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Abstract: The physicochemical, structural properties, antioxidant, and angiotensin I-converting
enzyme (ACE) inhibitory activities of fish skin protein hydrolysate (SPH) that were freeze-dried
(SPH-FD) and spray-dried (SPH-SD) were investigated. SPH-SD showed abundant volatile com-
pounds, higher DPPH radical scavenging activity and ferrous iron chelating activity than SPH-FD,
while the ABTS radical scavenging activity and ACE inhibitory activity were not influenced by the
drying method. Amino acid compositions showed a higher proportion of proline and hydroxyproline
residues in SPH-FD. The major molecular weights were both distributed below 1000 Da. SPH-SD
had spherical structures, while SPH-FD had glass shard-like structures. The results indicated that the
drying method could affect the physicochemical properties of hydrolysates, and SPH-SD showed
potential prospects in developing functional fortified foods.

Keywords: fish skin hydrolysate; freeze drying; spray drying; antioxidant; ACE inhibitory activity

1. Introduction

Hypertension is a major risk factor for cardiovascular disease, and reactive oxygen
species (ROS) such as free radicals and peroxides can also cause cellular damage when they
reach toxic levels, increasing risks for diseases [1]. The exploration of natural antioxidants
or angiotensin converting enzyme (ACE) inhibitory molecules from processing by-products
is gaining interest compared to traditional synthetic drugs that may have toxicological
effects. There is some evidence that proteins may be an excellent source of antioxidants
and antihypertensive peptides [2]. Due to mild process conditions and easy control of
desired reactions, enzymatic hydrolysis is an efficient method to release bioactive peptides
from protein molecules. Currently, several protein hydrolysates, including adzuki bean [3],
hemp bran [4], rainbow trout viscera [5], fish sauce by-products [6], and sturgeon skin [7],
have been reported to exhibit both ACE inhibition and antioxidant activity.

Inevitably, the moisture in protein hydrolysates after the enzymatic hydrolysis process
needs to be removed by drying technology to improve the stability of the product and
prolong its shelf life [8]. Spray drying and freeze drying are the most common methods of
protein powder production. Freeze drying is an effective method for preserving the nutri-
tional content of powder products. However, its industrial-scale application is hindered
by high instrument costs and energy consumption [9]. Spray drying is a microcapsule
technology widely used in the food industry. The main advantage of spray drying tech-
nology is the ability to control particle size based on shape and morphology, but high
temperatures can destroy heat-sensitive substances [10]. Therefore, finding an effective
and practical drying process to eliminate defects while maintaining biological activity has
potential benefits.
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Bighead carp (Aristichthys nobilis) is one of the popular freshwater species grown
in China. During fish filleting and bighead carp head processing, underutilized fish by-
products include the head, skin, frames, trimmings, and fins, which account for more
than 60% of total biomass [11]. These fish by-products, especially fish skins, are a good
source of collagen or gelatin and are widely used in the food, cosmetic, and biomedical
industries. They are also the raw materials for the production of bioactive peptides or
protein hydrolysates, which can be used as functional food ingredients [12,13]. Although
processing protein hydrolysates into powders is a common procedure, to our knowledge,
limited research has been undertaken on developing drying strategies to balance the
preparation process, functionality, and bioactivity of hydrolysates [14,15].

The aim of this study was to compare the effect of freeze drying and spray drying on
the structural properties, antioxidant and ACE inhibitory activities of protein hydrolysates
from bighead carp skin. The findings may help to provide better drying strategies for the
application of fish skin hydrolysates in the food industry.

2. Materials and Methods
2.1. Materials

Bighead carp was purchased from a local aquatic market in Hangzhou, Zhejiang,
China. After the fish were stunned and sampled, the skins were collected manually, treated
with 0.1 M NaOH for 4 h to remove non-collagen proteins, and washed with running water
to neutral pH. The alkali-treated skins were treated with 10% isopropanol for 12 h to de-
grease, washed with running water to remove the residual isopropanol, then dried at 40 ◦C,
crushed, and stored in a dryer. Protamex was purchased from Novozyme (Tianjin, China).
1,1-Diphenyl-2picrylhydrazy (DPPH) and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic
acid) diammonium salt (ABTS) were obtained from Aladdin Reagents Co., Ltd. (Shanghai,
China). Hippuryl-histidylleucine (HHL), aprotinin, bacitracin, and cytochrome C, were ob-
tained from Sigma-Aldrich (Milwaukee, WI, USA). Acetonitrile (ACN) and trifluoroacetic
acid (TFA) were of chromatographical grade. All the other chemicals were of analytical
grade and were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).

2.2. Preparation of Skin Protein Hydrolysates (SPH)

Bighead carp skins were placed in distilled water (2%, w/v) and hydrolyzed by
Protamex (pH 7.0) at 50 ◦C for 4 h with an enzyme–substrate ratio of 2% (w/w). The pH
was kept constant by adding 0.1 M NaOH. The degree of hydrolysis (DH) of SPH was
analyzed according to pH-stat method. The protein content (% total nitrogen × 5.79) of
bighead carp skin was 74.23% ± 1.21%, determined by the AOAC method (AOAC, 2000).
After 4 h of reaction, the enzyme was immediately inactivated by heating at 95 ◦C for
15 min, followed by centrifugation at 8000× g for 15 min (DH was 11%). The supernatant
was collected and stored at −30 ◦C for further analysis.

2.3. Drying Process

Freeze drying was undertaken using a freeze dryer (Labconco Free Zone 6 L, Kansas
City, MO, USA). SPH samples (500 mL) were placed in 3.5 cm × 9 cm × 17 cm disposable
preserving boxes and frozen at −30 ◦C for 24 h. The frozen samples were placed on shelves
in the freeze drier and lyophilized at −80 ◦C for 72 h with heating plate temperature
of 20 ◦C. Spray drying was performed using a spray dryer (BUCHI B-290, Labortechnik
AG, Flawil, Switzerland) with an inlet temperature of 180 ◦C, an output temperature of
100 ◦C, and the flow rate of 40%. The freeze-dried and spray-dried SPH were placed in
sealed bags and stored at −20 ◦C until analysis. The samples were labeled SPH-FD and
SPH-SD, respectively.
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2.4. Color Analysis

The color of SPH was determined using Hunterlab (ColorQuest XE, Reston, VA, USA)
in terms of lightness (L*), redness (a*), and yellowness (b*) values. Whiteness index was
measured using the following calculation:

Whiteness Index = 100 − [(100 − L*)2 + a*2 + b*2]1/2 (1)

2.5. Determination of Amino Acid Composition

The amino acid composition of SPH-FD and SPH-SD was determined using an Agilent
1100 series HPLC system (Agilent Technologies, Inc., Santa Clara, CA, USA) equipped with
a C18 ODS Hypersil column (4.6 mm × 250 mm, 5 µm particle size; Agilent Technologies,
Inc.). The hydrolysates were hydrolyzed in sealed tubes with 6 M HCl at 110 °C for 22 h
under vacuum. Amino acid analysis was performed by pre-column derivatization with
o-phthalaldehyde and fluorobenzyl chloroform. Hydroxyproline was detected at 262 nm
and other amino acids at 338 nm.

2.6. Scanning Electron Microscopy (SEM)

The SPH-FD and SPH-SD were fixed to the aluminum sample stubs, and then coated
with gold. Then, the surface morphology was observed by using an SEM (FEI Quanta
650, Hillsboro, OR, USA) under the conditions of accelerated voltage of 2000 kV and
magnification of 2000×.

2.7. Fourier Transform Infrared Spectroscopy (FTIR)

The FTIR spectra of SPH-FD and SPH-SD were analyzed using FTIR spectroscopy. The
sample was mixed with dry potassium bromide, pressed into thin sections, and determined
according to Elavarasan et al. [16]. The spectral range is 4000 to 400 cm−1 with the average
of 32 automated scans at a resolution of 4 cm−1. Spectra were baseline corrected and
normalized to the amide I band using OMNIC software version 8.2 (Thermal Scientific,
Madison, WI, USA).

2.8. Molecular Weight Distribution

The molecular weight (MW) distribution of SPH-FD and SPH-SD was determination
by size exclusion chromatography using a Waters e2695 HPLC system equipped with a
TSK-gel G2000 SWXL column (7.8 mm × 300 mm, Tosoh, Tokyo, Japan). The chromato-
graphic conditions were as follows: the eluent was 45% acetonitrile/55% water/0.1% trifluo-
roacetic acid, the flow rate was 0.5 mL/min, and the UV detector was monitored at 220 nm.
HHL (429 Da), bacitracin (1422 Da), aprotinin (6.5 kDa), and cytochrome C (12.4 kDa)
were used as standards to obtain the MW calibration curve: lg (M) = −0.2008t + 6.8668,
R2 = 0.9761.

2.9. Volatile Compounds Analysis

The volatile compounds of the samples were detected by headspace solid-phase
microextraction-gas chromatography mass spectrometry (HS-SPME-GC-MS). Briefly, 4 mL
of samples were placed into a 15 mL glass vial, and then the sealed vial was preserved at
50 ◦C for 10 min. The SPME device with polydimethylsiloxane (PDMS) was used to expose
the fiber in the upper space of the vial at 70 ◦C to absorb the sample. After sampling, the
fiber was placed in the GC injector, and GC-MS analysis was carried out using a TR-35
MS (30 m × 0.25 mm, 0.25 µm film, Agilent Technologies, Santa Clara, CA, USA) column
and He as the carrier at 1 mL/min. The temperature program was set as follows: the inlet
temperature was set to 250 ◦C with an initial temperature of 35 ◦C and held for 3 min, rising
to 70 ◦C at a rate of 2.5 ◦C/min, then increased to 150 ◦C at a rate of 8 ◦C/min. Finally, the
temperature was increased by a ramp of 20 ◦C/min to 230 ◦C and held for 5 min. The mass
spectra in electron impact mode at 70 eV in the mass range of 45–550 m/z at a scan rate of
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0.22 s/scan. The transmission line temperature and ion trap temperature of GC-MS were
set to 250 and 150 ◦C, respectively.

2.10. Antioxidant Activity
2.10.1. DPPH Radical Scavenging Activity

The DPPH radical scavenging activity of SPH was determined according to Saisavoey, et al. [17]
with some modifications. Briefly, 1.0 mL SPH was added to 1.0 mL of DPPH solution. After
mixing, the mixture was then left in the dark for 30 min at room temperature and the ab-
sorbance was measured at 517 nm. The scavenging effect for DPPH radical was expressed
as follows:

DPPH radical scavenging activity (%) = [1 − (A1 − A2)/A0] × 100 (2)

where A1: the absorbance of SPH at 517 nm; A2: the absorbance of SPH blank without
DPPH; A0: the absorbance of the control without SPH.

2.10.2. ABTS Radical Scavenging Activity

The ABTS radical scavenging activity of the SPH was measured according to the
method of Zhang, Dong and Dai [12]. Briefly, 50 µL of SPH was added to 150 µL of diluted
ABTS solution (absorbance of 0.70 ± 0.02 at 734 nm). After blending, the mixture was
incubated for 6 min and then the absorbance was measured at 734 nm. The scavenging
effect on ABTS radical was expressed as follows:

ABTS radical scavenging activity (%) = [1 − (A1 − A2)/A0] × 100 (3)

where A1: the absorbance of SPH at 734 nm; A2: the absorbance of SPH blank without
ABTS; A0: the absorbance of the control without SPH.

2.10.3. Ferrous Iron’s Chelating Activity

The ferrous iron’s chelating activity of SPH was determined according to Zhang, Dong
and Dai [12]. Briefly, 1 mL of SPH was mixed with 0.1 mL 2 mM FeCl2 and 3.7 mL deionized
water. The mixture was then reacted with 0.2 mL of 5 mM ferrozine and kept for 20 min at
room temperature and monitored at 562 nm. The control group was prepared by replacing
the SPH with deionized water. The metal chelating activity was calculated as follows:

Metal chelating activity (%) = (A0 − A1)/A0 × 100 (4)

where A1: the absorbance of SPH at 562 nm; A0: the absorbance of SPH control without SPH.

2.11. ACE Inhibitory Activity

The ACE inhibitory activity of SPH was measured according to Zhang et al. [18].
Briefly, 25 µL ACE solution (100 U/L) was mixed with 40 µL SPH sample, incubated in a
37 ◦C water bath for 10 min, and 40 µL of 6.5 mM HHL was added to the mixture to initiate
the reaction. After 30 min of incubation, the reaction was terminated by the addition of
85 µL of 1 M HCl. Hippuric acid (HA) was separated using a Waters e2695 HPLC system
equipped with a SunFire C18 column (4.6 mm × 250 mm, 5 µm). The eluent was 30%
acetonitrile/70% water/0.1% trifluoroacetic acid, the flow rate was 0.8 mL/min, and the
detection wavelength was 228 nm. ACE inhibitory activity (%) was calculated as follows:

ACE inhibitory activity (%) = (A1 − A2)/A1 × 100 (5)

where A1: the HA content of the control; A2: the HA content of the reaction with the SPH.
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2.12. Statistical Analysis

Data were presented as mean ± SD. Statistical analysis was performed using ANOVA
with Duncan’s multiple range tests using SPSS software version 21.0 (SPSS Inc., Chicago,
IL, USA). All analyses were performed in triplicate. The statistical significance was set at a
level of p < 0.05.

3. Results and Discussion
3.1. Physicochemical Properties

The color of protein hydrolysate would affect the acceptability of the product. SPH-SD
had higher redness (a*) and yellowness (b*) values, while SPH-FD had higher lightness (L*)
(Table 1). It indicated that the color of the hydrolysates was positively influenced by drying
method. The color difference is mainly due to the Maillard reaction that occurs in the spray
drying process [19]. In contrast, the higher lightness of SPH-FD is thought to be due to the
low temperature and vacuum during freeze drying [14,20]. The lightness value of SPH-FD
was similar to that of freeze-dried chicken breast protein hydrolysate [21]. Elavarasan,
Shamasundar, Badii and Howell [16] also reported that the color of freeze-dried Cirrhinus
mrigala protein hydrolysate showed higher L* and lower a* and b* values compared to
oven drying.

Table 1. Physicochemical properties of freeze-dried and spray-dried fish skin hydrolysate powder.

Physicochemical Properties
Drying Method

Freeze Drying Spray Drying

Color Parameters
L* 91.03 ± 0.29 a 87.49 ± 1.12 b
a* 0.34 ± 0.01 b 0.76 ± 0.04 a
b* 8.02 ± 0.04 b 9.62 ± 0.03 a

Moisture (%) 2.57 ± 0.53 a 1.59 ± 0.31 b
Protein content (%) 92.75 ± 0.21 a 93.12 ± 0.18 a

Different letters denote the significant difference (p < 0.05).

As shown in Table 1, the protein content of SPH-FD and SPH-SD was not significantly
different. The moisture content of FD is higher than that of SD. The air temperature in SD
was higher than that in the FD process, which could more effectively remove the moisture
in the SPH. In addition, the sublimation of ice crystals forms a porous structure during
FD, and the higher cooling rate and increased nucleation make the outer pore size of the
sample smaller, which in turn hinders the sublimation of ice crystals [22]. Therefore, the
moisture content of SPH-FD is higher than that of SPH-SD. It was consistent with the
result that the moisture content of freeze-dried chicken hydrolysate was higher than that
of spray-dried [21]. In contrast, Kleekayai et al. [23] observed that the moisture content of
spray-dried whey protein hydrolysate was higher than that of freeze-dried whey protein
hydrolysate. This may be related to the spray drying parameters employed, such as inlet
and outlet temperatures, feed concentration, and airflow rate, which may affect the moisture
content of SD powders [24].

3.2. Amino Acid Compositions of SPH-SD and SPH-FD

The amino acid composition of SPH dried by SD and FD are shown in Table 2.
The total amino acid contents of SPH-SD and SPH-FD were 89.33 and 90.40 g/100 g,
respectively, of which the essential amino acids accounted for 18.36% and 16.24%, respec-
tively. SPH was rich in glycine (298.18–311.91 residues), alanine (116.09–119.99 residues),
proline (115.15–142.66 residues), glutamic (80.18–83.06 residues), and hydroxyproline
(75.49–91.32 residues), but poor in cysteine (0.52–0.58 residues) and tyrosine (3.27–4.27 residues).
Glycine is the most abundant amino acid in SPH-SD (311.91 residues) and SPH-FD (298.18 residues),
accounting for about one-third of the total residues. The amino acid composition was in line
with the characteristics of collagen, i.e., glycine accounts for one-third of the total amino
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acid and lacks cystine and tyrosine. Imino acids (proline and hydroxyproline) accounted for
approximately 20–26% of the total amino acids in SPH. The extraction and drying process
of collagen is usually carried out at low temperatures, which contributes to the thermal
stability of collagen [25]. The imino acid content of SPH-FD (233.98 residues) was 1.23 times
that of SPH-SD (190.64 residues), indicating that some imino acids were lost due to high
temperature during the SD process.

Table 2. Amino acid composition of SPH-SD and SPH-FD samples (results are expressed as
residues/1000 total residues).

Amino Acids SPH-SD SPH-FD

Aspartic acid/asparagine 53.56 51.73
Glutamic acid/glutamine 83.06 80.18

Serine 30.31 28.87
Histidine 4.69 3.68
Glycine 311.91 298.18

Threonine 28.24 26.29
Arginine 55.75 53.33
Alanine 119.99 116.09
Tyrosine 4.27 3.27
Cysteine 0.52 0.58

Valine 23.57 22.82
Methionine 15.89 10.24

Phenylalanine 15.22 14.68
Isoleucine 12.86 12.52
Leucine 22.96 22.44
Lysine 26.56 21.13
Proline 115.15 142.66

Hydroxyproline 75.49 91.32
Total 1000 1000

Total essential amino acids 150.00 133.80
Imino acids 190.64 233.98

The content of hydrophobic amino acids in two samples was relatively high, ranging
from 445.65 to 457.53 residues. Studies have found that the antioxidant activity of hy-
drolysates mainly depends on the composition and sequence of amino acids [17]. Glycine
and hydrophobic amino acids are important for the bioactivity of hydrolysates, especially
their potential antioxidant activity [26]. In addition, acidic amino acids such as glutamic
acid and aspartic acid can eliminate free radicals and quench unpaired electrons by do-
nating protons [27]. In the present study, SPH was rich in acidic amino acids, glycine and
hydrophobic amino acids, suggesting that it may have good antioxidant activity.

3.3. SEM

The microstructure of fish skin protein hydrolysate powder obtained by freeze drying
and spray drying is shown in Figure 1. The SEM image of the powder reflects the influence
of drying method on the morphological structure of the produced particles [28]. The
morphology of the sample is one of the most important factors affecting its function and
stability. It can be seen that the particle size of SPH-SD is smaller than that of SPH-FD,
corresponding to the higher solubility of SPH-SD, and the morphological structure of
SPH-SD is irregular and has smooth spherical particles. The higher inlet temperature and
the rapid evaporation of water during the SD process forms a protective film on the surface
of the sample, resulting in a concave structure and folds on the surface of smooth spherical
particles. FD samples were fractured sheet/laminar structures without the formation of
microspheres. Changes in drying conditions, such as inlet air temperature for spray drying,
feed flow rate, etc., may affect the hygroscopicity and particle morphology of the sample,
which in turn affects the physicochemical properties of the sample [29]. Therefore, the
changes in the physicochemical properties, structure, and biological properties of fish skin
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protein hydrolysates under different spray drying conditions can be further studied in the
follow-up research.
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3.4. FTIR Analysis

FTIR spectroscopy can be used to characterize changes in secondary structure and
functional groups of proteins. As shown in Figure 2, the hydrolysates of the two samples
showed similar patterns in FTIR spectra, indicating similar chemical compositions. The
3340–3410 cm−1 shows the amide A bands, indicating N-H and O-H stretching through
hydrogen bonding. When the N-H group of the hydrolysate participates in hydrogen
bonding, the position of the band will shift to a lower frequency. Compared with SPH-
FD (3409.67 cm−1), SPH-SD (3340.24 cm−1) has a lower wavenumber, and it is more
likely that N-H group short peptides are involved in hydrogen bonding. The 2933.32 and
2931.39 cm−1 show amide B bands, which are associated with asymmetric stretching of
= C-H and NH3

+ of SPH-SD and SPH-FD, respectively. The 1648.91 and 1652.77 cm−1

show amide I, caused by C=O stretching vibration or hydrogen bonding. The peak position
of amide I shifted from 1648.91 (SPH-SD) to 1652.77 cm−1 (SPH-FD). The increase in
wavenumber revealed that part of the β-sheet in SPH turned into α-helix or random coil [9].
The 1546.70–1548.62 cm−1 shows amide II bands, corresponding to N-H vibrations. The
1200 to 1400 cm−1 shows amide III bands, which are associated with C-N stretching, N-H
and O=C-N bending of the amide bond. The intensity of the amide III band in SPH-SD was
greater than that in SPH-FD, indicating that the intermolecular interactions of peptides in
SPH-SD were stronger, probably caused by the high temperature of SD. The 1180–953 cm−1

shows the “saccharide” bands [16], indicating the presence of aldehyde groups in the
sample, probably formed by lipid oxidation during hydrolysis and drying [30], SPH-
SD shows two bands at 1160.99 and 1070.34 cm−1, while SPH-FD has only one band at
1076.13 cm−1. In SPH-SD, the saccharide peak was very strong, while in SPH-FD it was
weaker. This may be due to the higher temperature (180 ◦C) and the higher degree of lipid
oxidation in the SD process compared to FD.

3.5. Molecular Weight Distribution in SPH-FD and SPH-SD

Figure 3 shows the relative molecular weight of SPH. The molecular weight distribu-
tions of SPH-FD and SPH-SD were slightly different. The fractions greater than 3000 Da
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and less than 500 Da in SPH-FD accounted for about 2.18% and 46.36%, respectively, while
the corresponding fractions in SPH-SD accounted for 6.56% and 20.18%, respectively. The
component content of SPH-SD in the range of 500–1000 Da was 51.43%, which was about
2.11 times higher than that of SPH-FD. There was no significant difference in molecular
weight between the two groups at 1000–3000 Da. The molecular weight of SPH-SD is
slightly larger than that of SPH-FD, which was mainly caused by the aggregation and
cross-linking of peptides during drying [31].
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3.6. Volatile Compounds

The volatile flavor substances of SPH-FD and SPH-SD were determined by GC-MS.
A total of 55 volatile compounds were identified. They were 15 aldehydes, 2 ketones,
11 alcohols, 5 esters, 4 acids, 2 hydrocarbons, 2 phenols, and 12 heterocyclic compounds
(Figure 4A). Among them, 38 volatile compounds were detected in SPH-FD and 42 in SPH-
SD. In total, 17 volatile compounds were only detected in the SPH-SD, whereas 13 volatile
compounds were only found in the SPH-FD. Aldehydes and heterocyclic compounds are
one of the main volatile compounds. A total of 16 aldehydes were detected in SPH-FD
(14.28%) and 11 aldehydes were detected in SPH-SD (10.94%). The content of volatile
components of aldehydes in SPH-FD was higher than that in SPH-SD. During the SD
process, the amount of aldehyde in SPH-SD was reduced due to the Maillard reaction and
other reactions [32]. Aldehydes mainly come from the Strecker degradation of amino acids
or the oxidation of fat. Aldehydes with 6–9 carbon atoms have a fruit flavor, fragrance,
and fat flavor. Compared with heterocyclic compounds, ketones, aldehydes, alcohols, and
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other volatile compounds contribute less to the overall aroma. The relative content of esters
and heterocyclic compounds in SPH-SD samples was higher than that in SPH-FD, which
may be caused by the thermal decomposition of amino acids during the SD process. The
threshold of heterocyclic compounds is generally low, and they make a great contribution
to the overall sensory flavor of SPH. For example, 2-pentylfuran has a flavor similar to ham,
which can play a certain role in enhancing the flavor and can also improve antioxidant
activity by double bond addition. Perinereis aibuhitensis hydrolysates had more volatile
substances and higher antioxidant activity by spray drying [14]. SFH-SD has a higher
content of volatile compounds than SPH-FD, especially heterocyclic compounds, which
may have higher antioxidant activity.
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In order to visually analyze the differences in flavor substance of SPH, principal
component analysis (PCA) was further used to analyze the GC/MS data of the SPH-FD
and SPH-SD groups. As shown in Figure 4C, the cumulative variance contribution of
PC1 (88.9%), PC2 (5.0%), and PC3 (2.1%) was 96.0%, indicating that the groups of the
SPH-FD and SPH-SD samples were well separated, and there were certain differences in
the characteristic flavors of the samples. The SPH-SD group was clustered on the left side of
the PCA plot, and the SPH-FD group was clustered on the right side of the PCA plot. These
data indicate that the volatile compound profiles of SPH-FD and SPH-SD were different.
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3.7. Antioxidant and ACE Inhibitory Activities

The fish skin hydrolysates under different drying conditions exhibited good potential
antioxidant activities. Figure 5 showed the DPPH, ABTS radical scavenging, and ferrous
iron’s chelating activities of SPH-FD and SPH-SD at different concentrations, respectively,
and the scavenging activities showed concentration-dependent activity. This result was
similar to that of Alinejad et al. [33]. The drying process affects the antioxidant capacity of
the SPH. Overall, the DPPH radical scavenging activity and ferrous iron’s chelating activity
of SPH-SD were significantly (p < 0.05) higher than those of SPH-FD, while SPH-SD and
SPH-SD had no significant difference in the scavenging ability of ABTS. The IC50 values of
SPH-FD for DPPH, ABTS radical scavenging, and ferrous iron’s chelating activities were
2.14, 1.05, and 7.03 mg/mL, and the corresponding values of SPH-SD were 1.81, 1.11, and
5.79 mg/mL, respectively. Liu, Wang, Yu, Li, Ji, Sun, Jiang, Li and Liu [14] and Alinejad,
Motamedzadegan, Rezaei and Regenstein [33] reported similar results that spray-dried
samples had higher DPPH scavenging activity than freeze-dried samples. Chen et al. [34]
reported that the antioxidant activity of dipeptides was higher than that of the constituent
amino acid mixture. The free amino acids in the hydrolysates were reorganized into
dipeptides and tripeptides during SD, which would improve the antioxidant properties
of the samples [14]. On the other hand, the Maillard reaction that occurs during the SD
process may also increase the antioxidant activity of the samples [35]. These results suggest
that the drying method affects the antioxidant activity of the hydrolysates.
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The ACE inhibitory activities of SPH-FD and SPH-SD samples at different concentra-
tions (1.0–5.0 mg/mL) are shown in Figure 5D. When the concentration was 5.0 mg/mL,
the ACE inhibitory activities of both SFH-FD and SFH-SD reached 100%. The IC50 values
for ACE inhibitory activity in SFH-FD and SFH-SD were 1.79 and 1.75 mg/mL, respectively.
There was no significant (p > 0.05) difference in ACE inhibitory activity between SPH-FD
and SPH-SD. These results suggested that the drying method did not affect the ACE in-
hibitory activity of the hydrolysates, which was consistent with Elavarasan’s study [16].
Previous studies have demonstrated that the smaller peptides are thermally stable and
the heat generated during the drying process has no significant effect on ACE inhibitory
activity [16,36]. In this study, the small peptides with SPH-SD and SPH-FD MW less than
1000 Da reached more than 70%, which may have good thermal stability.

4. Conclusions

Fish skin proteins were hydrolyzed by Protamex and dried by spray drying and
freeze drying. SPH-SD had a high content of volatile compounds and low lightness.
FTIR analysis showed that the structures of the hydrolysates of the two drying methods
changed slightly, and the antioxidant activity of SPH-SD was better, but the ACE inhibitory
activity was not affected by the drying method. Amino acid compositions showed a higher
proportion of proline and hydroxyproline residues in SPH-FD. The results indicated that the
drying method could affect the physicochemical properties of hydrolysates, and SPH-SD
showed potential prospects in developing functional fortified foods. This study provides
a drying strategy for protein hydrolysates from aquatic product processing by-products.
The structure–activity relationship and amino acid sequence of the hydrolysate need to be
further studied.
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