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Abstract Theories of prefrontal cortex (PFC) as optimizing reward value have been widely 
deployed to explain its activity in a diverse range of contexts, with substantial empirical support 
in neuroeconomics and decision neuroscience. Similar neural circuits, however, have also been 
associated with information processing. By using computational modeling, model-based functional 
magnetic resonance imaging analysis, and a novel experimental paradigm, we aim at establishing 
whether a dedicated and independent value system for information exists in the human PFC. We 
identify two regions in the human PFC that independently encode reward and information. Our 
results provide empirical evidence for PFC as an optimizer of independent information and reward 
signals during decision-making under realistic scenarios, with potential implications for the interpre-
tation of PFC activity in both healthy and clinical populations.

Editor's evaluation
The paper proposes independent and dedicated reward value and information value systems 
that drive choice. The paper uses a combination of computational modeling and fMRI to provide 
evidence for these systems in the medial frontal cortex, respectively situated them in vmPFC and 
dACC.

Introduction
A general organizational principle of reward value computation and comparison in prefrontal cortex 
(PFC) has accrued widespread empirical support in neuroeconomics and decision neuroscience 
(Rangel et  al., 2008; Doya, 2008; Montague et  al., 2006). Other perspectives, however, have 
suggested the existence of a second, independent value system for optimizing information within 
PFC (Friston, 2010; FitzGerald et al., 2015; Friston, 2003). Here, we aim at establishing whether a 
dedicated and independent value system for information actually exists in the human PFC. Charac-
terizing independent value signals in the brain can offer insights into many disorders characterized by 
both reward and information-seeking abnormalities, such as schizophrenia (Martinelli et al., 2018), 
depression (Hildebrand-Saints and Weary, 2016), and addiction (Dezza et al., 2021).
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Substantial empirical evidence in neuroeconomics and decision neuroscience (Rangel et al., 2008; 
Doya, 2008; Montague et al., 2006; Bartra et al., 2013; Lopez-Persem et al., 2020) suggests that 
PFC computes a cost-benefit analysis in order to optimize the net value of rewards (Rangel et al., 
2008; Doya, 2008; Montague et al., 2006; Rushworth et al., 2012). PFC subregions, such as ventro-
medial PFC (vmPFC) and dorsal anterior cingulate cortex (dACC), appear to encode reward signals 
across a wide range of value-based decision-making contexts, including foraging (Kolling et al., 2012; 
Shenhav et al., 2016), risk (Kolling et al., 2014), intertemporal (Wittmann et al., 2016; Boorman 
et al., 2013), and effort-based choice (Arulpragasam et al., 2018; Skvortsova et al., 2014). Inter-
estingly, these regions are also activated when people seek information (Charpentier and Cogliati 
Dezza, 2021). VMPFC, for example, encodes the subjective value of information (Kobayashi and 
Hsu, 2019) as well as anticipatory information signals indicating that a reward will be received later on 
Iigaya et al., 2020. VMPFC also correlates with ongoing uncertainty during exploration tasks (Trudel 
et al., 2021) and with the upcoming delivery of information (Charpentier et al., 2018). DACC is acti-
vated when people observe outcomes of options without actively engaging with them (Blanchard and 
Gershman, 2018). Its activity is also associated with perceptual uncertainty (Jepma et al., 2012) and 
it predicts future information sampling to guide actions (Kaanders et al., 2020).

This overlapping activity between reward and information suggests that these two adaptive signals 
are related. Indeed, information signals can be partly characterized by reward-related attributes such 
as valence and instrumentality (Kobayashi et al., 2019; Sharot and Sunstein, 2020), while reward 
signals also contain informative attributes (e.g., winning $50 on a lottery allows the recipient to gain 
the reward amount but also information about the lottery itself Wilson et al., 2014; Smith et al., 
2016). Because of this ‘shared variance’ it may not be surprising that the neural substrates underlying 
information processing frequently overlap with those involved in optimizing reward.

This raises an interesting question as to whether information and reward are really two distinct 
signals. In other words, is information gain merely a kind of reward that is processed in the same 
fashion as more typical rewards, or is the calculation of information value at least partially independent 

Figure 1. Simulations of a model with independent value systems. (A) When not controlling for shared variance between reward and information, an RL 
model which consists of independent reward (RelReward) and information value systems (Information Gain; see Materials and methods for more details) 
shows overlapping activity between reward and information signals. To simulate activity of the reward system, a linear regression predicting RelReward 
with RelReward as independent variable was adopted in the reward contrast; while a linear regression predicting RelReward with Information Gain 
was used in the information contrast. To simulate activity of the information system, a linear regression predicting Information Gain with RelReward as 
independent variable was adopted in the reward contrast; while a linear regression predicting Information Gain with Information Gain as independent 
variable was adopted in the information contrast. The model was simulated 63 times and model parameters were selected in the range of those 
estimated in our human sample. The figure shows averaged betas for these linear regressions. A one-sample t-test was conducted to test significance 
against zero. (B) When controlling for the shared variance, reward and information activities from the same RL model do not overlap anymore. To 
account for the shared variance, RelReward and Information Gain predictors were orthogonalized using serial orthogonalization. We simulated activity 
for both the reward system and information system in the same fashion as explained in (A). The analysis of those activities was however different. In 
the information contrast, we entered the orthogonalized (with respect to RelReward) Information Gain as an independent variable, while in the reward 
contrast, we entered the orthogonalized (with respect to Information Gain) RelReward. In all the panels, * is p<0.05, ** is p<0.01, *** is p<0.001. RL, 
reinforcement Learning.

https://doi.org/10.7554/eLife.66358
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of reward value computations? While it is possible that information gain may be valuable in the same 
way as reward, it may also be the case that the apparent overlap in brain regions underlying reward 
and information processing may be due to the shared variance between these two distinct signals.

In order to assess whether independent information and reward signals could produce overlapping 
activity, we developed a reinforcement learning (RL) model which consists of information and reward 
value systems (Cogliati Dezza et al., 2017) independently calculating information gain and reward 
(see Materials and methods). Simulations of this model suggest how functional magnetic resonance 
imaging (fMRI) analyses might identify overlapping activity between reward and information systems 
if the ‘shared variance’ between them is not taken into account (Figure 1A). Even though both signals 
are computed independently by distinct systems, a typical model-based analysis identifies information-
related activity in the reward system, and reward-related activity in the information system.

The same simulations suggest how the spurious functional overlap between information and reward 
systems might be avoided (Figure 1B). Rather than regressing model activity against reward and infor-
mation signals in isolation, orthogonalizing one regressor with respect to the other eliminates the 
apparent overlap in function between the systems. When information is orthogonalized with respect 
to reward, the reward system no longer exhibits information effects, and orthogonalizing reward with 
respect to information eliminates reward effects in the information system.

Figure 2. Behavioral task and behavior. (A) One game of the behavioral task consisted of six consecutive forced-choice trials and from 1 to 6 free-
choice trials. fMRI analyses focused on the first free-choice trial (shown in yellow). (B) In the forced-choice task, participants chose a pre-selected deck 
of cards (outlined in blue). (C) In the free-choice task, they were instead free to choose a deck of cards in order to maximize the total number of points. 
(D) Participants’ behavior was predicted by both experienced reward (Highest Reward) and the number of times the options were chosen in previous 
trials (Sample). The figure shows beta weights from a logistic regression with participants’ exploitative choices as dependent variable and Highest 
Reward and Sample as independent variables. Exploitative choices were classified as those choices in which participants chose the option in the first 
free-choice trial associated with the highest average of points collected during the forced-choice task of the same game. (E) DACC and vmPFC activities 
follow a symmetrical opposite pattern. Activity is split as a function of reward levels (low, mid, and high). (F) Main GLMs adopted in the fMRI analyses. 
(G) DACC activity correlates with selecting the lower reward option. (H) VMPFC activity correlates with selecting the highest reward option. Activity scale 
represents z-score. dACC, dorsal anterior cingulate cortex; fMRI, functional magnetic resonance imaging; vmPFC, ventromedial prefrontal cortex.

https://doi.org/10.7554/eLife.66358
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These results suggest that by controlling for the shared variance between information and reward 
signals in this fashion, it is possible to establish whether a dedicated and independent value system for 
information actually exists in human PFC. To do so, we developed a novel behavioral task that allows 
us to jointly investigate both reward and information-seeking behaviors. Next, we adopted computa-
tional modeling techniques to dissociate the relative contribution of reward and information in driving 
choice behavior and model-based fMRI to localize their activity in the brain.

Results
Reward and information jointly influence choices
Human participants made sequential choices among three decks of cards over 128 games, receiving 
between 1 and 100 points after each choice (Figure 2; Materials and methods). The task consisted 
of two phases (Figure  2A): a learning phase (i.e., forced-choice task) in which participants were 
instructed which deck to select on each trial (Figure  2B), and a decision phase (i.e., free-choice 
task) in which participants made their own choices with the goal of maximizing the total number of 
points obtained at the end of the experiment (Figure 2C). Logistic regression of subjects’ behavior 
on choices made on the first trial of the free-choice task shows that participants’ choices were driven 
by both rewards (mean β=3.22, t(1,19)=12.4, p<10–9) and information that is the number of time the 
option was sampled in previous trials (mean β=–3.68, t(1,19)=–7.84, p<10–6) experienced during the 
learning phase (Figure 2D).

The gambling task elicits activity in dACC and vmPFC
We first investigated whether our gambling task elicits dACC and vmPFC activity, both being regions 
involved in reward and information processing (Charpentier and Cogliati Dezza, 2021).

We conducted a one sample t-test on the beta weights estimated for GLM0 which consists of two 
regressors, one modeling choice onset associated with selection of the highest rewarded options 
(Highest Reward), and another regressor modeling choice onset associated with lower rewarded 
options (Lower Reward). This and all subsequent fMRI analyses focus on the time window preceding the 
first free choices (Materials and methods). Results showed that vmPFC activity is positively correlated 
with the reward associated with the chosen option (Highest reward – Lower Reward; FWE p=0.009, 
uncorr p=0.000, voxel extent=203, peak voxel coordinates (–6, 30, –14), t(19)=5.48; Figure 2H), while 
dACC/preSMA activity was negatively correlated with the reward of the chosen option (Lower Reward 
– Highest Reward; FWE p=0.158, uncorr p=0.014, voxel extent=87, peak voxel coordinates (–2, 12, 
58), t(19)=4.66; Figure 2G).

We note that the cluster of activity we identify as ‘dACC’ spans into supplementary motor areas. 
Many fMRI studies on value-based decision-making reporting similar activity patterns, however, 
commonly refer to activity around this area as dACC (Shenhav et al., 2014; Vassena et al., 2020). 
Additionally, in the Lower Reward – Highest Reward contrast activity did not survive correction for 
multiple comparisons. This might be due to individual differences in subjective reward value. We 
address this issue in the next section by adopting model-based approaches. We conducted, however, 
a small volume analysis using functionally defined regions taken from FIND lab (Stanford University; 
https://findlab.stanford.edu/functional_ROIs.html) corresponding to our prior hypotheses. Results 
show a significant cluster at voxel coordinates (–2, 12, 58) after correcting for multiple comparisons 
(FWE p=0.011).

Overall, these results indicate that our gambling task elicits activity in dACC and vmPFC, and this 
activity follows a symmetrically opposite pattern (Figure 2E).

Apparent shared activity between reward and information
In the previous section, we showed that our gambling task elicits reward-related activity in both dACC 
and vmPFC. Here, we test whether this activity relates to both reward and information signals in both 
regions.

We fitted an RL model with information integration (Cogliati Dezza et  al., 2017) to partici-
pants’ behavior to obtain subjective evaluations of reward and information (Materials and methods; 
Supplementary file 1). Our model was better able to explain participants’ behavior compared to 
an RL model without information integration (i.e., where only reward predictions influence choices; 

https://doi.org/10.7554/eLife.66358
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fixed-effect: BICgkRL=391.2, BIC standardRL=428.8, for individual BICs, see Supplementary file 2; random-
effect: xpgkRL=1, xpstandardRL=0) and to predict behavioral effects observed in our sample. For the latter, 
we simulated our model using the estimated free parameters and we performed a logistic regression 
for each simulation predicting the model’s choices with reward and information (i.e., the number of 
times the option was sampled in previous trials) as fixed effects. As observed in our human sample, 
reward and information were significantly impacting model choices (both p<10–5).

Moreover, the degree of accuracy of the fitting procedure was inspected by running a parameter 
recovery analysis. We simulated data from our model using the parameters obtained from the fitting 
procedure, and we fit the model to the simulated data to obtain the estimated parameters. We then 
ran a correlation for each pair of parameters (Wilson and Collins, 2019). This revealed high correla-
tion coefficients for α(r=0.8, p<10–3), β(r=0.8, p<10–3), ω(r=0.6, p=0.006), and γ(r=0.6, p=0.002).

Next, we computed subjective evaluations of reward as relative reward values (RelReward; Mate-
rials and methods) and subjective evaluations of information as the prospective information gain for 
selecting a deck, derived from the behavioral fits of our RL model to participants’ data (Information 
Gain; Materials and methods).

Assessing alternative definitions of reward
Before assessing whether activity in vmPFC and dACC relates to both reward and information, we first 
investigated whether our chosen ‘reward computation’ (i.e., RelReward) was better able to explain 
activity in vmPFC than alternative reward computations. First, we compared activity in vmPFC between 
RelReward and expected reward values (ExpReward) of the chosen option. Results showed that RelRe-
ward correlated with vmPFC after controlling for (i.e., orthogonalizing with respect to) ExpReward 
(GLM0exprel: FWE p<0.001, voxel extent=1829, peak voxel coordinates (–6, 52, 14), t(19)=7.21), 
while ExpReward after controlling for RelReward did not reveal any activity (GLM0relexp). RelReward 
also best described vmPFC activity when alternative reward covariates such as the maximum value 

Figure 3. Apparent overlapping activity between reward and information. (A) VMPFC positively correlated with 
model-based relative reward value for the selected option (in red), while dACC negatively correlated with it 
(in blue). (B) DACC (in red) positively correlated with model-based information gain, while vmPFC negatively 
correlated with it (in blue). Activity scale represents z-score. (C) Averaged BOLD beta estimates for vmPFC in 
GLM1 (Reward Dim.=Reward Dimension) and GLM2 (Info Dim.=Information Dimension). (D) Averaged BOLD beta 
estimates for dACC in GLM1 (Reward Dim.=Reward Dimension) and GLM2 (Info Dim.=Information Dimension). 
In all the panels, * is p<0.05, ** is p<0.01, *** is p<0.001. dACC, dorsal anterior cingulate cortex; vmPFC, 
ventromedial prefrontal cortex.

https://doi.org/10.7554/eLife.66358
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of 3 decks (Max Value), the minimum value of the 3 decks (Min Value) and the averaged value of the 
3 decks (Averaged Value) were entered in the same GLM allowing modulators to compete for vari-
ance (GLM0rew: betas from RelReward extracted from the vmPFC ROI identified in GLM2—to avoid 
biasing our analyses by choosing an ROI defined on RelReward—were significantly higher than the 
betas for Max Value, p<0.05; Min Value, p<0.05; Averaged Value, p<10–3). Covariates such as the 
reward value variation for the chosen option (Standard Deviation) and the value of the chosen option 
minus the value of the best second option (Chosen-Second) were not included in the analysis due to 
high correlations with RelReward (Supplementary file 3). These analyses suggested that RelReward 
was a better choice, among those considered, to describe reward activity in vmPFC elicited by our 
task design. We can now address our main question on whether activity in vmPFC and dACC observed 
in our task relates to both reward and information signals in both regions.

Overlapping reward and information activity
We tregressed the BOLD signal recorded on the first free-choice trial of each game on RelReward and 
Information Gain. RelReward and Information Gain were used as the only parametric modulators in 
two separate GLMs to identify BOLD activity related to reward (GLM1) and to information (GLM2), 
respectively, on the first free-choice trial (Figure 2F). Unless otherwise specified, all results for these 
and subsequent analyses are cluster-corrected with a voxel-wise threshold of 0.001.

Activity in vmPFC on the first free-choice trial correlated positively with RelReward (FWE p<0.001, 
voxel extent=1698, peak voxel coordinates (8, 28, −6), t(19)=6.62; Figure 3A) and negatively with 
Information Gain (FWE p<0.001, voxel extent=720, peak voxel coordinates (–10, 28, –2), t(19)=5.36; 
Figure 3B), while activity in dACC was negatively correlated with RelReward (FWE p=0.001, voxel 
extent=321, peak voxel coordinates (6, 24, 40), t(19)=4.59; Figure 3A) and positively with Information 
Gain (FWE p<0.001, voxel extent=1441, peak voxel coordinates (8, 30, 50), t(19)=7.13; Figure 3B).

Similar results were obtained when including ExpReward, instead of RelReward, as single para-
metric modulator (GLM1bis: ExpReward positively correlated with vmPFC – FWE p<0.001, voxel 
extent=530, peak voxel coordinates (–10, 34, 14), t19)=5.47 and negatively correlated with dACC – 
FWE p=0.001, voxel extent=205, peak voxel coordinates (8, 22, 40), t(19=5.47; Supplementary file 
6).

Independent value systems for information and reward after 
accounting for their shared variance
In the previous section, we showed that both dACC and vmPFC activity relate to both information and 
reward. However, GLM1 and GLM2 consider only the variance explained by reward and information, 
respectively. As explained above, simulations of our RL model which consists of independent value 
systems suggest that fMRI analyses might reveal overlapping activity if the shared variance between 
the two systems is not taken into account (Figure 1A).

To eliminate the shared variance between reward and information as a possible explanation for 
activity in dACC and vmPFC, we repeated our analyses while controlling for possible shared signals 
that may underlie our results for GLMs 1 and 2. To do so, we created two additional GLMs to inves-
tigate the effect of RelReward after controlling for Information Gain (GLM3), and the effect of Infor-
mation Gain after controlling for RelReward (GLM4; Materials and methods). Using the coordinates in 
vmPFC and dACC observed in GLMs 1 and 2, we conducted an ROI analysis. To avoid double-dipping, 
we used dACC and vmPFC ROI coordinates from GLM2 (GLM1) to analyze data in GLM3 (GLM4).

Activity in vmPFC remained positively correlated with RelReward (t(19)=4.47, p<0.001, Figure 4A) 
after controlling for Information Gain in GLM3. In contrast, whereas RelReward was negatively correlated 
with dACC activity in GLM1 (Figure 2), no significant cluster was observed after the removing variance 
associated with Information Gain in GLM3 (t(19)=–1.14, p=0.27, Figure 4A) as predicted by our model 
simulations (Figure 3B). Similarly, after controlling for the effects of RelReward in GLM4, we observed 
significant activity in dACC positively correlated with Information Gain (t(19)=4.39, p<0.001), while 
we found no correlated activity in vmPFC (t(19)=–0.799, p=0.434, Figure  4B). These results were 
replicated after contrasting GLM3 and GLM4 using a paired t-test (GLM3>GLM4: vmPFC – FWE 
p<0.001, voxel extent=467, peak voxel coordinates (–4, 52, 16), t(19)=5.59; GLM4>GLM3: dACC – 
FWE p<0.001, voxel extent=833, peak voxel coordinates (10, 24, 46), t(19)=5.70). We also focus the 

https://doi.org/10.7554/eLife.66358
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analysis on trials in which subjects had equal information about the options (equal information condi-
tions) and we observed no activity in dACC ROI associated to RelReward (t(19)=–0.0297, p=0.9766).

Assessing alternative definitions of reward and information
In response to reviewers’ suggestions, we repeated the above analysis using alternative definitions of 
reward and information.

For GLM4, similar results as those reported above were observed when ExpReward was entered in 
GLM4 instead of RelReward (GLM4bis: t(19)=4.4, p<10–3; Supplementary file 7) and when accounting 
for covariates for reward that is Average Value, the value of the best second option-mean (value 
chosen, value third option) and Min Value (Supplementary file 8). The rationale behind choosing 
these reward covariates was as follows: we calculated Variance Inflation Factors (Craney and Surles, 
2002) for the possible definitions of reward (suggested by reviewers) for each subject, and removed 
regressors with VIFs (averaged across subjects) above a threshold of 5 (interpreted as 80% of the vari-
ability in the regressor can be explained by the rest of the regressors). Due to high multicollinearity 
amongst the possible reward definitions, VIFs for each definition were indistinguishable (≈infinity). 
Rather than removing definitions at random, we introduced a small amount of normally-distributed 
random noise (mean=0, sigma=0.01) to the regressor values and conducted our analysis again. Our 
intent in introducing noise was to reduce correlations amongst regressors sufficiently to make ordinal 
judgments about their VIFs.

Using this approach, we removed variables with the highest VIFS iteratively. In order, these were: 
the value of the chosen reward minus the second highest reward (VIF≈2×105, 99.9995% of variability 
explained by other regressors), and the maximum reward (VIF≈320, 99.69% of variability explained 

Figure 4. Independent value systems for reward and information in PFC. (A) After controlling for information 
(GLM3), vmPFC activity (in red) positively correlated with model-based relative reward value (RelReward), 
while no correlations were observed for dACC. (B) After controlling for reward (GLM4), dACC activity (in red) 
positively correlated with model-based information gain (Information Gain), while no correlation was observed 
for vmPFC. Averaged BOLD beta estimates for vmPFC in GLM1 (Reward Dim.=Reward Dimension) and GLM2 
(Info Dim.=Information Dimension). (D) Averaged BOLD beta estimates for dACC in GLM1 (Reward Dim.=Reward 
Dimension) and GLM2 (Info Dim.=Information Dimension). In all the panels, * is p<0.05, ** is p<0.01, *** is 
p<0.001. dACC, dorsal anterior cingulate cortex; vmPFC, ventromedial prefrontal cortex.

https://doi.org/10.7554/eLife.66358
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by other regressors, after removing Chosen-Second). After removing these two regressors, VIFs for 
the remaining regressors were all under 5 (average value VIF=3.52, value of the second-best option 
VIF=1.99, relative value VIF=2.21, and minimum value VIF=3.42). We note that the AverageReward 
regressor had the highest VIF initially (VIF≈3.6×105). However, we elected to retain this definition since 
behavior and brain activity have previously been linked to the overall level of reward across options 
(Kolling et al., 2012; Cogliati Dezza et al., 2017). Next, we ran an ROI analysis based on dACC and 
vmPFC coordinates observed in GLM1. Results showed significant activity in dACC which positively 
correlates with Information Gain (t(19)=2.73, p=0.013), while we found no correlated activity in vmPFC 
as was observed in GLM2 (t(19)=−1.5, p=0.1503).

For GLM3, similar results as those reported in the previous section were observed when accounting 
for covariates and an alternative definition of information. In particular, we entered the relative value 
of information (as it is possible that vmPFC computes the ‘relativeness’ of the chosen options rather 
than its reward value) and first choice reaction time as covariates (GLM3bis). An ROI analysis based on 
dACC and vmPFC coordinates observed in GLM2 showed that activity in vmPFC remained positively 
correlated with RelReward (t(19)=4.8, p<0.001) after controlling for Information Gain. In contrast, no 
significant cluster was observed after removing variance associated with Information Gain (t(19)=–
0.68, p=0.505; Supplementary file 9).

Interactions of observed activity with analysis type
To directly test our hypothesis that shared activity between reward and information in dACC and 
vmPFC is the product of confounded reward and information signals, we conducted a three-way 
ANOVA with ROI (dACC, vmpFC), Value Type (Information Gain, RelReward), Analysis type (confound-
ed{GLM1&2}, non-confounded {GLM3&4}) and we tested the three-way interaction term. If inde-
pendent reward and information value signals are encoded in the brain, the two-way interaction 
(ROI×Value Type) should be significantly modulated by the type of analysis adopted. Results showed 
a significant three-way interaction F(1,19)=37.77, p<0.001.

Finally, we check whether accounting for confounded reward and information signals had significant 
effects in both regions separately. To do so, we ran a two-way ANOVA with Value Type (Information 
Gain, RelReward), Analysis type (confounded{GLM1&2}, non-confounded {GLM3&4}) for the dACC 
ROI and a two-way ANOVA with Value Type (Information Gain, RelReward), Analysis type (confound-
ed{GLM1&2}, non-confounded {GLM3&4}) for the vmPFC ROI. Results showed a significant two-way 
interaction for the dACC ROI (F(1,19)=25.7, p=0.0001) as well as for the vmPFC ROI (F(1,19)=13.7, 
p=0.0015).

Altogether these findings suggest a coexistence of two independent value systems for reward and 
information in the human PFC.

dACC encodes information after accounting for choice difficulty or 
switching behavior
Activity in dACC has been often associated with task difficulty/conflict (Shenhav et al., 2014; Botvi-
nick et al., 2001) or switching to alternative options (Domenech et al., 2020). To investigate whether 
this was the case in our task, we first correlated the standardized estimates of Information Gain with 
choice reaction times on the first free-choice trials. The correlation was run for each subject and 
correlation coefficients were tested against 0 using a Wilcoxon signed test. Overall, correlation coeffi-
cients were not significantly different from 0 (mean r=0.031, SE=0.024; Z=145; p=0.1429) suggesting 
that pursuing an option with higher or lower information gain was not associated with higher or lower 
choice reaction times as predicted by a choice difficulty or conflict account of dACC function. We then 
entered choice reaction time as additional regressor in GLM4 alongside the across-option standard 
deviation (i.e., the standard deviation of expected reward values of the three options at time of the 
first free choice) as an additional proxy for choice difficulty (if the across-option standard deviation 
is small, choosing among options is harder compared to greater values of an across-option standard 
deviation; GLM4diff). Moreover, in the same GLM4diff, we entered a switch-stay regressor as proxy 
for switching behavior (i.e., coded 0 if choices on the first free-choice trial were the same as previous 
forced trial choices and 1 otherwise). We then used vmPFC and dACC ROIs from GLM1 to analyze the 
data. Results essentially replicate the above findings with significant activity in dACC which positively 
correlated with Information Gain (t(19)=2.4, p=0.027), while we found no significant activity in vmPFC 
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(t(19)=−0.757, p=0.544; Supplementary file 10). No activity in dACC (t(19)=0.7498, p=0.4625) and 
vmPFC ROIs (t(19)=–0.4423, p=0.6633) was observed in the negative contrast.

Finally, in our task, the frequency of choosing the most informative option was higher than the 
frequency of choosing the two other alternatives (in the unequal condition—when participants were 
forced to sample options a different number of times, see Materials and methods; mean=64.6%, 
SD=18%). It is possible, therefore, that in our task, the default behavior was selecting the most infor-
mative options, and the switch behavior (or moving away from a default option) was selecting less 
informative (but potentially more rewarding) options. If this is correct, regions associated with explora-
tion or switching behaviors (e.g., frontopolar cortex; Daw et al., 2006; Zajkowski et al., 2017) should 
be activated when participants select a non-default option (i.e., not choosing the most informative 
option).

We conducted a one sample t-test on the beta weights estimated for GLM5 which consists of a 
regressor modeling choice onset associated with the most informative options (Default), and another 

Figure 5. NoDefault vs. default behavior, instrumental information and combination of reward and information signals in subcortical regions. (A) Activity 
in the frontopolar region—a region often associated with exploration—correlated with NoDefault behavior (not choosing the most informative 
options)—Default behavior (choosing most informative options). (B) Activity in dACC correlated with Information Gain after controlling for the variance 
explained by the instrumental value of information. (C) Activity in vmPFC and dACC correlated with the instrumental value of information after 
accounting for the variance explained by Information Gain. (D) Activity in the ventral putamen (striatum region) correlated with response probabilities 
derived from the RL model. (E) RelReward, Information Gain, and response probabilities overlap in the striatum region (in white). Activity scale 
represents z-score. dACC, dorsal anterior cingulate cortex; RL, reinforcement Learning; vmPFC, ventromedial prefrontal cortex.
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regressor modeling choice onset associated with the other two options (NoDefault). Activity in fronto-
polar cortex was positively correlated with NoDefault (NoDefault – Default; Figure 5A; FWE p=0.019, 
voxel extent=148, peak voxel coordinates (–18, 52, 6), t(19)=5.71). We additionally analyzed the 
data using the dACC ROI from GLM1. Results showed no activity in the selected ROI (t(19)=0.664, 
p=0.514). First, this suggests that moving away from a default option in our task is associated with not 
choosing the most informative options. In other words, seeking information was decorrelated from 
moving away from a default option. Second, it additionally suggests that dACC activity elicited in 
our task is associated with the value of information, and not with moving away from a default option.

We would like to acknowledge, however, that while dACC activity associated to Information Gain 
in our task is not affected by proxies of exploratory decisions (e.g., switch-stay analysis and Default vs. 
NoDefault analysis), our task cannot dissociate decisions to explore to gain information (i.e., directed 
exploration) and Information Gain. This is because Information Gain and directed exploration in our 
task describe the same thing—picking the option about which least is known.

Activity in dACC signals both the non-instrumental and instrumental 
value of information
In the previous sections, we showed that the value of information was independently encoded in 
dACC after accounting for reward, choice difficulty, and switching strategy. However, in our task, 
different motives may drive participants to seek information (Sharot and Sunstein, 2020). Information 
can be sought for its usefulness (i.e., instrumental information): the acquired information can help with 
the goal of maximizing points by the end of each game. Alternatively, information can be sought for 
its non-instrumental benefits including novelty, curiosity, or uncertainty reduction. Here, we tested 
whether the value of information independently encoded in dACC relates to the instrumental value of 
information, to its non-instrumental value, or to both.

We computed the instrumental value of information (Instrumental Information) by implementing a 
Bayesian learner and estimating the Bayes optimal long-term value for the option chosen by partici-
pants on the first free-choice trial (Materials and methods). We first entered Instrumental Information 
and Information Gain in a mixed logistic regression predicting first free choices (in the Unequal Infor-
mation Condition; Materials and methods) with Instrumental Information and Information Gain as fixed 
effects, subjects as random intercepts and 0 + Instrumental Information + Information Gain | subjects 
as random slopes. Choices equal 1 when choosing the most informative options (i.e., the option never 
selected during the forced-choice task), and 0 when choosing options selected four times during the 
forced-choice task. We found a positive effect of Information Gain (beta coefficient=71.7±16.76 (SE), 
z=4.28, p=10–5) and a negative effect of Instrumental Information (beta coefficient=–2.3±0.463 (SE), 
z=–4.98, p<10–6) on most informative choices.

We then entered Instrumental Information and Information Gain as parametric modulators into two 
independent GLMs. We investigated the effects of Information Gain after controlling for (orthogonal-
ized with respect to) Instrumental Information (GLM6) and the effects of Instrumental Information after 
controlling for (orthogonalized with respect to) Information Gain (GLM7; Materials and methods). 
Next, we ran an ROI analysis based on dACC and vmPFC coordinates observed in GLM1 (as both 
GLMs 6 and 7 investigate different forms of information, the ROI from GLM1 was selected to avoid 
double-dipping). Results showed that activity in dACC was positively correlated with Information 
Gain (after controlling for Instrumental Information; t(19)=5.56, p<10–4) while no significant vmPFC 
activity was found, t(19)=−1.69, p=0.108. On the contrary, Instrumental Information (after controlling 
for Information Gain) positively correlated with vmPFC (t(19)=4.83, p<10–4; Figure  5B) and nega-
tively with dACC (t(19)=−2.92, p=0.009) (Figure 5C). These results suggest that dACC encodes both 
instrumental information signals (with a negative correlation) and non-instrumental information signals 
(what is left after accounting for the variance explained by Instrumental Information in the Information 
Gain signal), with the non-instrumental value of information solely encoded in this region while the 
instrumental value of information encoded in both dACC and vmPFC.

Reward and information signals combine in the striatum
While distinct brain regions independently encode reward and information, these values appear to 
converge at the level of the basal ganglia. In a final analysis (GLM8), we entered choice probabilities 
derived from the RL model (where reward and information combine into a common option value; 
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Equation 4 in Materials and methods) as a single parametric modulator, and we observed positively-
correlated activity in bilateral dorsal putamen (striatum region; right: FWE p<0.01, voxel extent=238, 
peak voxel coordinates (22, 16, −6), t(19)=5.59); left: FWE p<0.01, voxel extent=583, peak voxel 
coordinates (–26, 8, –10), t(19)=5.89; Figure 4D. The negative contrast revealed no activity at uncorr 
p<0.001. Additionally, dorsal putamen overlaps with voxels passing a threshold of p<0.001 for overall 
brain effects of both RelReward and Information Gain from GLMs 3 and 4 (Figure 4E).

Discussion
Information and reward are key behavioral drives. Here, we show that dedicated and independent 
value systems encode these variables in the human PFC. When the shared variance between reward 
and information was taken into account, dACC and vmPFC distinctly encoded information value and 
relative reward value of the chosen option, respectively. These value signals were then combined in 
subcortical regions that could implement choices. These findings are direct empirical evidence for a 
dedicated information value system in human PFC independent of reward value.

Activity in the brain suggests that the opportunity to gain information relies on similar neural 
circuitry as the opportunity to gain rewards (Bromberg-Martin and Hikosaka, 2009; Kang et al., 
2009; Kobayashi and Hsu, 2019; Charpentier et al., 2018; Smith et al., 2016; Bromberg-Martin 
and Hikosaka, 2011; Tricomi and Fiez, 2012; Gruber et al., 2014; Jessup and O’Doherty, 2014; 
Blanchard et al., 2015) even when information has no instrumental benefits (Tricomi and Fiez, 2012; 
Gruber et al., 2014; Charpentier et al., 2018). Here, we show that the overlapping activity in PFC 
between these two adaptive signals elicited by our task design is only observed if their shared vari-
ance is not taken into account. In particular, in two independent GLMs—one with relative reward 
value and the other one with information value as a single parametric modulator—activity associated 
with reward and information activated both vmPFC and dACC. This overlapping activity might be 
explained by the fact that information signals are partly characterized by reward-related attributes 
such as valence and instrumentality Kobayashi et al., 2019; Sharot and Sunstein, 2020, while reward 
signals also contain informative attributes (e.g., winning $50 on a lottery allows the recipient to gain 
the reward amount but also information about the lottery itself; Wilson et al., 2014; Smith et al., 
2016).

When eliminating the variance shared between reward and information as a possible explana-
tion of activity, we showed that dACC activity correlated with information value but not with imme-
diate reward value, while vmPFC activity correlated with reward value but not with information value. 
This was true even when controlling for covariates including alternative definitions of reward, switch 
strategy, and choice difficulty. Our finding that activity in dACC positively correlates with the infor-
mation value of the chosen option suggests the existence of a dedicated system for information 
in the human PFC independent of the reward system. Our control analysis additionally shows that 
dACC encodes both the non-instrumental and the instrumental value of information. However, the 
instrumental value of information also elicits activity in reward regions in line with previous work on 
a common neural code between reward and information (Kobayashi and Hsu, 2019). The fact that 
neural substrates underlying information gain do not always overlap with those involved in optimizing 
reward suggests that, in fact, information and reward are not the same type of signals. In other words, 
information is valuable on its own, independent of its rewarding attributes.

These findings support theoretical accounts such as active inference (Friston, 2010; Friston, 2003; 
Friston, 2005) and certain RL models (e.g., upper confidence bound; Auer et al., 2002; Wilson et al., 
2014; Cogliati Dezza et al., 2017) which predict independent computations for information value 
(epistemic value) and reward value (extrinsic value) in the human brain. Consistent with our findings, 
the activity of single neurons in the monkey orbitofrontal cortex independently and orthogonally 
reflects the output of the two value systems (Blanchard et al., 2015). Therefore, our results may high-
light a general coding scheme that the brain adopts during decision-making evaluation.

Moreover, our results are in line with recent findings in monkey literature that identified popula-
tions of neurons in ACC which selectively encode the non-instrumental value of information (White 
et al., 2019) and are involved in tracking how each piece of information would reduce uncertainty 
about future actions (Hunt et al., 2018). Additionally, they are also consistent with computational 
models of PFC which predict that dACC activity can be primarily explained as indexing prospective 
information about an option independent of reward value (Alexander and Brown, 2011; Alexander 
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and Brown, 2018; Behrens et al., 2007). DACC has often been associated with conflict (Botvinick 
et al., 2001) and uncertainty (Silvetti et al., 2013), and recent findings suggest that activity in this 
region corresponds to unsigned prediction errors, or ‘surprise’ (Vassena et al., 2020). Our results 
enhance this perspective by showing that the activity observed in dACC during decision-making can 
be explained as representing the subjective representation of decision variables (i.e., the information 
value signal) elicited in uncertain or novel environments.

It is worth highlighting that other regions might be involved in processing information-related 
components of the value signal not elicited by our task. In particular, rostrolateral PFC signals the 
change in relative uncertainty associated with the exploration of novel and uncertain environments 
(Badre et al., 2012; Tomov et al., 2020). Neural recordings in monkeys also showed an intercon-
nected cortico-basal ganglia network that resolves uncertainty during information-seeking (White 
et al., 2019). Taken together, these findings, among others (Charpentier and Cogliati Dezza, 2021), 
highlight an intricate and dedicated network for information, independent of reward. Further research 
is therefore necessary to map this independent network in the human brain and understand to what 
extent this network relies on neural computations so far associated with reward processing (e.g., 
dopaminergic modulations; Bromberg-Martin and Hikosaka, 2009; Bromberg-Martin and Hiko-
saka, 2011; Vellani et al., 2021).

Our finding that vmpFC positively correlates with the relative reward value of the chosen option 
is in line with previous research that identifies vmPFC as a region involved in value computation and 
reward processing (Smith and Delgado, 2015). VmPFC appears not only to code reward-related 
signals (Chib et al., 2009; Kim et al., 2011; Hampton et al., 2006) but to specifically encode the 
relative reward value of the chosen option (Boorman et al., 2009), in line with the results of our study.

Our results further suggest that these independent value systems interact in the striatum, consistent 
with its hypothesized role in representing expected policies (Friston et al., 2015) and information-
related cues (Bromberg-Martin and Hikosaka, 2009; Charpentier et al., 2018; Kobayashi and Hsu, 
2019; Bromberg-Martin and Monosov, 2020). The convergence of reward and information signals 
in the striatum region is also consistent with the identification of basal ganglia as a core mechanism 
that supports stimulus-response associations in guiding actions (Samejima et al., 2005) as well as 
recent findings demonstrating distinct corticostriatal connectivity for affective and informative prop-
erties of a reward signal (Smith et al., 2016). Moreover, activity in this region was computed from the 
softmax probability derived from our RL model, consistent with previous modeling work that identi-
fied the basal ganglia as the output of the probability distribution expressed by the softmax function 
(Humphries et al., 2012).

Taken together, by showing the existence of independent value systems in the human PFC, this 
study provides the empirical evidence in support of a theoretical work aimed at developing a unifying 
framework for interpreting brain functions. Additionally, we individuated a dedicated value system for 
information, independent of reward. Overall, our results suggest a new perspective on how to look at 
decision-making processes in the human brain under realistic scenarios, with potential implications for 
the interpretation of PFC activity in both healthy and clinical populations.

Materials and methods
Participants
Twenty-one right-handed, neurologically healthy young adults were recruited for this study (12 women; 
aged 19–29 years, mean age=23.24). Of these, one participant was excluded from the analysis due 
to problems in the registration of the structural T1 weighted MPRAGE sequence. The sample size was 
based on previous studies (e.g., Kolling et al., 2012; Boorman et al., 2013; Shenhav et al., 2014). 
Participants also presented normal color vision and absence of psychoactive treatment. The entire 
group belonged to the Belgian Flemish-speaking community. The experiment was approved by the 
Ethical Committee of the Ghent University Hospital and conducted according to the Declaration of 
Helsinki. Informed consent was obtained from all participants prior to the experiment.

Procedure
Participants performed a gambling task where on each trial choices were made among three decks 
of cards (Cogliati Dezza et al., 2017; Figure 1). The gambling task consisted of 128 games. Each 
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game contains two phases: a forced-choice task where participants selected options highlighted 
by the computer for six consecutive trials, and a free-choice task where participants produced 
their own choices in order to maximize the total gain obtained at the end of the experiment (from 
1 to 6 trials, exponentially inversely distributed such that subjects were most frequently allowed 
to make six free choices). The free-choice trial length or horizon was not cued to participants. 
Therefore, in each game, participants were not aware of the free choice horizon. We have already 
shown that the choice horizon does not affect participants’ choices on this task when the horizon 
is not cued (Cogliati Dezza et al., 2017; Cogliati Dezza et al., 2019). In the forced-choice task, 
participants were forced to either choose each deck two times (equal information condition), or 
to choose one deck four times, another deck two times, and zero times for the remaining deck 
(unequal information condition). The use of the forced-choice task allows us to orthogonalize avail-
able information and reward delivered to participants in the first free-choice trial. For this reason, 
the focus of our fMRI analyses is on the first free-choice of each game (resulting in 128 trials for 
the fMRI analyses). We adopted, however, trial-by-trial fMRI analyses (treating equal information 
condition and unequal information condition altogether) to have a better estimate of the neural 
activity over the overall performance and modeling method to independently compute reward and 
information signals.

On each trial, the payoff was generated from a Gaussian distribution with a generative mean 
between 10 and 70 points and standard deviation of 8 points. The generative mean for each deck 
was set to a base value of either 30 or 50 points and adjusted independently by ±0, 4, 12, or 20 
points with equal probability, to avoid the possibility that participants might be able to discern 
the generative mean for a deck after a single observation. The generative mean for each option 
was stable within a game but varied across games. In 50% of the games, the three options had 
the same generative mean (e.g., 50, 50, and 50), while they had different means in the other half 
of the games. In 25% of these latter games, the means differed so that two options had the same 
generative mean with high values and the third option had a different generative mean with low 
values (e.g., 70, 70, and 30). In 75% of these latter games, two options had the same generative 
mean with low values and the third option had a different generative mean with high values (e.g., 
30, 30, and 30).

Participants’ payoff on each trial ranged between 1 and 100 points and the total number of points 
was summed and converted into a monetary payoff at the end of the experimental session (0.01 euros 
every 60 points). Participants were told that during the forced-choice task, they may sample options 
at different rates, and that the decks of cards did not change during each game, but were replaced 
by new decks at the beginning of each new game. However, they were not informed of the details of 
the reward manipulation or of the underlying generative distribution adopted during the experiment. 
Participants underwent a training session outside the scanner in order to make the task structure 
familiar to them.

The forced-choice task lasted about 8 s and was followed by a blank screen, for a variable jittered 
time window (1–7 s). The temporal jitter allows to obtain neuroimaging data at the onset of the 
first free-choice trial and right before the option was selected (decision window). After participants 
performed the first free-choice trial, a blank screen was again presented for a variable jittered time 
window (1–6 s) before the feedback, indicating the number of points earned, was given for 0.5 s and 
another blank screen was shown to them for a variable jittered time window. As the first free-choice 
trial was the main trial of interest for the fMRI analysis, subsequent free-choice trials were not jittered.

Image acquisition
Data were acquired using a 3T Magnetom Trio MRI scanner (Siemens), with a 32-channel radio-
frequency head coil. In an initial scanning sequence, a structural T1 weighted MPRAGE sequence 
was collected (176 high-resolution slices, TR=1550 ms, TE=2.39, slice thickness=0.9  mm, voxel 
size=0.9×0.9×0.9  mm3, FoV=220  mm, and flip angle=9°). During the behavioral task, functional 
images were acquired using a T2* weighted EPI sequence (33 slices per volume, TR=2000 ms, TE=30 
ms, no inter-slice gap, voxel size=3×3×3 mm3, FoV=192 mm, and flip angle=80°). On average, 1500 
volumes per participant were collected during the entire task. The task lasted approximately 1 hr split 
into 4 runs of about 15 min each.
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Behavioral analysis
Expected reward value and information value
To estimate participants’ expected reward value and information value, we adopted a previously 
implemented version of a RL model that learns reward values and information gained about each 
deck during the previous experience—the gamma-knowledge Reinforcement Learning model (gkRL; 
Cogliati Dezza et al., 2017; Cogliati Dezza et al., 2019). This model was already validated for this 
task and it was better able to explain participants’ behavior compared to other RL models (Friston, 
2010).

Expected reward values were learned by gkRL adopting on each trial a simple δ learning rule 
(Rescorla and Wagner, 1972):
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computed by including an exponential term γ that defines the degree of nonlinearity in the amount of 
observations obtained from options after each observation. In other words, γ governs the shape of the 
information value function: values lower than 1 indicate a concave value function, while values larger 
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final value. The parameter ‍ω‍ constitutes a ‘mixing’ parameter governing the relative importance of 
information value and reward value in generating behavior.

In order to generate choice probabilities based on expected reward and information values (i.e., 
final choice value), the model uses a softmax choice function (Daw and Doya, 2006). The softmax 
rule is expressed as:
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where ‍β‍ is the inverse temperature that determines the degree to which choices are directed 
toward the highest rewarded option. By minimizing the negative log likelihood of ‍P
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parameters α, β, and w, g, were estimated for participants’ choices made during the first free-choice 
trials. The fitting procedure was performed using MATLAB and Statistics Toolbox Release 2020a func-
tion fminsearch and its accuracy tested using parameter recovery analysis. As for the fitting procedure, 
the recovery procedure was run on first free-choice trials. The results of this fit procedure are reported 
in the Supplementary file 1. Model parameters were then used to compute the value of ‍Qt+1, j
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and ‍It, j
(
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)
‍ for each participant.
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Instrumental value of information
In order to approximate the instrumental utility of options in our task, we turn to Bayesian modeling. 
In the simplest case, a decision-maker’s choice when confronted with multiple options depends on its 
beliefs about the relative values of those options. This requires the decision-maker to estimate, based 
on prior experience, relevant parameters such as the mean value and variance of each option. On 
one hand, the mean and variance of an option can be estimated through direct experience with that 
option through repeated sampling. However, subjects may also estimate long-term reward contin-
gencies as well: even if an option has a specific mean reward during one game in our task, subjects 
may learn an estimate of the range of rewards that options can have even before sampling from any 
options. Similarly, although subjects may learn an estimate of the variance for a specific option during 
the forced-choice period, over many games subjects may learn that options in general have a variance 
around a specific value.

To model this, we developed a Bayesian learner that estimates, during each game, the probability 
distribution over reward and variance for each specific option in that game, and, over the entire exper-
iment, estimates the global distribution over mean reward and variance based on observed rewards 
from all options. A learner’s belief about an option can be modeled as a joint probability distribution 
over likely values for the mean reward µ and standard deviation σ. In order to reduce computational 
demands when conducting forward searches with the model (see below), sigma values were modeled 
as the integers from 1 to 25 and the range of rewards was modeled in 10-point increments from 5 to 
95. Prior to any exposure to the task, the probability distributions over µ and σ were initialized as a 
uniform distribution.

To model training received by each subject prior to participation in the experiment, the Bayesian 
learner was simulated on forced choices from 10 random games generated from the same routine 
used to generate trials during the experiment. After each choice was displayed, the global probability 
distribution over µ and σ was adjusted using Bayesian updating:

	﻿‍ P
(
µ,σ|R

)
∝ P

(
µ,σ

)
∗ N

(
R|µ,σ

)
‍� (5)

where N() is the probability of observing a reward for a normal distribution with a given mean and 
variance.

Following the initial training period, the model performed the experiment using games experi-
enced by the subjects themselves, that is during the forced-choice period, the model made the same 
choices and observed the same point values seen during the experiment. To model option-specific 
estimates, the model maintained three probability distributions over µ and σ corresponding to each 
option, essentially a local instantiation of the global probability distribution described above. The 
option-specific distributions were reset to the global prior distribution before each new game, and 
were updated only after an outcome was observed for that option using the same updating rule 
described in Equation 5.

The Bayesian learner described above learns to estimate the probability distribution over the mean 
and variance for each option during the forced-choice component of the experiment. If the learner’s 
only concern in the free-choice phase is to maximize reward for the next choice, it would select the 
option with the highest expected value. However, in our task, subjects are instructed to maximize their 
total return for a variable number of trials with the same set of options. In some circumstances, it is 
better to select from under-sampled decks that may ultimately have a higher value than the current 
best estimate.

To model this, we implemented a forward tree search algorithm (Ross et al., 2022; Ghavamzadeh 
et al., 2015) which considers all choices and possible outcomes (states) reachable from the current 
state, updates the posterior probability distribution for each subsequent state as described above, 
and repeats this from the new state until a fixed number of steps have been searched. By conducting 
an exhaustive tree search to a given search depth, it is possible to determine the Bayes optimal choice 
at the first free-choice trial in our experiment.

In practice, however, it is usually unfeasible to perform an exhaustive search for any but the simplest 
applications (limited branching factor, limited horizon). In our experiment, the outcome of a choice 
was an integer from 1 to 100 (# of points), and the model could select from three different options, 
yielding a branching factor of 300. The maximum number of free-choice trials available on a given 
game was 6, meaning that a full search would consider 3^8 possible states at the terminal leaves of 
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the tree. In order to reduce the time needed to perform a forward tree search of depth 6, we applied a 
coarse discretization to the possible values of µ and σ (i.e., sigma values were modeled as the integers 
from 1 to 25 and the range of rewards was modeled in 10-point increments from 5 to 95). Although 
the coarse discretization resulted in somewhat less precise estimates of the distribution over μ and σ, 
this had minimal effect on our calculation of instrumental information (see below): for a single subject, 
instrumental utility over all trials when values for μ were discretized into 10 bins correlated at 0.936 
(p<0.001) and 0.948 (p<0.001) when μ was discretized into 20 and 40 bins. We additionally pruned 
the search tree during runtime such that any branch that had a probability less than 0.001 of being 
observed was removed from further consideration.

The value of a state was modeled as the number of points received for reaching that state, plus the 
maximum expected value of subsequent states that could be reached. Thus, the value of leaf states 
was simply the expected value of the probability distribution over means (numerically integrated over 
‍σ‍), while the value of the preceding state was that state’s value plus the maximum expected value of 
possible leaf states:

	﻿‍ Value(statet,µt,σt) = R(statet) + max Value(statet+1,µt+1,σt+1)‍� (6)

Recursively applying Equation 6 from the leaf states to the first free-choice trial allows us to approx-
imate the Bayes optimal long-term value for each option (i.e., Bayes Instrumental Value). The Bayes 
Instrumental Value corresponds to the overall expected reward value of choosing, which includes both 
reward and information benefit. As the instrumental value of information is the difference between 
the overall expected reward value of choosing which includes both reward and information benefit 
(i.e., Bayes Instrumental Value) and the reward value obtained from an option without receiving infor-
mation (i.e., Reward Value without information), the latter was also computed. To do so, the Bayesian 
procedure was implemented by constraining the model to not update its belief distribution based on 
the information provided on the first free-choice trial. Next, expected instrumental value (Instrumental 
Information) for each option on the first free-choice trial following the forced-choice trials specific to 
that game was computed as:

	﻿‍

Instrumental Information c,j =

Bayes Instrumental Valuec,j − Reward Value without information c,j‍�
(7)

On an additional note, as subjects were not aware of the reward distributions adopted in the task—
therefore they might develop different beliefs—the above procedure may not reflect each individual’s 
subjective estimate, rather it reflects an objective estimate of the instrumental value of information.

fMRI analysis
The first four volumes of each functional run were discarded to allow for steady-state magnetization. 
The data were preprocessed with SPM12 (Wellcome Department of Imaging Neuroscience, Institute 
of Neurology, London, UK). Functional images were motion corrected (by realigning to the first image 
of the run). The structural T1 image was coregistered to the functional mean image for normalization 
purposes. Functional images normalized to a standardized (MNI) template (Montreal Neurological 
Institute) and spatially smoothed with a Gaussian kernel of 8 mm full width half maximum.

All the fMRI analyses focus on the time window associated with the onset of the first free trials prior 
to the choice was actually made (see Procedure). The rationale for our model-based analysis of fMRI 
data is as follows (also summarized in Supplementary file 4). First, in order to link participants’ behavior 
with neural activity, GLM0 was created with a regressor modeling choice onset associated with highest 
rewarded options (Highest Reward), and another regressor modeling choice onset associated with 
lower rewarded options (Lower Reward). Activity related to Highest Reward was then subtracted from 
the activity associated with Lower Reward (giving a value of 1 and –1, respectively) at the second level. 
Next, in order to identify regions with activity related to reward and information, we computed the 
relative value of the chosen deck (RelReward) and the (negative) value of gkrl model-derived informa-
tion gained from the chosen option (Information Gain). RelReward was computed by subtracting the 
average expected reward values for the unchosen decks from the expected reward values of the chosen 
deck c from the gkrl model ‍Q

R
t+1, j

(
c = 1

)
= Qt+1, j

(
c = 1

)
− mean

(
Qt+1, j

(
c = 2

)
, Qt+1, j

(
c = 3

) )
‍. We 

adopted a standard computation of relative reward values (Shenhav et al., 2014). It has already been 
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shown that vmPFC represents reward values following the above computation. However, we compare 
these computations with expected reward values and alternative reward computations (Results). Infor-
mation Gain was computed as ‍− It, j

(
c
)
‍ . The negative value ‍It, j

(
c
)
‍ relates to the information to be 

gained about each deck by participants. In particular, ‍− It, j
(
c
)
‍ represents the functional form on how 

information value depends on the number of samples, rather than its absolute term. We have already 
shown that humans represent information value as computed by our model compared to alterna-
tive computations when performing the behavioral task adopted in this study (Cogliati Dezza et al., 
2017). To note, the parameter ‍ω‍ is not added to the computation as it describes how much infor-
mation is relevant with respect to reward, rather the information value on itself (Supplementary file 
11). Next, we entered RelReward and Information Gain as parametric modulators into GLMS with a 
single regressor modeling the onset of the first free-choice trial as a 0 duration stick function. In GLM1, 
RelReward was included as a single parametric modulator. In GLM2, Information Gain was included 
as a single parametric modulator. In GLM3, two parametric modulators were included in the order: 
Information Gain, RelReward. In GLM4, the same two parametric modulators were included, with the 
order reversed, that is, RelReward, Information Gain. The intent of GLMs 3 and 4 was to allow us to 
investigate the effects of the second parametric modulator after accounting for variance that can be 
explained by the first parametric modulator. In SPM12, this is accomplished by enabling modulator 
orthogonalization (Wellcome Department of Imaging Neuroscience, Institute of Neurology, London, 
UK). Under ideal circumstances, results of analyzing the final parametric modulator in a sequence 
(orthogonalized with respect to all others) should be highly similar to analyses in which no serial 
orthogonalization is performed (Mumford et al., 2015). Practically, however, we have observed differ-
ences in the strength of our results with and without serial orthogonalization. While GLMs that include 
both information and reward regressors may be able to dissociate information and reward signals 
without the analysis stream we describe here, we elected to adopt serial orthogonalization in order 
to ensure variance that could be attributed to the final parameter was instead allocated elsewhere.

Additional GLMs were then used for the control analyses: GLM0exprel and GLM0relexp with 
ExpReward and RelReward as parametric modulators; and GLM0rew where the maximum value 
of 3 decks (Max Value), the minimum value of the 3 decks (Min Value), the averaged value of the 
3 decks (Averaged Value), and RelReward competed for variance. GLM1bis with expected reward 
value (ExpReward) as single parametric modulator; GLM3bis with the relative value of informa-
tion ‍RIt, j

(
c
)
‍ = ‍= It, j

(
c = 1

)
− mean

(
It, j

(
c = 2

)
, It, j

(
c = 3

) )
‍, Information Gain, first choice reac-

tion time (RT) and RelReward as parametric modulators; GLM4bis with two parametric modulators 
ExpReward and Information Gain; GLM4rew with additional computations of reward, RelReward 
and Information Gain as parametric modulators; GLM4diff with across option standard deviation 
aSD=‍sd

(
Qt+1, j

(
c = 1

)
, Qt+1, j

(
c = 2

)
, Qt+1, j

(
c = 3

))
‍, RT, switch-stay (i.e., coded 0 if choices on the 

first free-choice trial where the same as previous trial choices and 1 otherwise), RelReward and Infor-
mation Gain as parametric modulators; GLM5 which comprises of a regressor modeling choice onset 
associated with the most informative options (Default), and another regressor modeling choice onset 
associated with the other two options (NoDefault); GLM6 and 7 with Instrumental Information and 
Information Gain as parametric modulators.

To determine the regions associated with Reward and Information Gain, beta weights for the first 
(single modulator GLMS) or second (two modulator GLMS) parametric modulators were entered into 
a second level (random effects) paired-sample t-test. In order to determine activity related to the 
combination of information and reward value, GLM8 was created with the softmax probability of the 
chosen option ‍P(c/Vt, j(ci))‍ modeling the onsets of first free-choices.

Activity for these GLMs is reported either in the Result section or in Supplementary file 5.
In order to denoise the fMRI signal, 24 nuisance motion regressors were added to the GLMs where 

the standard realignment parameters were nonlinearly expanded incorporating their temporal deriv-
atives and the corresponding squared regressors (Friston et al., 1996). Furthermore, in GLMS with 
two parametric modulators, regressors were standardized to avoid the possibility that parameter esti-
mates were affected by different scaling of the models’ regressors alongside with the variance they 
might explain (Erdeniz et  al., 2013). During the second level analyses, we corrected for multiple 
comparisons in order to avoid the false positive risk (Chumbley and Friston, 2009). We corrected at 
the cluster level using both FDR and FWE. Both corrections gave similar statistical results therefore we 
reported only FWE corrections.
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