set

implementing a 1/128 Hz high-pass filter.

For the analysis of univariate BOLD activity, the 24 beta estimates related to each discrimi-

nation were averaged within regions of interest and entered into a linear mixed-effects regres-

sion model (see ‘Analysis of univariate BOLD’ below). For the RSA, these beta estimates were

linearly decomposed into voxel-wise representations of each wall texture in the reinforcement

learning task (n = 7 per transitive chain). This decomposition involved multiplying the 24 beta

values from a given voxel with a 15�24 transformation matrix that encoded the occurrence of

each wall texture across discriminations (see Fig 5A). The first 7 outputs of this transformation

related to the recently learnt wall textures, the second 7 outputs related to remotely learnt wall

textures, and the final output encoded overall BOLD differences between premise and inferred

trials (a nuisance term that was not included in any further analysis). Importantly, BOLD rep-

resentations for wall textures ‘A’ and ‘G’ may have trivially differed from all other patterns

since these stimuli were only presented in premise trails and so were only shown alongside

one other wall texture (‘B’ and ‘F’, respectively). As such, similarity scores involving the ‘A’

and ‘G’ patterns were excluded from the RSA leaving only scores related to ‘B’, ‘C’, ‘D’, ‘E’,

and ‘F’.

Regions of interest

Numerous studies have implicated the hippocampus, entorhinal cortex, and medial

prefrontal cortices in memory generalisations [4,7,19,10–17]. As such, our a priori ROIs com-

prised 8 binary masks that covered all these areas in native space (separately in each hemi-

sphere). This was done by transforming group-level masks in MNI space using the inverse

warp utility in SPM12. For the hippocampus, we used an MNI mask provided by Ritchey et al

[68]. The entorhinal masks were derived from the maximum probability tissue labels provided

by Neuromorphometrics Inc. Finally, 4 separate masks corresponding to the left and right

inferior and superior MPFC were defined from a parcellation that divided the cortex into 100

clusters based on 17 resting-state networks identified by Schaefer et al [69]. Normalised group

averages of each ROI used in our main analyses are shown in S3 Fig and are available at

https://osf.io/tvk43/.

Notably, the MPFC ROIs that we selected for a priori analyses were relatively large com-

pared to the hippocampal and entorhinal ROIs. As such, we provide supplementary analyses

of the MPFC based on a finer, 400 cluster, parcellation of the Schaefer et al networks

(see S3 Text).

Analysis of univariate BOLD

Univariate BOLD effects were investigated within a set of linear mixed-effects models

(LMMs). These characterised condition-dependent differences in ROI-averaged beta estimates

that derived from a first-level GLM of the in-scanner task (see ‘MRI pre-processing’ above).

The LMMs included 3 binary-coded fixed-effect predictor variables: 1) trial type (premise vs

inferred), 2) training method (interleaved vs progressive), and 3) training session (recent vs

remote). Additionally, 3 mean-centred continuous fixed-effects were included: i) inference
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accuracy (averaged across discriminations, per participant, per session), ii) ’transitive slope’

(the simple correlation between transitive distance and accuracy, per participant, per session),

and iii) transitive distance per se (applied to inference trials only). All interactions between

these variables were also included (excluding interactions between the continuous predictors)

meaning that the model consisted of 28 fixed-effects coefficients in total (including the inter-

cept term). We also included random intercepts and slopes for each within-subject fixed-effect

(group by participant), as well as random intercepts for each unique wall-texture discrimina-

tion (both grouped and ungrouped by participant). Covariance components between random

effects were fully estimated from the data. The model used an identity link-function and was

estimated via maximum likelihood in MATLAB.

Representational similarity analysis

Condition-dependent differences in the similarity between wall-texture representations were

also investigated using LMMs. To generate these models, we first estimated BOLD similarity

in each ROI by producing a pattern-by-pattern correlation matrix from the decomposed wall-

texture representations (including wall textures ‘B’ to ‘F’ only, see ‘MRI pre-processing’). The

resulting correlation coefficients were then Fisher-transformed before being entered into each

LMM as an outcome variable. These models were structured to predict the Fisher-transformed

similarity scores as a function of various predictors of interest. As above, covariance compo-

nents between random effects were fully estimated from the data. The models used an identity

link-function and were estimated via maximum likelihood in MATLAB.

Critically, the temporal structure of the in-scanner task and least-squared decomposition

procedure introduced nuisance correlations between wall texture representations. To account

for these, we derived two predictor variables of no-interest and used them to model nuisance

effects in each LMM described below. The first predictor accounted for trivial correlations

resulting from shared sources of noise across co-presented wall textures. This was taken as the

Fisher-transformed correlation between binary vectors encoding whether each pair of wall tex-

tures were presented in same the in-scanner trails. Across analyses, this predictor invariably

accounted for a significant amount of variance in the similarity scores, r2[0.105, 0.277].

The second predictor of no-interest modelled nuisance correlations attributable to the tem-

poral proximity of trials during the in-scanner task and the pattern decomposition procedure

itself. To estimate these correlations, we simulated independent, normally distributed voxel

patterns for all wall textures across a large number of iterations, mixed them together in accor-

dance with the trial timings for each subject, and re-estimated the voxel patterns using the

least-squares-separate decomposition procedure outlined above. The predictor of no-interest

was then taken as the mean Fisher-transformed correlation between simulated wall-textures

across iterations. Using this procedure, we aimed to model the effect of fMRI repetition sup-

pression by parametrically modulating the simulated BOLD responses such that repeated pre-

sentations evoked an attenuated response. This adjustment was based on Fritsche et al [70]

who report that repetition suppression effects in the parahippocampal cortex yield a BOLD

attenuation of approximately 23% following a 100ms delay, and 10% following a 1-second

delay. Given this, we applied repetition suppression effects assuming an exponential recovery

from adaptation over time. Our simulations showed that the presence of such effects did not

notably bias BOLD pattern recovery. Furthermore, the temporal signal-to-noise ratio of the

fMRI signal had little effect on the correlational structure of the recovered BOLD patterns.

Nonetheless, the simulations did reveal some minor nuisance correlations that tended to

account for a significant amount of variance in the pattern similarity scores, r2[0.001, 0.183].
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Within-hierarchy RSA

The first set of similarity analyses tested for differences between wall-texture representations

from the same transitive hierarchy. Similar to the models described previously, these LMMs

included 5 fixed-effect predictors of interest: 1) training method, 2) training session, 3) transi-

tive distance, 4) inference accuracy, and 5) transitive slope. All interactions between these vari-

ables were also included (excluding interactions between inference accuracy and transitive

slope). The LMMs also included random intercepts and slopes for each effect derived from a

repeated measure variable. Finally, the models comprised an extensive set of random inter-

cepts and slopes (grouped by participant) that accounted for all dependencies between pattern

correlations (see https://osf.io/jwaek).

Across-hierarchy RSA

The second set of similarity analyses tested for differences between wall-texture representations

from different transitive hierarchies (i.e., those learnt in different training sessions). These

LMMs included 4 fixed-effect predictors of interest: 1) training method, 2) transitive distance,

3) inference accuracy, and 4) transitive slope. Note that the effect of training session was not

included as did not apply when examining the similarity between representations learnt in dif-

ferent sessions. As before, the effect of transitive distance accounted for comparisons between

wall-textures at different levels of the hierarchy. However, in this set of models, the distance pre-

dictor included an additional level (Δ0), corresponding to comparisons between wall-textures at

the same hierarchical level. The across-hierarchy LMMs included the same nuisance variables

and random-effects as in the within-hierarchy RSA (https://osf.io/cjv7h).

Statistical validation and inference

To ensure that each linear mixed-effects regression model was not unduly influenced by outly-

ing data points, we systematically excluded observations that produced unexpectedly large

residual values above or below model estimates. The threshold for excluding data points was

based on the number of observations in each model rather than a fixed threshold heuristic. We

chose to do this because the expected range of normally distributed residual values depends on

the sample size which varied between models. Across all linear models, we excluded data

points that produced an absolute standardised residual larger than the following cut-off

threshold (z):

z ¼ F� 1 1

2
1 � 2�

1
n

� �� �

ð8Þ

Where, F−1 is the Probit function, and n is the sample size. This threshold was chosen as it

represents the bounds of a standard normal distribution that will contain all n normally dis-

tributed data points of a random sample, 50% of the time. The value of z is approximately 2.7

when n = 100 and 3.4 when n = 1000. After excluding outliers, Kolmogorov–Smirnov tests

indicated that the residuals were normally distributed across all the linear mixed-effects mod-

els (across analyses, the proportion of excluded outliers ranged between 0 and 0.941%; see

https://osf.io/cvm3r). Additionally, visual inspection of scatter plots showing residual versus

predicted scores indicated no evidence of heteroscedasticity, non-linearity or overly influential

datapoints (see https://osf.io/zpumq).

All p-values are reported as two-tailed statistics. Unless otherwise stated, we only report sig-

nificant effects from the fMRI analyses that survive a Bonferroni correction for multiple com-

parisons across our 8 regions of interest.
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Supporting information

S1 Text. A supplementary analysis demonstrating that, relative to interleaved training

schedules, progressive training can bias some artificial neural networks to learn task repre-

sentations that directly encode generalised relationships.

(PDF)

S2 Text. A report of significant effects that were identified in the representational similarity

analyses but did not involve interactions with transitive distance and therefore did not

directly relate to our a priori hypotheses. As such, these results reflect changes in representa-

tional similarity that only vary by inferential accuracy, transitive slope, or experimental condition.

(PDF)

S3 Text. A supplementary analysis of univariate and multivariate effects in the MPFC

based on a finer parcellation of the cortex–the Schaefer et al [69]17-network, 400-region

parcellation (see Methods).

(PDF)

S1 Table. Mean Spearman rank correlations between the number of correct responses to

each inferred discrimination and the number of correct responses expected under the

AND and OR models. Rounded parentheses represent bootstrapped standard errors and

square braces indicate bootstrapped 95% confidence intervals.

(PDF)

S1 Fig. Univariate BOLD activity in the hippocampus did not significantly predict infer-

ence performance. Panels A and B show activity in the left hippocampus. Panels C and D

show activity in the right hippocampus. Bar charts display mean response amplitudes to all in-

scanner discriminations split by trial type (premise vs inferred) and experimental condition

(training method and session). Scatter plots display mean response amplitudes to all inference

trials (both recent and remote) as a function of inference performance, split by training

method (interleaved vs progressive). The only effect that reached statistical significance in

these regions was detected in the right hippocampus. Here, a main effect of trial type indicated

lower levels of BOLD activity on inference trails (panel C), yet this effect was not modulated by

training method or inference performance. Individual data points indicate discrimination-spe-

cific BOLD estimates for each participant and error-bars indicate 95% confidence intervals.

(TIF)

S2 Fig. In constructing the AND/OR models of human inference performance, memory

for the premise discriminations was parametrised by computing a likelihood function of

plausible values for the probability of correct retrieval (L(rp), where p denotes a specific

premise discrimination). To do this we assume the probability of observing kp correct

responses to the n = 8 test trials depends on a joint binomial process involving rp and, if

retrieval is not successful, a random guess that yields a correct response with a probability of

0.5 (see Methods). Panel A presents the likelihood function for rp under different values of kp.
To approximate this distribution for the analysis, we randomly sampled values of rp using

inverse transform sampling. This involved generating uniformly distributed random numbers

in the range [0, 1] and selecting values of rp that returned cumulative likelihoods matching

those random values (panel B).

(TIF)

S3 Fig. Normalised group averages of each ROI in MNI space. Each column relates to a dif-

ferent brain region and the blue-/orange- coloured overlays depict left-/right- hemisphere
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ROIs (respectively). Overlay lightness represents ROI coverage across participants.

(TIF)
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