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Abstract: Human body motion analysis based on wearable inertial measurement units (IMUs)
receives a lot of attention from both the research community and the and industrial community. This
is due to the significant role in, for instance, mobile health systems, sports and human computer
interaction. In sensor based activity recognition, one of the major issues for obtaining reliable results
is the sensor placement/assignment on the body. For inertial motion capture (joint kinematics
estimation) and analysis, the IMU-to-segment (I2S) assignment and alignment are central issues
to obtain biomechanical joint angles. Existing approaches for I2S assignment usually rely on hand
crafted features and shallow classification approaches (e.g., support vector machines), with no
agreement regarding the most suitable features for the assignment task. Moreover, estimating the
complete orientation alignment of an IMU relative to the segment it is attached to using a machine
learning approach has not been shown in literature so far. This is likely due to the high amount
of training data that have to be recorded to suitably represent possible IMU alignment variations.
In this work, we propose online approaches for solving the assignment and alignment tasks for
an arbitrary amount of IMUs with respect to a biomechanical lower body model using a deep
learning architecture and windows of 128 gyroscope and accelerometer data samples. For this,
we combine convolutional neural networks (CNNs) for local filter learning with long-short-term
memory (LSTM) recurrent networks as well as generalized recurrent units (GRUs) for learning time
dynamic features. The assignment task is casted as a classification problem, while the alignment task
is casted as a regression problem. In this framework, we demonstrate the feasibility of augmenting
a limited amount of real IMU training data with simulated alignment variations and IMU data for
improving the recognition/estimation accuracies. With the proposed approaches and final models
we achieved 98.57% average accuracy over all segments for the I2S assignment task (100% when
excluding left/right switches) and an average median angle error over all segments and axes of 2.91°
for the I2S alignment task.

Keywords: inertial sensors; automatic sensor placement; automatic sensor alignment; neural
networks; deep learning; LSTM; CNN

1. Introduction

Inertial measurement units (IMUs) comprise accelerometers and gyroscopes providing
measurements of 3D acceleration including acceleration due to gravity and 3D angular velocity.
In most cases, they also contain magnetometers adding 3D magnetic fields. This is also referred to as
MIMUs. Nowadays, IMUs are small in size and can be obtained at low cost. They are thus present in a
multitude of devices. They also enjoy a widespread use in many different application areas, where
humans wear IMUs on the body or nearby, e.g., inside the clothes. This includes, for instance, mobile
health and biomechanics [1–5].
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The following sections provide related work for the IMU-to-segment (I2S) assignment and
alignment problems, first for human body motion capture, and then for activity recognition.
Afterwards, related work is provided for applications with simulated and synthetic data. Finally, our
scope and contributions are summarized.

1.1. I2S Assignment and Alignment for Inertial Body Motion Capture

In inertial body motion capture, the data from multiple IMUs, so-called IMU networks, are fused
with a biomechanical model of (parts of) the human body to reconstruct segment orientations and
joint angles [6,7] and sometimes also joint positions [8]. Figure 1 illustrates a kinematic lower body
configuration. For obtaining biomechanical joint angles and positions, both the assignment of each
IMU to the respective body segment as well as the position and orientation of each sensor relative
to the assigned segment need to be known [7,9–11]. The latter is referred to as IMU-to-segment
(I2S) alignment or I2S calibration (cf. Figure 1). A comparison of different sensor fusion methods
for inertial body motion tracking (segment orientation estimation) regarding I2S alignment errors
indicated that the position of the sensor relative to the segment is usually far less important for
obtaining valid segment orientations (which are typically of more interest than the positions) than
the I2S orientation [7]. Some methods were even shown to be independent of the IMU positioning
in this study. In contrast, I2S orientation errors were shown to propagate at least linearly into the
orientation estimation of the respective segment (and as a result into the derived joint angles), for all
tested methods (without considering joint constraints). Therefore, we focus on I2S assignment and I2S
orientation estimation (subsequently denoted I2S alignment) in this work.

Basically, all current I2S calibration procedures assume the I2S assignment to be known. Some
approaches estimate an I2S assignment and consider an underlying body model in a hierarchical
manner [12,13]. The first used decision trees on manually selected features with correlations of
sensor data to subsequently assign 17 IMUs for a full body configuration or eight IMUs for a lower
body or trunk configuration during walking trials. The accuracy of this method was between 97.5%
and 100%, if the sensors were on the predefined positions in a suit. If sensors were missing or the
positions were altered, the method either did not work or the accuracy decreased considerably (75.9%
to 87.5%). Another recent approach assigned six IMUs to the lower limbs via constructed decisions
based on walking characteristics and a proposed assignment hierarchy [13]. The accuracy of this
approach ranged between 99.8% and 100% after three respectively five seconds of walking. However,
the hierarchy needed multiple sensors. In contrast our approach considers each IMU individually
and therefore scales to an arbitrary number of IMUs, including, for instance, only one IMU, seven
IMUs (one on each considered lower body segment) or more than seven IMUs (multiple IMUs on
one segment).

Assuming the I2S assignment to be known, obtaining a correct I2S calibration is still not trivial.
Different calibration procedures have been proposed: static pose calibration that requires the user to
take on specific poses [10], functional calibration [14,15], which requires the user to perform motions
around predefined axes, or technical calibration that requires manual alignment of the IMUs with the
bone structure [9]. In [9], typical I2S orientation calibration procedures were validated regarding their
accuracy (trueness) and reproducibility (precision) relative to an optical reference system. The accuracy
was in the range [8; 26]° and precision was in the range [5; 10]°. This attests the potentially large
(human-induced) errors with respect to (w.r.t.) the I2S orientation, even when persons were instructed
to perform the calibration procedure through experts. One recent approach aims at simultaneous joint
kinematics and I2S calibration estimation, exploiting moving horizon optimization with additional
constraints and priors for the calibration parameters [11].
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Figure 1. Illustration of the two addressed problems for seven lower body segments and seven IMUs:
(i) I2S assignment; and (ii) I2S alignment determination.

1.2. I2S Assignment and Alignment for Activity Recognition, Deep Learning Approaches

Besides inertial body motion capture, another related application that is typically based on one or
few IMUs, for instance from a mobile phone worn on the body or inside the cloths, is human activity
recognition (HAR). Here, the aim is to infer activities, such as walking, sitting or running, from the
sensor data. There are many classification approaches that use different manually derived features
based on properties of the IMU signals, see, e.g., [16,17]. The classification accuracy largely depends
on the feature selection which can be time consuming [18]. This process can also be automated
together with the classification model, which leads to end-to-end learning. Here, the resulting
model is directly applied to the raw sensor data. Deep learning approaches [19] are a prominent
representative for end-to-end learning and have tremendous success in different applications fields,
such as computer vision (e.g., image classification, action or gesture recognition [20–24]) or speech
recognition [25,26]. There are also related applications to IMU based HAR [18,27], including the
recently proposed deep learning framework for HAR. The latter is based on multimodal sensors such
as IMUs. It combines local feature learning based on convolutional neural network (CNN) units
with time sequence learning based on recurrent long-short-term memory (LSTM) units and is named
DeepConvLSTM [18]. Moreover, CNN kernels were analyzed for automatic feature extraction with
the aim to transfer these to different HAR domains in order to reduce training time significantly [28].
Our work is inspired by the DeepConvLSTM approach.

One problem for the majority of activity recognition approaches is that many expressive features
for the same activity may differ largely, depending on the placement of the IMU relative to the body.
For instance the IMU signals in a trouser pocket or at the pelvis are usually different from the signals
at the feet in case of walking. This often renders HAR unreliable if the sensor placement is not known.
One approach to face this problem is to use features that are robust to location and/or alignment.
These are, however, usually less expressive and thus inferior for the recognition of complex motion [29].
In [29] sensor placement variations for wearable activity recognition were investigated in a structured
way. The variations where subdivided into: (1) on-body placement (i.e., the place where the user
carries the sensor on the body, this corresponds to our I2S assignment); (2) within-body displacements
(i.e., the variation of the sensor placement on the respective segment); and (3) orientation (i.e., the
device orientation w.r.t. the users body, this corresponds to our I2S orientation alignment). There are
also approaches given to mitigate the errors introduced by the respective variations. Wrong on-body
placement often renders an activity recognition approach unreliable. A study on optimal positions
for HAR was performed in [30]. The within-body displacement can also decrease activity recognition
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accuracy. Remedy can be found, e.g., by dynamically choosing the most robust features [29,31] or by
applying low-pass filtering after orientation correction [32]. Orientation variations yield unreliable
rotation dependent features that, however, usually incorporate a lot more information to separate
activity classes compared to rotation independent features such as the vector norm [29]. In [33] the
effect of 16 IMU orientation variations and different IMU locations to an activity recognition approach
was evaluated and severe accuracy decreases were found. A projection of the data to an approximate
global frame as well as a model switch for different body locations was proposed for remedy. There
are also approaches that classify the approximate location of one sensor [34–37] during walking and
activities of daily living [38]. In [39] the sensor location and activity was jointly classified using sparse
signal representation. Another method used accelerometer and gyroscope data to classify different
on-body positions [40]. In [41] the orientation of an IMU w.r.t. the hip was classified considering
rotations around one axis in 90° steps. The data were then transformed into the corresponding
reference frame resulting in increased accuracy. Note, none of the mentioned approaches reconstructed
the complete 3D orientation of the IMU relative to the respective body part, i.e., the I2S alignment.
Performing this reconstruction has the advantage that the sensor data can always be rotated into
the segment coordinate system, no matter how the sensor is oriented. For a data based approach
this automatically introduces the challenge of having enough training data for the different possible
orientations. The required amount of training data as well as class labels increases exponentially
depending on the intended alignment classification accuracy. Therefore, our approach casts the I2S
alignment task as a regression problem and makes use of artificial training data from simulated I2S
alignment variations.

1.3. Applications with Simulated/Synthetic IMU Data

There are different frameworks for simulating IMU data from IMU trajectories [42,43], the latter,
for instance, used recorded optical motion capture data. In the field of inertial body motion tracking,
IMU data simulation is often used for evaluating different estimation methods (e.g., [7,8,44]).

In the field of computer vision, synthetic data were used to augment or create training data for
increasing classification performance [45–47]. A typical challenge is the difference in feature distortions
between synthetic and real data, i.e. the synthetic gap [45,47]. One way to face this problem is by
using a multichannel autoencoder to learn the mapping between synthetic and real data [47]. A
recent work [46] interpreted the learning of a neural network using synthetic data as learning of a
proposal distribution generator for approximate inference in the synthetic-data generative model.
This interpretation was used to explain model misspecifications that could be shown by only slight
data variations, leading to a significant decrease in classification accuracy. The remedy was found
by broadening the synthetic generator via adding an elastic displacement field to the synthetic data,
which also lead to significant accuracy improvements [48].

Simulated IMU data, however, have not yet been used and investigated as database for deep
learning approaches. In particular, the feasibility of transferring models learned on simulated IMU
data to real data scenarios, has, to the best of our knowledge, not yet been investigated.

1.4. Contributions and Scope

Given the importance of sensor assignment and alignment determination in multiple areas, an
automatic approach would, on the one hand, reduce the influence of human induced errors and, on
the other hand, simplify the installation of an IMU system.

The contributions of this paper can be summarized as follows:

• We propose real-time capable deep learning approaches to solve the I2S assignment problem via
classification and the I2S alignment problem via regression during walking for IMUs mounted
on the lower body. The proposed approaches combine automatic feature learning via CNN units
with time dynamic features based on two recurrent neural network approaches (LSTM and GRU).
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Since each IMU is handled individually, the proposed approaches scale to an arbitrary number
of IMUs.

• We propose and evaluate methods for simulating IMU training data for a variety of I2S alignment
orientations during walking using freely available [49] and newly recorded motion capture
datasets. This is our approach for counteracting the problem of requiring the recording of
exponentially many training data for sufficiently sampling potential I2S alignment variations.

• We investigate the performances of the proposed methods and approaches on simulated and
real IMU test data, with different proportions of simulated and real IMU data used for training.
The experiments show promising performances for both the classification and the regression
problem with only a small amount of recorded IMU data (in terms of alignment variations).

In the following, the proposed methods, the datasets and experiments are introduced in
Sections 2 and 3, respectively. The results and a discussion are given in Section 4, and conclusions are
drawn in Section 5.

2. Methods

First, the addressed problems are stated in Section 2.1. Then, the proposed network configurations
with their different components are explained in Section 2.2. The involved coordinate frames and
transformations are formalized in Section 2.3. Finally, Section 2.4 provides details on different aspects
of our IMU data simulation.

2.1. Problem Statement

We address the following problems during walking motion (cf. Figure 1):

1. I2S assignment: Each IMU is separately assigned to the skeleton segment it is attached to. This
results in the classification problem of mapping a window of (raw) IMU data to one of the seven
classes associated to the lower body segments: (1) LeftFoot ; (2) LeftLowerLeg ; (3) LeftUpperLeg ;
(4) Pelvis ; (5) RightUpperLeg ; (6) RightLowerLeg ; and (7) RightFoot.

2. I2S alignment: Each IMU’s orientation w.r.t. the associated segment is estimated via regression
based on a window of IMU data. Note, I2S positions are assumed constant (on the middle of the
respective segment) in this work.

In both cases, we use windows of 128 gyroscope and accelerometer data samples of the considered
IMU as inputs. Moreover, throughout this work, the windows are always shifted by 16 data samples.

Note, successfully solving the stated problems provides I2S assignment and alignment of,
in principle, any number of IMUs (they are treated separately) to the lower body skeleton in about two
seconds of walking (assuming 60 Hz frequency) without using magnetometer data.

2.2. Proposed Networks

This section presents the network configurations proposed for solving the above stated problems.
It starts with a general overview and then provides a mathematical formalization.

Figure 2 illustrates the structure of the proposed networks for both the classification and the
regression task.

The configurations follow the general framework described in [18] with modifications described
subsequently. Input denotes the input layer, i.e., (in this work) a window of 128 accelerometer and
gyroscope data. Gaussian Noise refers to data augmenting noise samples, which we have introduced
for processing simulated IMU data (cf. Section 2.4.1). A regularization based on Input Dropout
has been introduced to avoid over-fitting (cf. Section 2.2.4). The main building blocks are the CNN
Layer and the RNN Layer, where the latter is constructed differently for the classification and the
regression problem. More details including the proposed modifications w.r.t. [18] are provided in
Sections 2.2.2 and 2.2.3. The respective final recurrent layer is densely connected with the output
layer Output via a fully connected layer (FC Layer). The output layer either represents classes via
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probabilities using a Softmax layer (classification problem) or it maps to the components of a vector
(regression problem), here representing the I2S alignment orientation. For the former, the class with
the highest probability is chosen.

Input + CNN (16x1)
64 Kernel

RNN
128 Units

FC Layer

• 256 Nodes
• 128 Nodes
• 128 Nodes

Output

Gaussian
Noise

Input
Dropout

3 CNN Layers
Regression
2 LSTM Layers

Classification
1 GRU Layer

3 FC Layers

Classification:
Softmax

Regression:
Identity

Figure 2. Overview of the proposed network configurations.

2.2.1. Notation

A deep neural network with L > 2 layers consists of an input layer with several input units
(a1

1:T), several hidden layers with activation units (al
1:T , 1< l <L) and an output layer with units aL

1:T .
The latter might be a softmax layer for classification or an identity layer mapping to the previous layer
for regression.

Given a sequence of T gyroscope (xgyr ∈ R3) and accelerometer (xacc ∈ R3) data of (without loss
of generality) one IMU, we stack these data to obtain the input data a1

1:T = (a1(1), ..., a1(T)), where
a1(t) = (xacc(t)T , xgyr(t)T)T denotes the IMU data at time t. We call the stacked components of the
input units (a1

j (t) = (a1(t))j, j = 1, . . . , 6) channels.
A dense connection between the input layer (l = 1) and the next layer at time t (i.e., a fully

connected layer) can be formalized as

a2(t) = σ(W1
a,aa1(t) + b1(t)). (1)

Here, a2(t) are the activations of layer 2, and W1
a,a is the weight matrix of layer 1 with the subscript

denoting a connection from one activation to another activation. Moreover, (W1
a,a)i,j represents the

weight between activation j in layer 1 and i in layer 2. Further, a1(t) are the channels of the input
data, b1(t) are the biases and σ is the non-linear activation function, which is typically applied to each
component of the resulting vector separately. The specific functions are given in the subsections below.

2.2.2. Convolutional Neural Network (CNN) Layer

A CNN layer convolves (or often cross-correlates) activations of a layer, e.g., the input layer, with
kernels (filters). CNNs with multiple layers perform convolutions on the respective activations of the
previous layer. The convolution with the kernel yields a weight sharing between activations, which
has different advantages for data with neighborhood relations (either spatially, temporally or both,
depending on the kernel used). First, the amount of parameters to be estimated is reduced compared
to a fully connected layer. Second, through the weight sharing, the generalization of the “learned”
convolution kernel and the resulting feature map, i.e., the activation map at the next layer, is usually
increased (if enough data is available). CNNs are thus often employed to learn features automatically.
They can adapt well to locally disturbing effects like noises and slight biases, given a large enough
kernel size.

The following formalization is inspired by [18]. To simplify notation, we consider the convolution
over one channel of the input sequence. The convolution is then applied for each channel separately.
A CNN with a single layer extracts features from the input signal through a convolution operation of
the signal with a kernel. In a CNN, the activation of a unit represents the result of the convolution of
the kernel with the complete input signal of the considered window (or activation of the previous layer
in the case of stacked CNNs). The kernels are optimized as part of the supervised training process.



Sensors 2018, 18, 302 7 of 35

The dimensionality of the kernel depends on the input data and their neighborhood relations. We use
1D kernels in this work as previously proposed for temporal convolution [4]. We consider a feature
map as an array of units that share the same parameterization (weight vector and bias). We denote
the amount of feature maps per layer l as Fl . At the input layer, we have F1 = 1 for each channel of
the input signal, resulting in one feature map. Further feature maps are introduced in layers l ≥ 2 to
be able to learn different filters/kernels to respond to different patterns. In what follows, the term
Kl

k, f denotes a 1D kernel convolved over feature map f in layer l to create feature map k. With the

activation of feature map f at unit τ in layer l (al
f (τ)), this convolution can be written as

(Kk ? a)l
f (τ) =

P/2

∑
p=−P/2

al
f (τ − p)Kl

k, f (p). (2)

Here, P is the width of the kernel. The feature map k of layer l + 1 at unit τ can be obtained from the
feature maps of the previous layer l, including the above defined convolution, as follows

a(l+1)
k (τ) = σ

(
BN

(
Fl

∑
f=1

(Kk ? a)l
f (τ) + bl

k(τ)

))
. (3)

Here, σ(a) = max(a, 0) is a rectified linear unit (ReLu) activation function, BN denotes the batch
normalization per activation as further detailed in [50]—it normalizes the convolution output by mean
and variance—and bl

k(τ) represents the bias.
Note, a model with several convolutional layers in a stacked configuration (where the output of

layer l is the input for layer l + 1) may be able to learn a hierarchical representation of the data, where
deeper layers represent the inputs in a more and more abstract way [18].

Compared to [18], besides a slightly larger kernel size (cf. Table A1 for all hyper parameters),
the main difference of the proposed CNN layers is the inclusion of the normalization (BN) to push the
activations closer to zero mean and unit variance. In our tests, this gave better results compared to the
original convolution layers used in [18]. An explanation for this might be the differences in the data
characteristics when mixing simulated and real IMU data for training. Note, network configuration
tests are further detailed in Section 4.1. Figure 3 illustrates the convolution from the input to the
second layer.

Input Convolution Output

Kernel

m Kernels +

CNN Layer Output

BNBias ReLu

Figure 3. The CNN layer configuration used in the proposed networks. Note, the Bias, batch
normalization (BN) and rectified linear unit (ReLu) operations are applied per activation (see
Equation (3)).
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2.2.3. Recurrent Neural Network (RNN) Layer

The (feed forward) CNN layers presented in Section 2.2.2 are well suited for learning locally robust
features in a time sequence. To represent and learn temporal dynamics of arbitrarily long sequences,
a so called RNN has shown to be efficient both regarding its representation power and the required
amount of parameters and input data [19,25]. Recurrent neural networks consist of cells with recurrent
connections, i.e., forming a directed circle. A drawback of this approach is the problem of vanishing
and exploding gradients for long-term dependencies [51]. While there are different approaches to
prevent this, we use LSTM and GRU layers, as proposed by [25,52]. In our evaluation the LSTM
approach showed the most beneficial behavior for the considered regression problem, while the GRU
approach performed best for the classification problem, with comparably less parameters. Note, in [18],
only LSTMs were used. Both approaches are further detailed and formalized in Appendix A.

2.2.4. Dropout Layer

To regularize the proposed model, we tested different dropout (statistical regularization)
techniques [53]. It was shown that dropout is, on the one hand, more computational efficient than
training multiple models for model averaging. On the other hand, it was shown to perform very well
in combination with other regularizations, such as L2-Regularization and Early Stopping [54]. Thus,
we evaluated the impact of L2-Regularization and Early Stopping as regularization methods in addition
to dropout, on the same dataset as used for the other configurations, described in Section 4.1. Regarding
dropout we tested input dropout with a keep probability of 0.8 [54], naive dropout between the fully
connected layers and variational dropout between the RNN layers (latter both with keep probability
of 0.5) [55], by taking the same dropout mask in each time step on the input, output and recurrent
connections. We achieved the best results with an input dropout of 0.8 and no dropout between RNN
cells as well as between the fully connected layers, in combination with an L2 Regularization with a
small weight (see Table A1 in Appendix A).

2.2.5. Application of the Proposed Networks

Applying the above described network configurations to the considered problems has the
following implications. For the I2S assignment problem, the output layer is a linear activation
with seven hidden nodes that enter the softmax layer resulting in seven probabilities. Here, the
highest probability is chosen to represent the predicted IMU location on the lower body (i.e., the I2S
assignment). As objective function, we used a cross entropy loss function, during training. Solving
the I2S alignment problem requires a suitable rotation parametrization. In order to circumvent the
inclusion of additional constraints, we compared two minimal parameterizations in a plausibility test:
axis angle and stereographic projection of a unit quaternion [56]. While the former representation
is more widespread, it has a singularity around the identity rotation, which can lead to numerical
instabilities, if it is not specifically handled. Moreover, the derivatives include irrational sine and
cosine terms that are nonlinear and need some sort of approximation during optimization, which can
deteriorate convergence and accuracy [56]. The stereographic projection of a quaternion provides a
minimal parameterization, for which the derivatives are rational and more. Moreover, there is no
singularity for the identity rotation. This parametrization also gave significantly better results in
our plausibility tests, which convinced us to use this representation for all further tests. Since the
stereographic projection of a unit quaternion is a 3D vector, the output layer mentioned in Section 2.2
is a linear activation with three hidden nodes, the output of which is the predicted I2S alignment.
As objective function, we used an L2 loss function, during training.

2.3. Coordinate frames and transformations

We use three different coordinate frames: The global frame G is a fixed reference frame, S refers to
the coordinate frame attached to the considered skeleton segment, and I refers to the coordinate frame
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attached to the considered IMU (cf. Figure 4). Moreover, the quantities RGS, SG and RGI , IG denote
the poses (orientations and positions) of the considered segment and IMU coordinate frames w.r.t. the
global frame. From these, the respective I2S orientation (alignment) and position can be obtained as

RSI = RSGRGI = (RGS)T RGI (4)

IS = RSG(IG − SG). (5)

In addition, given 3D kinematics data in terms of global segment poses (RGS, SG) and I2S poses
(RSI , IS), the IMU poses can be obtained as

RGI = RGSRSI (6)

IG = RGS IS + SG. (7)

These relations are required for IMU data simulation as detailed in the following Section 2.4. Moreover,
RSI denotes the I2S alignment for a given IMU that we want to predict.

Segment origin

Segment end

y(ax1)

x(ax0)
S

θ2

z(ax2)

I

θ1

z

y

xG

Figure 4. Exemplary illustration of IMU (I), segment (S, dashed) and global (G) coordinate frames for
one IMU and one segment. The I2S alignment variations in terms of axes and angles (θ1, θ2) as basis for
IMU data simulation are also illustrated.

2.4. Creation of Artificial Training Data

A major part of this work concerns the mixing of simulated and real IMU training data for
increasing the accuracy of the proposed networks w.r.t. the I2S assignment and alignment tasks
without the need to record large amounts of training data with alignment variations. This section
details the creation of artificial training data in terms of simulated IMU data from available 3D
kinematics data (global segment orientations and positions). Here, lower body kinematics data for
walking was obtained through own recordings with a commercial IMU based system [57] as well as
from an available motion capture dataset [49] (see Section 3.1 for further details on the used datasets).
For both sources, the kinematics data were mapped to the skeleton shown in Figure 1. For creating
artificial training data, the first step consisted of simulating a suitable set of I2S alignments for each
body segment (Section 2.4.1). Note, in this work, we considered variations of the I2S orientations
(RSI), while keeping the I2S positions (IS) stationary on the midpoints of the respective segment axes
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(i.e., inside the bones). The second step consisted of using these I2S alignments together with the
global segment poses available from the 3D kinematics data to obtain sets of IMU trajectories for each
segment, from which ideally simulated IMU data was obtained through differentiation. This was
followed by mimicking different measurement artifacts to obtain realistic IMU data. The latter steps
are detailed in Section 2.4.2.

2.4.1. Simulation of I2S Alignment Variations

An illustration of the I2S alignment variation simulation for one segment is shown in Figure 4.
The basic idea is to, in a structured way, generate orientation variation samples for each IMU and
associated segment according to the assumptions that body segments can be approximated by capsule
like surfaces and IMUs are aligned tangentially to these surfaces, i.e., that their z-axes are approximately
aligned with the outward pointing surface normals [11]. This can be achieved by systematically
sampling rotation angle tuples (θ1, θ2)l ∈ R×R, l = 1, . . . , N withR being a set of

√
N equidistant

angle samples (of the full circle) and applying these to both the z-axis of the considered IMU (in the
IMU coordinate frame) and the axis that connects segment origin and end, represented in the respective
segment coordinate system. Formalizing this results in alignment variations R̂SI

l , l = 1, ..., N with

R̂SI
l = Ra(θ2,l)RSI Rz(θ1,l), l = 1, . . . , N. (8)

Here, RSI is the assumed initial I2S alignment, e.g., an actual alignment used during an IMU based
recording and obtained from an N-pose calibration [10]. The symbol Rx(θ) denotes a rotation of
angle θ around rotation axis x and N depends on the angle step size. For the experiments, we used
R = {0°, 45°, 90°, ..., 315°} leading to N = 64 alignment variations. Note, while Rz always corresponds
to the IMU’s z-axis (represented in the IMU coordinate frame), Ra depends on the body location and
is chosen as a = z (i.e., the segment’s z-axis represented in the segment coordinate system) for left
and right upper and lower legs, a = y for the pelvis and a = (0.9, 0.0,−0.4)T for the feet. The latter
approximates the vector between the foot’s origin and the head of the second metatarsal bone projected
onto the ground [8]. These choices correspond to the assumed skeleton definition (segment coordinate
systems), as further detailed in Section 3.1.

2.4.2. Simulation of Realistic IMU Data

Given a time sequence of global segment poses (i.e., 3D kinematics data) and a set of constant
I2S poses as obtained from the procedure described in the previous section (i.e., neglecting soft tissue
artifacts), time sequences of IMU poses were calculated using Equation (6). From this, ideal IMU
datasets were simulated using standard data differentiation [58]. Note, in order to compensate for
measurement artifacts in the used motion capture data, the global segment pose data was preprocessed
with a zero lag Butterworth filter of order 8 and a cutoff frequency of 10 Hz [59]. Moreover, quantization
artifacts (sensor ranges and digital resolution) were mimicked according to the specifications of the
actual IMUs used in this work [57].

Figure 5 illustrates an example of good correspondence between real and re-simulated IMU data
for a plausibility test, where IMUs were rigidly mounted on a rigid body (i.e., excluding soft tissue
artifacts) moved freely in space and were additionally tracked with a gold standard marker based
optical system [60]. The Pearson correlation coefficients between real and re-simulated accelerometer
and gyroscope data were on average for all channels and IMUs 0.99 and 0.97, respectively (see
Tables A2 and A3 in Appendix B).
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Figure 5. Comparison between real and re-simulated IMU data for one example from a capturing setup
where IMUs were rigidly mounted on a rigid body and were additionally tracked with a marker based
optical system. The frequency was 60 Hz, i.e., 60 samples correspond to one second.

We also compared our results to the simulated IMU data obtained from IMUSim [42] with
comparable results (Pearson correlation coefficients when using [42]: 0.91 and 0.97, respectively).

Figure 6 shows an example comparison of real and re-simulated data from a walking motion (IMU
on the right foot). Here, the average Pearson correlation coefficients over all channels and all IMUs
were 0.57 for the accelerometers and 0.93 for the gyroscopes (see Tables A4 and A5 in Appendix B).
The comparably lower correlation coefficient for the accelerometers is shown in Figure 6. Here,
the greatest differences between real and re-simulated data are observed during the ground impacts.

Figure 6. Comparison between real and re-simulated IMU data from the right foot from a capturing
setup where IMUs were mounted on a person during walking and were additionally tracked with a
marker based optical system. The frequency was 60 Hz, i.e., 60 samples correspond to one second.

This synthetic gap can be a result of additional artifacts due to clothing or soft-tissue (causing
additional accelerations), which are most severe during ground impacts. The approximated I2S
position assumption can also add artifacts. To initially address this, inspired by [61], we added
zero-mean Gaussian noise (ea ∼ N (0, σ2), with σ2 = 1 m/s2) to all accelerometer channels. Note,
we considered the gyroscope data to be reasonable without additional noise, in this work. Figure 7
augments Figure 6 by showing 100 re-simulated noisy signals per timestep. In addition, the absolute
errors between real and re-simulated signals are shown.
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Figure 7. Figure 6 augmented with 100 noisy re-simulated signals per timestep and the respective
root squared errors (RSE) between the real signal and the closest re-simulated signal at each timestep
(RSE Opt.).

Qualitatively speaking, it can be seen in the figure that the real accelerometer signal is often
included in the fan of noisy re-simulated signals. Quantitatively, this shows in a drop of the average
RMSE over all channels and all IMUs from 4.02 m/s2 for a signal without noise to 1.23 m/s2 when
considering the closest noise sample at each timestep (i.e., the optimal case). Anticipating the
experimental results in Section 4, the addition of Gaussian noise resulted in a considerable improvement
w.r.t. the addressed I2S assignment and alignment tasks (8 percent and 1.5 degrees, respectively, for
purely training networks on (noisy) simulated IMU data and testing on unseen labeled real IMU
data). Hence, we kept this setting for the subsequent experiments and left more sophisticated soft
tissue models (e.g., [61]), general motion artifact compensation (e.g., [62]) or specific compensation of
walking artifacts to future work.

3. Datasets and Experiments

This section introduces the datasets used to train and evaluate the proposed networks (Section 3.1),
the training configuration and time (Section 3.2) as well as the error metrics used for evaluation
(Section 3.3).

3.1. Datasets

Three datasets (A,B, and C) were used for training and evaluation. Dataset A extracts walking
motions from the publicly available CMU dataset [49]. The latter provides 3D kinematics data
captured with a marker based optical motion capture system. The other datasets consist of IMU and
3D kinematics data recorded with the Xsens Awinda MVN Studio software and the Xsens Awinda
IMU hardware [57]. More details are given in the following:

A IMU data simulated from the 3D kinematics data of parts of the CMU dataset (42 participants
performing different walking styles, see Table A6 in Appendix C). Note, this dataset is
distinguished by a high amount of simulated IMU configuration variations (as described in
Section 2.4) based on an already high amount of variability in the 3D kinematics data (in terms of
persons and walking styles) used for simulation.
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B Collected real IMU data from four male participants (mean age: 32, mean weight: 82 kg, mean
height: 181 cm) instructed to walk for one minute back and forth (within an area of five by five
meters), with nine different IMU configurations as detailed in Appendix C (Table A7).

C Collected real IMU data from 28 participants (13/15 male/female, mean age: 25 years, mean
weight: 70 kg, mean height: 176 cm) instructed to walk for six minutes in an eight-shape within
an area of about five by five meters, with one standard IMU configuration, different from the
previously mentioned nine configurations (see Figure 8). This study was approved by the Ethical
Committee of the University of Kaiserslautern and written informed consent was obtained from
all participants prior to their participation.

Figure 8. (Left) IMU configurations used for the recording of dataset C (dashed lines mark IMUs placed
on the back); and (Right) skeleton with exemplary segment coordinate systems of pelvis and right leg
(analogous for left leg). The global coordinate system (G) is a fixed reference coordinate system.

3.2. Training

In this work, we utilized methods from the Tensorflow library [63] for training and evaluation of
the proposed network configurations. The training was performed on Nvidia GPUs with an average
training time of twelve hours for the I2S assignment model and 48 hours for the I2S alignment model.
Further details regarding the choice of the optimizer and different hyper parameters can be found in
Appendix D (Table A1).

3.3. Evaluation

For model evaluation disjoint training, validation and test sets were created from the above
mentioned datasets. According to the leave-one-subject-out (LOSO) method, the test sets consisted
of persons not used for training. The training and validation sets were created with a 95% to 5%
splitting. The training data were used to train the model. Evaluation on the same data allows verifying
whether the model is able to reconstruct the labels of the training data. The validation data were used
to evaluate the model on unseen data during the training process. Finally, the test data were used to
evaluate the model on data from a person that was not present during the training process. Together,
this provides indications of the model’s ability to generalize to unseen data and users.



Sensors 2018, 18, 302 14 of 35

Two different sets of error measures were used for evaluating the classification and the regression
approach. The performance of the classification model was assessed via three scalar measurements
based on the classification output in comparison to the ground truth dataset labels, i.e.,

precision =
true positives

true positives + false positives
, (9)

recall =
true positives

false positives + false negatives
, (10)

and
f1 =

precision · recall
precision + recall

. (11)

The performance of the regression model was assessed by comparing the predicted I2S alignment
orientation quaternions (q̃i) with the ground truth quaternions (qi) for each window i. The orientation
deviations (qi · q̃−1

i ) were decomposed into (absolute) angular deviations (|αerr,i,ax0|, |αerr,i,ax1|,
|αerr,i,ax2|) around the x-, y-, z-coordinate axes of the respective segment coordinate frame using
an Euler angle decomposition of order XYZ (cf. Figure 4). From these measures (which are in the
range [0°, 180°]) we calculated typical statistics including minimum, maximum, mean, median, and
mean squared angular errors in the considered dataset. Note, we also use box plots to illustrate the
errors. Here, a white circle denotes the mean, a line across the box denotes the median, a colored
bounding box denotes the upper (> 75%) and lower (< 25%) quantiles, and whiskers of 1.5 times the
inter quantile range denote the upper and lower bounds.

4. Results and Discussion

This section details the results of applying the proposed methods to the different datasets while
moving from simulated to real IMU data. Note, the hyper parameters summarized in Appendix A
(Table A1) were obtained through cross validations on dataset A and were used for all experiments.
Section 4.1 first provides an evaluation of different network configurations on dataset A, i.e., simulated
IMU data for training and evaluation. Section 4.2 then provides evaluation results for the models
trained with the proposed (best performing) network configurations (as illustrated in Figure 2) on
dataset A. These are subsequently denoted pre-trained models. Thereafter, Section 4.3 evaluates the
effects of combining the pre-trained models with simulated and real IMU data for training when
testing on real IMU data. This uses dataset B. Finally, Section 4.4 provides an evaluation of the final
models using all datasets.

4.1. Evaluation of Network Configurations on Dataset A

The network configurations described in Section 2.2 (and motivated by [18]) combine CNN and
RNN layers. This aims for a model that allows to extract local IMU signal patterns via the CNN layers
as well as long-term dependencies via the RNN layers. To evaluate the performances of different
network configurations in our considered problems, we performed cross validations using only CNN
layers, only RNN layers and a combination of both based on dataset A. The results for both the I2S
assignment and alignment tasks are provided in Figure 9 and in Appendix D (Tables A8 and A9). They
clearly confirm the superiority of the proposed combination also for our problems.
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Figure 9. Network configuration cross validation on dataset A: (Left) The bar plot represents the
accuracy of the I2S assignment problem; and (Right) the bar plots represent the mean angle errors over
all axes and windows for the I2S alignment problem for each body segment.

4.2. Pre-trained Models Based on Dataset A

The next step consisted of model training and evaluation on dataset A, i.e., training and testing
on simulated IMU data. Figure 10a shows the results for the I2S assignment problem in terms of a
confusion matrix. The model achieved 99.99% precision, recall and f-score. Figure 10b shows the
results for the I2S alignment problem in terms of box plots of the absolute angular deviations (angle
errors) around the three body segment coordinate axes exemplary for the left foot. The mean error
over all windows and axes was 0.62° and the maximum error was 4.23° (cf. Figure 9 (right) for average
results concerning the other segments).
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Figure 10. Evaluation results on simulated dataset A: (a) confusion matrix for the I2S assignment
problem; and (b) boxplots of the angle errors around the three body segment axes for the I2S alignment
problem (exemplary for the left foot).

These results attest a good performance of the trained models under controlled conditions
(simulated IMU data). Note that we already included Gaussian noise to cover additional real-world
effects (cf. Section 2.4.1).

The models trained on dataset A correspond to a proposal distribution generator for an
approximate inference from a synthetic data generative model [46], which created the motion samples
of dataset A. In the following, these models are denoted pre-trained models.
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4.3. Impact of Mixing Real and Simulated IMU Training Data Based on Dataset B

To investigate the effects of combining simulated and real IMU data for training when testing on
real IMU data from a person not seen during training, we performed four tests based on dataset B:

1. Training on real IMU data from three persons (nine alignment variations each, see Table A7 in
Appendix C), testing on real IMU data from the left out (test) person (nine alignment variations).

2. Training on re-simulated IMU data from three persons (64 simulated alignment variations per
real IMU alignment), testing on real IMU data from the test person (nine alignment variations).

3. Setup 2, but with additionally using the real IMU data captured from the three participants (nine
alignment variations) for training (i.e., 1/65 of the training data is based on real IMU data).

4. Setup 3, with the training being warm-started with the pre-trained models of Section 4.2.

Here, test case 1 can be considered as baseline (training and testing on only few real IMU data),
while cases 2 through 4 represent different strategies of using simulated IMU data for increasing the
I2S alignment variations present in the training dataset.

Figure 11a shows the results of test case 1 for the I2S assignment problem. The average accuracy
was 94% with the main source of inaccuracy being the feet. Figure 11b shows the results for the
I2S alignment problem in terms of per segment mean, median and maximum angle errors over all
windows, axes and considered IMU configurations. Here, the model performed rather poorly, with
an overall (over all segments) mean angle error of 63.33°, average median angle error of 54.62° and
maximum angle error of 179.99°. This indicates that the training data did not contain sufficient
alignment variations for the proposed regression approach.
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Figure 11. Evaluation results on dataset B, test case 1: (a) confusion matrix for the I2S assignment
problem; and (b) angle errors over all windows, axes and considered (nine) IMU configurations for the
I2S alignment problem for test case 1.

The following sections describe the effects of augmenting the real IMU training data with
simulated training data when testing on real IMU data from an unseen person (test cases 2 through 4),
first for the I2S assignment then for the I2S alignment problem.

4.3.1. I2S Assignment Problem

Training on purely simulated data from few participants and then testing on real IMU data from an
unseen participant (test case 2) gave an overall accuracy of 68% for the I2S assignment problem. This is
a significant decrease compared to the baseline test case 1. Note, the majority of mis-classifications
are due to left/right switches that are not explicitly handled in this approach (see Figure 12a). Hence,
the prior distribution induced via the few simulated IMU data seems to be insufficient for a high
classification accuracy. Adding a small amount of real IMU data to the training set (test case 3) resulted
in a performance increase to an average accuracy of 92% (see Figure 12b). Note, the accuracy is still
slightly lower compared to the baseline test case 1 (real training data only). Using the pre-trained
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model from Section 4.2 (based on dataset A) resulted in an average accuracy of 96% (see Figure 12c).
This last model performed best with an additional accuracy improvement of 4% as compared to test
case 3 (without pre-training) and an increase of 2% compared to the baseline test case 1.
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Figure 12. Evaluation results in terms of confusion matrices for the I2S assignment problem on
dataset B.

In summary, these results indicate that a pre-training with simulated IMU data from an existing
motion capture dataset (dataset A) in combination with a mixture of simulated and real IMU training
data from a small additionally captured dataset (dataset B) yield already promising results for the I2S
assignment problem in a real data scenario.

4.3.2. I2S Alignment Problem

Figure 13 summarizes the evaluation results for test cases 1 through 4 for the I2S alignment
problem. Training on purely simulated IMU data (test case 2) resulted in an overall (over all segments)
mean angle error over all windows and axes of 33.30°. The maximum was 147.64° and the average
median was 23.46°. This already constitutes a considerable improvement as compared to the baseline
test case 1. Adding real IMU data to the training set (test case 3) resulted in a further reduction of the
angle errors. The overall mean angle error reduced to 22.5°, the maximum to 143.13° and the average
median to 18.11°. Finally, a slight additional improvement was achieved by using the pre-trained
model from Section 4.2 (test case 4). Here, the overall mean, maximum and average median angle
error further reduced to 21.35°, 142.03° and 16.59°, respectively. In summary, these results indicate
that our proposed approaches of simulating IMU data and combining the result with real IMU data
for training can considerably increase the I2S alignment estimation accuracy when using only a small
specifically captured dataset (dataset B).
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Figure 13. Evaluation results for the I2S alignment problem on dataset B. The bar plots show the
maximum, mean and median angle errors for all segments over all windows, axes and considered
(nine) IMU configurations. These were obtained through cross validation.

4.4. Evaluation of the Final Models

In a last step, final models were trained across all datasets. More specifically, test case 4 in
Section 4.3 was extended with real and simulated IMU training data based on dataset C. The final
models were tested with two test persons, one randomly selected from dataset B and one randomly
selected from dataset C, both not used for training. Hence, the test data included ten different IMU
configurations. The following sections describe the evaluation results, first for the I2S assignment then
for the I2S alignment problem.

4.4.1. I2S Assignment Problem

Figure 14 shows the evaluation results (over all test persons/IMU configurations) for the I2S
assignment problem. The average accuracy was 98.57%. We also performed separate evaluations for
each different sensor configuration in the test data. The results in terms of confusion matrices are all
given in Appendix E (Figures A4 through A13). The average accuracies over all IMUs ranged between
96.14% and 100%. These results attest a consistently high accuracy for the I2S assignment for a variety
of IMU assignments and alignments with our proposed approach. Note that errors only occurred due
to left/right leg switches, which are hard to distinguish or even indistinguishable for some cases (if
the segments are treated individually as done in our approach).

Figure 13. Cont.
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Figure 13. Evaluation results for the I2S alignment problem on dataset B. The bar plots show the
maximum, mean and median angle errors for all segments over all windows, axes and considered
(nine) IMU configurations. These were obtained through cross validation.

4.4. Evaluation of the Final Models

In a last step, final models were trained across all datasets. More specifically, test case 4 in
Section 4.3 was extended with real and simulated IMU training data based on dataset C. The final
models were tested with two test persons, one randomly selected from dataset B and one randomly
selected from dataset C, both not used for training. Hence, the test data included ten different IMU
configurations. The following sections describe the evaluation results, first for the I2S assignment then
for the I2S alignment problem.

4.4.1. I2S Assignment Problem

Figure 14 shows the evaluation results (over all test persons/IMU configurations) for the I2S
assignment problem. The average accuracy was 98.57%. We also performed separate evaluations for
each different sensor configuration in the test data. The results in terms of confusion matrices are all
given in Appendix E (Figures A4 through A13). The average accuracies over all IMUs ranged between
96.14% and 100%. These results attest a consistently high accuracy for the I2S assignment for a variety
of IMU assignments and alignments with our proposed approach. Note that errors only occurred due
to left/right leg switches, which are hard to distinguish or even indistinguishable for some cases (if
the segments are treated individually as done in our approach).

Figure 13. Evaluation results for the I2S alignment problem on dataset B. The bar plots show the
maximum, mean and median angle errors for all segments over all windows, axes and considered
(nine) IMU configurations. These were obtained through cross validation.

4.4. Evaluation of the Final Models

In a last step, final models were trained across all datasets. More specifically, test case 4 in
Section 4.3 was extended with real and simulated IMU training data based on dataset C. The final
models were tested with two test persons, one randomly selected from dataset B and one randomly
selected from dataset C, both not used for training. Hence, the test data included ten different IMU
configurations. The following sections describe the evaluation results, first for the I2S assignment then
for the I2S alignment problem.

4.4.1. I2S Assignment Problem

Figure 14 shows the evaluation results (over all test persons/IMU configurations) for the I2S
assignment problem. The average accuracy was 98.57%. We also performed separate evaluations for
each different sensor configuration in the test data. The results in terms of confusion matrices are all
given in Appendix E (Figures A2–A11). The average accuracies over all IMUs ranged between 96.14%
and 100%. These results attest a consistently high accuracy for the I2S assignment for a variety of
IMU assignments and alignments with our proposed approach. Note that errors only occurred due to
left/right leg switches, which are hard to distinguish or even indistinguishable for some cases (if the
segments are treated individually as done in our approach).
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Figure 14. Evaluation results in terms of a confusion matrix for the I2S assignment problem using the
final model (based on all datasets).
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4.4.2. I2S Alignment Problem

Figure 15 summarizes the evaluation results for the I2S alignment problem in terms of the
average median angle errors for all axes over all windows, test persons and IMU configurations.
With an overall (over all windows, axes, segments, test persons and IMU configurations) mean angle
error of 15.21° and average median of 2.91°, the results further improved considerably compared
to test case 4 in Section 4.3.2 (the maximum was slightly higher with 168.58°) (see Table A10 in
Appendix E for additional results). Hence, the addition of a higher amount of real IMU data (with one
IMU configuration) completed with simulated alignment variations further increased the degree of
generalization of the trained networks.
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Figure 15. Evaluation results for the I2S alignment problem using the final model (based on all datasets).
The bar plots show the median angle errors around the three body segment axes over all windows,
considered test persons and IMU configurations.

5. Conclusions

The aim of this work was to investigate the potential of deep learning for the challenging tasks of
I2S assignment and alignment w.r.t. a biomechanical lower body model based on windows of IMU
data (angular velocities, accelerations). We used only small data windows (128 samples) in order to
obtain a real-time capable approach. Moreover, we considered each IMU separately in order to obtain
an easily adaptable approach for applications in both inertial body motion capture (which is often
based on multiple IMUs) and human activity recognition (which often uses a single IMU). Moreover,
we aimed at using only a limited amount of real IMU data (in terms of I2S alignments) for training in
order to obtain a practical approach.

We confronted these challenges by combining real IMU data samples with additional artificially
generated IMU data based on available and newly captured 3D kinematics data. The generation of
artificial IMU data was based on the simulation of I2S alignment variations followed by the simulation
of noisy IMU data, where the noise was added to reduce the synthetic gap. For both the I2S assignment
and alignment determination we utilized a suitable combination of CNN and RNN (LSTM and GRU)
based neural network approach.

Regarding the evaluation results on real IMU data, the most promising approach consisted of
combining simulated and real IMU data for training, while warm-starting the training with models
pre-trained on a purely simulated dataset.

For the I2S assignment problem we achieved 94% average accuracy on a small newly recorded
dataset with only four persons and nine I2S alignment variations. This was improved to 96% by
augmenting the real training data with simulated I2S alignment variations and by starting from a
pre-trained model based on purely simulated IMU data (see Section 4.3). With a further increase of the
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amount of real IMU data (eight-shaped walking from 28 persons and one standard I2S alignment) we
obtained an average accuracy of 98.57% (see Section 4.4). Note, the remaining errors were only due to
left/right switches. The segments (pelvis, upper leg, lower leg, and foot) where identified with 100%
accuracy. Hence, a reliable left/right assignment is one part of our future work.

For the I2S alignment problem we achieved significant improvements when mixing real and
simulated IMU data for training. When training and testing on the newly captured dataset with
only four persons and nine I2S alignment variations the angle errors were rather large, e.g., 63.33°
overall mean angle error, 179.99° overall maximum angle error and 54.62° overall median angle error
(Section 4.3). This, however, considerably improved to an overall mean of 21.35°, maximum of 142.03°
and median of 16.59° when augmenting the real training data with simulated I2S alignment variations
and by starting from the pre-trained model (see Section 4.3). When increasing the amount of real IMU
data for training as mentioned above the proposed approach showed an additional improvement
(overall mean and median angle errors of 15.21° and 2.91°, respectively). The observed outliers (overall
maximum of 168.58°) were likely caused by real-world effects that were not yet sufficiently covered by
the training dataset (e.g., amount of real I2S alignment variations and movement variations, soft tissue
artifacts, and I2S position offsets).

Altogether, these results demonstrate the feasibility of augmenting real IMU training data with
simulated data for improving the recognition/estimation accuracies. Note that the proposed approach
provides I2S assignment and alignment of, in principle, any number of IMUs (they are treated
separately) to the lower body skeleton in about two seconds of walking (assuming 60 Hz frequency)
without using magnetometer data.

To further improve the validity and reliability of the proposed approach, there are a few interesting
avenues for future research: the inclusion of uncertainties into the proposed approach, e.g., based
on Bayesian deep learning [53] to provide indications for reliable I2S alignment estimates; a reliable
left/right assignment; and an extension to the full body. In general, a more sophisticated approach for
IMU data simulation, e.g., based on more realistic body shapes [64], a better soft tissue model, possibly
such as the one used in [61], and the modeling of I2S position offsets could further reduce the synthetic
gap in IMU data simulation and by this the amount of outliers and the required amount of real data.
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Appendix A. Proposed Network Configurations

Appendix A.1. Long Short-Term Memory (LSTM)

The core of the LSTM networks are the LSTM cells that replace the recurrent connections in the
RNN approach with gated cells. The idea is that the recurrence is jointly trained with gates, which in
turn control the information flow through the cell and are therefore able to counteract the vanishing
and exploding gradient problem. LSTMs have been shown to learn long time dependencies more
easily than RNNs. Note that these dependencies can also reach over a considered input window of
data. The input to the LSTM cell consists of an activation at time t (a(t)) and the output of the previous
hidden state of the cell h(t− 1). The hidden state is usually initialized with h(0) = 0. The LSTM cell
consists of different components. The cell state c(t) is updated in a controlled manner, via different

www.wearhealth.org
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gates. The forget gate controls the amount of information from past cell states that should be prevented
from influencing future cell states. It is updated as

f(t) = σf (Wa, f a(t) + Wh, f h(t− 1) + b f ). (A1)

Here and in the following, the subscripts of the matrices denote the from-to relationship [18], i.e., Wa, f
is a matrix that relates the (input) activation vector to the vector f(t) representing the forget gate. Wh, f
relates the hidden state h(t− 1) and f(t). The activation function σf is a tangens-hyperbolicus (tanh)
function and b f denotes a bias. The input gate i(t) controls the amount of information that is allowed
to modify the cell state via the hidden state and current activation. It is updated as

i(t) = σi(Wa,ia(t) + Wh,ih(t− 1) + bi). (A2)

As above, Wa,i and Wh,i are matrices, bi is a bias vector and σi a tanh function. The cell state is updated
with a conditional self-loop, weighted by the forget gate vector and the update weighted by the input
gate vector

c(t) = f(t)� c(t− 1) + i(t)� σc(Wa,ca(t) + Wh,ch(t− 1) + bc). (A3)

Here, � denotes an element-wise multiplication. Again, Wa,c and Wh,c denote matrices, bc denotes a
bias vector and σc is a tanh function. Finally, the output gate vector and the hidden state at the next
timestep (h(t)) are computed as

o(t) = σo(Wa,oa + Wh,oh(t− 1) + Wc,oc(t) + bo), (A4)

h(t) = o(t)� σh(c(t)). (A5)

Again, Wh,o and Wc,o are matrices, bo is a bias vector and σo, σh are tanh functions.

Appendix A.2. Gated Recurrent Unit (GRU)

In contrast to an LSTM cell, the GRU cell, as introduced in [52], fuses forget and input gate to
an update gate. Further, it merges the cell and hidden states. This results in a reduced amount of
parameters and, hence, a simpler model. Similar to the LSTM cell, a new state is computed as a
linear sum between the previous and current determined state, although GRU cells do not provide a
mechanism for controlling the degree of state exposure. The state, h(t), is computed as

h(t) = (1− z(t))� h(t− 1) + z(t)� h̃(t), (A6)

where h̃(t) denotes the candidate state and z(t) the update gate. The update gate, which determines
the degree to which the previous cell state and the candidate state contribute to the cell update, is
updated as

z(t) = σz (Wa,za(t) + Wh,zh(t− 1)) , (A7)

where Wa,z and Wh,z are weight matrices, as in Appendix A.1. The candidate state h̃(t) is related to the
calculation of a traditional recurrent unit as in [65]. It is updated as

h̃(t) = σh̃(Wa,h̃a(t) + r(t)� (Wr,h̃h(t− 1))). (A8)

Here, r(t) represents the reset gate, Wa,h̃ and Wr,h̃ are matrices, σh̃ is a tanh function and a(t) denotes
the activation. Similar to the update gate z(t), the reset gate is computed as

r(t) = σr (Wa,ra(t) + Wh,rh(t− 1)) , (A9)
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where Wa,r, Wh,r are matrices and σr is a tanh function. This finishes the update of the GRU cell.

Appendix A.3. Hyper Parameters

Table A1. Hyper parameters of the proposed network configurations, determined through cross
validation based on dataset A and used for all tests.

Assignment Alignment

Optimizer
Batch size 256 256

Learning rate 0.001 0.001
Optimizer Adam Adam

CNN Layer
# Layer 3 3
Kernel 16 × 1 16 × 1

# Kernel 64 64

RNN Layer
# Layer 1 2

Cell GRU LSTM
# Units 128 128

Regularization L2-Factor 0.0001 0.0001
Keep probability 0.8 0.8

Appendix B. IMU Data Simulation

Table A2. Pearson correlation coefficients and root mean squared errors (RMSE) between real
and re-simulated accelerometer data from a capturing setup where the seven IMUs used in the
experiments were rigidly mounted on a rigid body and were additionally tracked with a marker based
optical system.

Accelerometer (Pearson Correlation Coefficient)

IMU x y z mean

1 0.9903 0.9915 0.9862 0.9893
2 0.9901 0.9898 0.9819 0.9873
3 0.9913 0.9909 0.9854 0.9892
4 0.9918 0.9828 0.9762 0.9836
5 0.9917 0.9875 0.9819 0.9870
6 0.9897 0.9869 0.9756 0.9841
7 0.9908 0.9920 0.9866 0.9898

mean 0.9908 0.9888 0.9820 0.9872

Accelerometer RMSE [m/s2]

x y z mean

1 0.6950 0.6969 0.7934 0.7285
2 0.7190 0.7977 0.9613 0.8260
3 0.6506 0.6991 0.7894 0.7130
4 0.6814 0.9577 1.0750 0.9047
5 0.6640 0.8111 0.9024 0.7925
6 0.7534 0.9265 1.2443 0.9747
7 0.6869 0.6644 0.7574 0.7029

mean 0.6929 0.7933 0.9319 0.8060
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Table A3. Pearson correlation coefficients and root mean squared errors (RMSE) between real
and re-simulated gyroscope data from a capturing setup where the seven IMUs used in the
experiments were rigidly mounted on a rigid body and were additionally tracked with a marker
based optical system.

Gyroscope (Pearson Correlation Coefficient)

IMU x y z mean

1 0.9594 0.9760 0.9778 0.9711
2 0.9637 0.9793 0.9737 0.9722
3 0.9645 0.9800 0.9759 0.9734
4 0.9617 0.9798 0.9753 0.9723
5 0.9640 0.9798 0.9750 0.9729
6 0.9632 0.9816 0.9776 0.9742
7 0.9652 0.9800 0.9766 0.9739

mean 0.9631 0.9795 0.9760 0.9729

Gyroscope RMSE [rad/s]

IMU x y z mean

1 0.5978 0.3519 0.2661 0.4053
2 0.5671 0.3252 0.2904 0.3942
3 0.5604 0.3210 0.2782 0.3865
4 0.5840 0.3236 0.2811 0.3962
5 0.5636 0.3231 0.2834 0.3901
6 0.5838 0.3060 0.2700 0.3866
7 0.5558 0.3193 0.2745 0.3832

mean 0.5732 0.3243 0.2777 0.3917

Table A4. Pearson correlation coefficients and root mean squared errors (RMSE) between real and
re-simulated accelerometer data from a capturing setup where IMUs were mounted on a person during
walking and were additionally tracked with a marker based optical system.

Accelerometer (Pearson Correlation Coefficient)

IMU x y z mean

LeftLowerLeg 0.7428 0.4830 0.6028 0.6095
RightUpperLeg 0.5726 0.2803 0.7139 0.5223
LeftUpperLeg 0.6717 0.1602 0.7737 0.5352

RightLowerLeg 0.7325 0.3326 0.5148 0.5266
LeftFoot 0.8067 0.3962 0.6565 0.6198

Pelvis 0.8132 0.2409 0.4940 0.5161
RightFoot 0.8456 0.4342 0.8026 0.6942

mean 0.7407 0.3325 0.6512 0.5748

Accelerometer RMSE [m/s2]

IMU x y z mean

LeftLowerLeg 3.6462 4.3371 4.1111 4.0314
RightUpperLeg 4.2053 3.2582 3.8274 3.7637
LeftUpperLeg 3.1212 3.9498 3.4068 3.4926

RightLowerLeg 3.9041 5.0482 4.3344 4.4289
LeftFoot 5.3138 4.9329 4.7109 4.9859

Pelvis 2.2677 2.5007 2.3478 2.3720
RightFoot 4.6748 6.4197 4.0363 5.0436

mean 3.8762 4.3495 3.8250 4.0169
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Table A5. Pearson correlation coefficients and root mean squared errors (RMSE) between real and
re-simulated gyroscope data from a capturing setup where IMUs were mounted on a person during
walking and were additionally tracked with a marker based optical system.

Gyroscope (Pearson Correlation Coefficient)

IMU x y z mean

LeftLowerLeg 0.8720 0.9802 0.9628 0.9383
RightUpperLeg 0.8736 0.9570 0.9207 0.9171
LeftUpperLeg 0.8661 0.9692 0.8901 0.9085

RightLowerLeg 0.8681 0.9820 0.9469 0.9323
LeftFoot 0.9145 0.9618 0.9234 0.9332

Pelvis 0.9778 0.8890 0.9349 0.9339
RightFoot 0.8451 0.9673 0.9504 0.9209

mean 0.8882 0.9581 0.9327 0.9263

Gyroscope RMSE [rad/s]

IMU x y z mean

LeftLowerLeg 0.8678 0.5459 0.2285 0.5474
RightUpperLeg 0.6663 0.4652 0.1804 0.4373
LeftUpperLeg 0.8404 0.3579 0.2251 0.4745

RightLowerLeg 0.7338 0.5556 0.1653 0.4849
LeftFoot 0.6386 1.0709 0.4129 0.7075

Pelvis 0.1287 0.1257 0.0938 0.1161
RightFoot 0.4638 1.0177 0.4836 0.6550

mean 0.6199 0.5913 0.2557 0.4890

Appendix C. Datasets

Table A6. List of the 42 participants and recordings used from the CMU dataset [49] to create dataset A.

Participant ID Recording Frames Duration [s] Motion Description

02 01 313 2.61 Walk
02 298 2.48 Walk

03

01 432 3.60 Walk on uneven terrain
02 365 3.04 Walk on uneven terrain
03 4563 38.02 Walk on uneven terrain
04 4722 39.35 Walk on uneven terrain

05 01 598 4.98 Walk

06 01 494 4.12 Walk

07

01 316 2.63 Walk
02 329 2.74 Walk
03 415 3.46 Walk
04 449 3.74 Slow walk
05 517 4.31 Slow walk
06 417 3.47 Walk
07 379 3.16 Walk
08 362 3.02 Walk
09 306 2.55 Walk
10 301 2.51 Walk
11 315 2.62 Walk
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Table A6. Cont.

Participant ID Recording Frames Duration [s] Motion Description

08

01 277 2.31 Walk
02 309 2.57 Walk
03 353 2.94 Walk
04 484 4.03 Slow walk
06 296 2.47 Walk
08 283 2.36 Walk
09 293 2.44 Walk
10 275 2.29 Walk

10 04 549 4.57 Walk

12
01 523 4.36 Walk
02 673 5.61 Walk
03 565 4.71 Walk

15

01 5524 46.03 Walk / wander
03 12550 104.58 Walk/wander
09 7875 65.62 Walk/wander
14 9003 75.02 Walk/wander

16

15 471 3.92 Walk
16 510 4.25 Walk
21 312 2.60 Walk
22 307 2.56 Walk
31 424 3.53 Walk
32 580 4.83 Walk
47 416 3.47 Walk
58 342 2.85 Walk

26 01 833 6.94 Walk

27 01 1033 8.61 Walk

29 01 1316 10.97 Walk

32 01 482 4.02 Walk
02 434 3.62 Walk

36

01 557 4.64 Walk on uneven terrain
04 3726 31.05 Walk on uneven terrain
05 4196 34.97 Walk on uneven terrain
06 3896 32.47 Walk on uneven terrain
07 3772 31.43 Walk on uneven terrain
08 3714 30.95 Walk on uneven terrain
10 3832 31.93 Walk on uneven terrain
11 4168 34.73 Walk on uneven terrain
12 4585 38.21 Walk on uneven terrain
13 4247 35.39 Walk on uneven terrain
14 4146 34.55 Walk on uneven terrain
15 4164 34.70 Walk on uneven terrain
16 4395 36.62 Walk on uneven terrain
17 4359 36.32 Walk on uneven terrain
18 4304 35.87 Walk on uneven terrain
19 4193 34.94 Walk on uneven terrain
20 4090 34.08 Walk on uneven terrain
21 4030 33.58 Walk on uneven terrain
22 4312 35.93 Walk on uneven terrain
23 4392 36.60 Walk on uneven terrain
24 4153 34.61 Walk on uneven terrain
25 4685 39.04 Walk on uneven terrain
26 4237 35.31 Walk on uneven terrain
27 4247 35.39 Walk on uneven terrain
28 2391 19.92 Walk on uneven terrain
29 4469 37.24 Walk on uneven terrain



Sensors 2018, 18, 302 26 of 35

Table A6. Cont.

Participant ID Recording Frames Duration [s] Motion Description

36

30 4414 36.78 Walk on uneven terrain
31 3736 31.13 Walk on uneven terrain
32 4468 37.23 Walk on uneven terrain
33 4311 35.92 Walk on uneven terrain
34 4328 36.07 Walk on uneven terrain
35 4341 36.17 Walk on uneven terrain
36 4792 39.93 Walk on uneven terrain

37 01 511 4.26 Slow walk

38 01 352 2.93 Walk
02 420 3.50 Walk

39

01 378 3.15 Walk
02 400 3.33 Walk
03 407 3.39 Walk
04 410 3.42 Walk
05 400 3.33 Walk
06 368 3.07 Walk
07 367 3.06 Walk
08 350 2.92 Walk
10 395 3.29 Walk
11 391 3.26 Walk
12 427 3.56 Walk
13 378 3.15 Walk
14 399 3.32 Walk

43 01 421 3.51 Walk

45 01 456 3.80 Walk

46 01 616 5.13 Walk

49 01 652 5.43 Walk

55 01 530 4.42 Walk

69

01 469 3.91 Walk forward
02 343 2.86 Walk forward
03 430 3.58 Walk forward
04 426 3.55 Walk forward
05 453 3.77 Walk forward

81
02 544 4.53 Walk forward
03 1076 8.97 Walk
17 916 7.63 Walk forward

91

04 2162 18.02 Walk
10 3175 26.46 Slow walk
17 1520 12.67 Quick walk
22 2106 17.55 Casual quick walk
27 2894 24.12 Slow walk
29 2181 18.17 Walk
31 1992 16.60 Walk
34 2208 18.40 Walk
57 1177 9.81 Walk forward

93 07 236 1.97 Casual walk

103 07 236 1.97 Casual walk

104
19 921 7.67 Casual walk
35 1074 8.95 Slow walk

356 2315 19.29 Slow walk
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Table A6. Cont.

Participant ID Recording Frames Duration [s] Motion Description

105

03 1865 15.54 Walk
10 3175 26.46 Slow walk
17 1520 12.67 Quick walk
22 2106 17.55 Casual quick walk
27 2894 24.12 Slow walk
29 2181 18.17 Walk
57 1177 9.81 Walk forward

111 34 1837 15.31 Walk
35 1503 12.52 Walk

113 25 689 5.74 Walk

114
13 3132 26.10 Walk
14 5854 48.78 Walk
15 1384 11.53 Walk

120 19 12792 106.60 Slow walk
20 10735 89.46 Walk

132

17 268 2.23 Walk fast
18 425 3.54 Walk fast
19 271 2.26 Walk fast
20 342 2.85 Walk fast
21 354 2.95 Walk fast
22 371 3.09 Walk fast
45 1531 12.76 Walk slow
46 1223 10.19 Walk slow
47 1510 12.58 Walk slow
48 1625 13.54 Walk slow
49 1748 14.57 Walk slow
50 2139 17.82 Walk slow

133
21 786 6.55 Walk
22 759 6.32 Walk
23 848 7.07 Walk

136 24 1075 8.96 Walk

137 29 1128 9.40 Walk

139 28 2970 24.75 Walk
30 1261 10.51 Walk

141 19 1193 9.94 Walk
25 614 5.12 Walk

143 32 780 6.50 Walk

144 33 4688 39.07 Walk

Table A7. IMU configurations used during the recording of dataset B.

Placement on Segment Alignment (See Figure A1)

# Upper Leg Lower Leg Foot Pelvis
1 anterior anterior dorsal posterior 0
2 anterior anterior dorsal posterior 1
3 anterior anterior dorsal posterior 2
4 lateral lateral dorsal posterior 0
5 lateral lateral dorsal posterior 1
6 lateral lateral dorsal posterior 2
7 anterior medial dorsal posterior 0
8 anterior medial dorsal posterior 1
9 anterior medial dorsal posterior 2
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Figure A1. IMU alignments used during the recording of dataset B.

Appendix D. Cross Validation Results on Dataset A

Table A8. Results of the architecture cross validation for the I2S assignment problem based on dataset A.

Accuracy in %

CNN RNN CNN and RNN
Assignment 96.00 98.43 100.00

Table A9. Results of the architecture cross validation for the I2S alignment problem based on dataset
A: mean angle errors over all axes and windows for each segment.

Mean Angle Errors [°]

CNN RNN CNN and RNN
LeftFoot 4.201 0.796 0.623
LeftLowerLeg 2.955 0.736 0.252
LeftUpperLeg 0.770 0.729 0.427
Pelvis 1.503 1.347 1.309
RightFoot 2.670 1.336 0.800
RightLowerLeg 5.649 1.329 0.990
RightUpperLeg 1.407 3.589 0.822
Mean 2.736 1.405 0.795

Appendix E. Evaluation Results for the Final Models

Figures A2–A11 show the evaluation results in terms of confusion matrices for the I2S assignment
problem based on the final model. Each confusion matrix corresponds to one (of ten) combination(s)
of test person (dataset B or C) and IMU configuration (cf. Table A7 and Figure 8). Table A10 shows the
evaluation results for the I2S alignment problem.
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Figure A2. I2S assignment problem, final model: test person from dataset B, IMU configuration 1 (cf.
Table A7). Average accuracy: 99.57%.
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Figure A3. I2S assignment problem, final model: test person from dataset B, IMU configuration 2 (cf.
Table A7). Average accuracy: 99.43%.
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Figure A4. I2S assignment problem, final model: test person from dataset B, IMU configuration 3 (cf.
Table A7). Average accuracy: 99.43%.



Sensors 2018, 18, 302 30 of 35

Le
ftF

oo
t

Le
ftL

ow
erL

eg

Le
ftU

pp
erL

eg
Pe

lvi
s

Righ
tFo

ot

Righ
tLo

werL
eg

Righ
tU

pp
erL

eg

Predicted label

LeftFoot

LeftLowerLeg

LeftUpperLeg

Pelvis

RightFoot

RightLowerLeg

RightUpperLeg
Tr

ue
 la

be
l

0.99       .                              .

1.0

0.98    0.01                         0.01

1.0

0.02                                    0.98

1.0

. . 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure A5. I2S assignment problem, final model: test person from dataset B, IMU configuration 4 (cf.
Table A7). Average accuracy: 99.43%.
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Figure A6. I2S assignment problem, final model: test person from dataset B, IMU configuration 5 (cf.
Table A7). Average accuracy: 97.29%.
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Figure A7. I2S assignment problem, final model: test person from dataset B, IMU configuration 6 (cf.
Table A7). Average accuracy: 96.14%.
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Figure A8. I2S assignment problem, final model: test person from dataset B, IMU configuration 7 (cf.
Table A7). Average accuracy: 100%.
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Figure A9. I2S assignment problem, final model: test person from dataset B, IMU configuration 8 (cf.
Table A7). Average accuracy: 98.14%.
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Figure A10. I2S assignment problem, final model: test person from dataset B, IMU configuration 9 (cf.
Table A7). Average accuracy: 99.71%.
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Figure A11. I2S assignment problem, final model: test person from dataset C, IMU configuration
according to Figure 8). Average accuracy: 99.14%.

Table A10. I2S alignment problem, final model, all test persons and IMU configurations: median, mean
and maximum angle errors around the three body segment axes.

Segment ax0[°] ax1[°] ax2[°]

Med Mean Max Med Mean Max Med Mean Max

LeftFoot 1.48 13.71 165.06 2.38 6.99 44.70 4.02 12.21 155.23
LeftLowerLeg 4.20 28.59 178.40 3.16 14.22 75.82 7.04 17.95 116.93
LeftUpperLeg 1.35 14.35 171.09 0.88 8.40 81.11 1.51 10.13 96.67

Pelvis 1.42 13.53 180.00 2.07 7.28 88.45 0.65 12.89 179.98
RightFoot 2.96 16.12 127.48 1.35 5.23 72.81 2.39 11.42 157.63

RightLowerLeg 3.61 31.21 179.97 7.63 10.92 52.61 5.13 24.49 179.79
RightUpperLeg 3.54 28.55 178.10 1.30 9.42 77.72 3.02 21.79 179.64

Average 2.65 20.86 168.58 2.68 8.92 70.46 3.39 15.84 152.26
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