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ABSTRACT An extremely halophilic archaeon, Halobacterium sp. GSL-19, was isolated
from the north arm of Great Salt Lake in Utah. Single-molecule real-time (SMRT) sequenc-
ing was used to establish a GC-rich 2.3-Mbp genome composed of a circular chromosome
and 2 plasmids, with 2,367 predicted genes, including 1 encoding a CTAG-methylase widely
distributed among Haloarchaea.

Halophilic microbes capable of surviving conditions with multiple extremes are of
interest for biotechnology and astrobiology (1–8). To increase our understanding

of these novel microbes, an extremely halophilic archaeon, GSL-19, was isolated from
brine near the shore of the north arm of the Great Salt Lake in Utah (41.4377°N,
112.6689°W), proximal to the Spiral Jetty (9).

Brine was sampled from 10 cm below the surface of the lake at 28°C, inoculated
into CM1 medium (complete medium plus trace elements), and grown with shaking at
220 rpm at 37°C, as previously described (10, 11). The enrichment cultures were plated
on CM1 agar plates, and the isolate, an extremely halophilic, pigmented, phase-bright
haloarchaeon, was purified by 3 rounds of streaking.

Nucleic acids were extracted using standard methods for haloarchaea involving hypo-
tonic lysis phenol extraction and ethanol precipitation, as previously described (10–12), and
sequencing was performed using the PacBio Sequel platform (Pacific Biosciences, Menlo
Park, CA). SMRTbell libraries were prepared from 2 mg genomic DNA sheared to 40-kbp
with a Megaruptor instrument (Diagenode, Inc., Denville, NJ), New England BioLabs (NEB)
reagents equivalent to the PacBio library prep kit were used (13), and the library was
sequenced on a single-molecule real-time (SMRT) cell with Sequel binding kit 3.0 with 10-h
collection and 2-h pre-extension times. A total of 613,574 reads were obtained (subread N50,
4,078bp), which were filtered and assembled de novo using Hierarchical Genome Assembly
Process version 4 (HGAP4) with default parameters. The final assembly comprised 3 contigs, of
which all circularized automatically using HGAP4, with mean coverage of 3,924�.

The genome (overall GC content of 66.7%) comprises a circular chromosome
(1,987,132bp, GC content of 68%) and 2 plasmids, namely, pGSL19_284 (284,178bp, GC
content of 59.1%) and pGSL19_54.9 (54,914bp, GC content of 61.4%). Genes were predicted
in-house using GeneMark HMM (14) and analyzed with HaloWeb (https://halo.umbc.edu),
tRNAscan-SE2.0, and EMBOSS version 6.6.0.0 (15–17). The genome was also deposited at
NCBI, where it was independently annotated using Prokaryotic Genome Annotation Pipeline
(PGAP) Build 3190 (18).

The GSL-19 genome contained 2,367 genes, including a single rRNA operon and 44
tRNA genes all carried on the chromosome. The proteome was highly acidic (19–21),
with a calculated mean pI value of 4.91 (22). All 799 core haloarchaeal orthologous
groups (cHOGs) were encoded in the GSL-19 genome (23). The genome contained 8 genes
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encoding origin recognition complexes, 1 gene encoding a TATA-binding protein, and 5
genes encoding transcription factor B (24–26). A gvp gene cluster was also present,
consistent with the production of gas vesicles observed as phase-bright inclusions
(27, 28). Taxonomy was assigned using the 16S rRNA sequence and average nucleo-
tide identity according to NCBI taxonomy, and the isolate has been designated
Halobacterium sp. GSL-19 (29).

Methylated bases were determined using modification and motif analysis under the
SMRTLink environment version 6.0.0.47841, revealing two methylated motifs, (m6A)
GTCCAG (100%) and (m4C) CTAG (97.7%) (30). The CTAG methyltransferase gene is
widely distributed among haloarchaea, in which CTAG sites are also underrepresented
(31), suggesting a conserved function.

Data availability. The Halobacterium sp. GSL-19 genome sequence has been deposited
in GenBank with the accession numbers CP070375.1 to CP070377.1, and raw data are avail-
able in the NCBI Sequence Read Archive with the accession number SRX10230949.
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