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Abstract

Background: The neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR), and circulating tumor cells
(CTCs) have been associated with survival in castration-resistant prostate cancer (CRPC). However, no study has
examined the prognostic value of NLR and PLR in the context of CTCs.

Methods: Baseline CTCs from mCRPC patients were enumerated using the CellSearch System. Baseline NLR and
PLR values were calculated using the data from routine complete blood counts. The associations of CTC, NLR, and
PLR values, individually and jointly, with progression-free survival (PFS) and overall survival (OS), were evaluated
using Kaplan-Meier analysis, as well as univariate and multivariate Cox models.

Results: CTCs were detected in 37 (58.7%) of 63 mCRPC patients, and among them, 16 (25.4%) had ≥5 CTCs. The
presence of CTCs was significantly associated with a 4.02-fold increased risk for progression and a 3.72-fold
increased risk of death during a median follow-up of 17.6 months. OS was shorter among patients with high levels
of NLR or PLR than those with low levels (log-rank P = 0.023 and 0.077). Neither NLR nor PLR was individually
associated with PFS. Among the 37 patients with detectable CTCs, those with a high NLR had significantly shorter
OS (log-rank P = 0.024); however, among the 26 patients without CTCs, the OS difference between high- and low-
NLR groups was not statistically significant. Compared to the patients with CTCs and low NLR, those with CTCs and
high levels of NLR had a 3.79-fold risk of death (P = 0.036). This association remained significant after adjusting for
covariates (P = 0.031). Combination analyses of CTC and PLR did not yield significant results.

Conclusion: Among patients with detectable CTCs, the use of NLR could further classify patients into different risk
groups, suggesting a complementary role for NLR in CTC-based prognostic stratification in mCRPC.
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Introduction
Androgen deprivation therapy (ADT) is a commonly-
used first-line treatment for men with advanced
prostate cancer. Although receiving ADT, the vast
majority of patients eventually progress to a disease
state known as castration-resistant prostate cancer
(CRPC) [1]. CRPC is heterogenous, spanning from pa-
tients with a rising prostate-specific antigen (PSA) but
no demonstrable metastases to patients with extensive
metastases in visceral sites and/or bone [1]. A variety
of markers, including circulating tumor cells (CTCs)
and gene expression profiles, are being studied to
identify subsets of metastatic CRPC (mCRPC) patients
who have significantly different prognoses [2, 3].
CTCs have been associated with a poor prognosis in
mCRPC patients [3, 4]. Further, a pooled analysis of
five randomized clinical trials demonstrated CTC
count to be a response measure in these patients [5].
Tumor metastasis depends not only on the intrinsic

characteristics of the tumor cells, but also on the envir-
onment around the tumor [6]. The systematic inflamma-
tory response is accompanied by changes in the relative
levels of circulating white blood cells (WBCs), with con-
current increased neutrophils and decreased lympho-
cytes [7]. Walsh et al. first discovered the prognostic
value of neutrophil-lymphocyte ratio (NLR) in pre-
operative colorectal cancer patients [8]. Since then, there
has been increasing evidence regarding the prognostic
value of NLR in other solid tumors [9–12], including
CRPC [13, 14].
CTCs have the capacity to bind and interact with non-

malignant cells such as WBCs in the bloodstream, as
seen in a recent study that demonstrated the metastatic
potential of CTC-neutrophil clusters in both mouse
models and patients with breast cancer [15]. The cross-
talk between tumor cells and platelets also contributes
to tumor metastasis by protecting CTCs from immune
elimination [16]. However, no study has investigated
whether these commonly available laboratory variables
can further improve CTC-based prognostic stratification
among mCRPC patients. To this end, we reviewed data
from our prospective mCRPC cohort, analyzed baseline
CTCs together with NLR and platelet-lymphocyte ratio
(PLR), two hematological prognostic factors, and evalu-
ated their joint impact on mCRPC survival.

Patients and methods
Study population
We prospectively recruited men with mCRPC who vis-
ited the Sidney Kimmel Cancer Center at Thomas
Jefferson University Hospital starting in March 2018. All
patients in this study had histologically confirmed pros-
tate adenocarcinoma, progressive disease despite castra-
tion levels of serum testosterone (< 50 ng/dL), and

radiographic metastases according to computed tomog-
raphy (CT) or technetium-99 bone scan. Patients with
other primary tumors were excluded. We reviewed med-
ical charts to obtain baseline demographic data (e.g., age,
race), clinical data (e.g., ECOG performance status [PS],
treatments), and laboratory data (e.g., absolute neutro-
phil count, absolute lymphocyte count, platelet count, al-
kaline phosphatase [ALP], albumin [ALB], hemoglobin
[HGB], lactate dehydrogenase [LDH], and PSA). NLR
and PLR values were calculated accordingly. Blood sam-
ples were collected from each patient for CTC enumer-
ation and baseline samples were obtained before
initiation of a new therapy. Imaging tests during follow-
up were conducted following the PCWG3 guideline [17].
This study was approved by the Institutional Review
Board of Thomas Jefferson University. Each patient pro-
vided a written informed consent.

CTC enumeration
Approximately 8–10 mL of whole blood were drawn into
a 10mL CellSave tube (Menarini Silicon Biosystems,
Huntington Valley, Pennsylvania, USA), maintained at
room temperature, and processed within 96 h of collec-
tion. CTC enumeration was conducted via the Cell-
Search System (Menarini Silicon Biosystems), which
consists of the CellTracks Autoprep and the CellSearch
CTC kit, to immunomagnetically enrich cells expressing
the epithelial cell adhesion molecule. Cells were fluores-
cently labelled to identify the following: nuclei (DAPI),
leukocytes with monoclonal antibodies specific for leu-
kocytes (CD45), and epithelial cells (phycoerythrin-con-
jugated cytokeratins CK-8,18,19). CTCs were defined as
nucleated cells lacking CD45 and expressing cytokeratin
(CK+/DAPI+/CD45-) [3].

Statistical analyses
The clinical outcomes analyzed in this study were
progression-free survival (PFS) and overall survival (OS).
PFS was defined as the time from the date of baseline
blood draw to the date of radiologic progression (on CT
scan: ≥20% enlargement in sum diameter of target le-
sions [Response Evaluation Criteria in Solid Tumors]
[18]; on bone scan: ≥2 new bone lesions not caused by
flare), symptomatic progression (worsening disease-
related symptoms or new cancer-related complications),
or death, whichever occurred first [19]. OS was defined
as the time from the date of baseline blood draw to the
date of death from any cause. The patients without an
endpoint event at the last follow-up visit were censored.
The cutoff values of NLR and PLR for dichotomizing pa-
tients into high- and low-level groups were determined
using receiver operating characteristic curve (ROC) ana-
lysis. We plotted survival curves using the Kaplan-Meier
estimator and compared survival differences using the
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Table 1 Patient characteristics (N = 63)

Variables N (%)

Age (year), median (range) 70.9 (52.7–93.0)

Race

White 49 (77.8)

Black 11 (17.5)

Other 3 (4.8)

Gleason score at diagnosis

6 3 (4.8)

7 15 (23.8)

8 10 (15.9)

9 26 (41.3)

10 4 (6.4)

Unknown 5 (7.9)

ECOG performance status

0 25 (39.7)

1 28 (44.4)

2 8 (12.7)

3 1 (1.6)

Unknown 1 (1.6)

Bone metastasis

No 3 (4.8)

Yes 60 (95.2)

Visceral metastasis

No 51 (81.0)

Yes 12 (19.0)

Previous ARSi therapy

No 34 (54.0)

Yes 29 (46.0)

Previous chemotherapy

No 38 (60.3)

Yes 25 (39.7)

ARSi therapy after blood draw

No 16 (25.4)

Yes 47 (74.6)

Cytotoxic therapy after blood draw

No 46 (73.0)

Yes 17 (27.0)

Absolute neutrophil (B/L), median (range) 4.2 (1.0–15.4)

Absolute lymphocyte (B/L), median (range) 1.0 (0.3–10.4)

Platelet (B/L), median (range) 214 (73–513)

Neutrophil-to-lymphocyte ratio, median (range) 3.7 (0.3–20.6)

Platelet-to-lymphocyte ratio, median (range) 200 (12.9–1126.9)

Prostate-specific antigen (ng/ml), median (range) 8.8 (0.1–1169.0)

Hemoglobin (g/dL), median (range) 12.1 (7.4–14.6)

Alkaline phosphatase (IU/L), median (range) 86 (36–1709)
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log-rank test. Time-dependent ROC analyses were used
to compare the performance between a CTC model with
or without NLR/PLR, and to explore the discriminatory
ability over time. Associations of CTC (absence/pres-
ence), NLR (high/low), and PLR (high/low), individually
and jointly, with PFS or OS were evaluated using hazard
ratios (HRs) with 95% confidence intervals (CIs) by uni-
variate and multivariate Cox proportional hazards
models. Only variables that were significantly associated
with outcomes in the univariate analyses were controlled
in the multivariate model. The proportional hazards as-
sumption was validated using the test based on Schoen-
feld residuals. SAS (Version 9.4, SAS Institute, Cary,
NC) and STATA (Version 11.0, STATA Corp., College
Station, TX) software packages were used for the ana-
lyses conducted in this study. All P values were 2-sided,
with a P < 0.05 considered the threshold for statistical
significance.

Results
Patient characteristics
Sixty-three mCRPC patients with both CTC enumer-
ation results and NLR/PLR values were included in
this analysis. Among the patients with a median age
of 70 years (range 52 to 93), 60 (95.2%) patients had
metastasis to bone, and 12 (19%) patients had vis-
ceral metastases. Prior to baseline CTC measure-
ment, 29 (46%) and 25 (39.7%) patients were ever
treated with androgen receptor signaling inhibitors
(ARSi), such as abiraterone acetate and enzaluta-
mide, and cytotoxic chemotherapy, respectively.
There were 47 (74.6%) and 17 (27%) patients receiv-
ing ARSi and chemotherapy, respectively, since en-
rollment. During a median follow-up period of 17.6
months (interquartile range [IQR]: 10.3–20.6), 23
(36.5%) patients died. Details of patient characteris-
tics are summarized in Table 1.

Association between CTC and clinical outcomes
CTCs were detected in 37 (58.7%) of 63 baseline sam-
ples, and the median CTC count was 3 (IQR: 1–17).
Among mCRPC patients with CTCs, 16 had five or
more CTCs, a high CTC count that has been

associated with worse clinical outcomes in previous
studies [3–5]. We found that, compared to patients
without CTCs, patients with CTCs (≥1) had lower
PFS (5.0 months vs. 18.1 months, log-rank P < 0.001)
(Table 2, Fig. 1A). Compared to patients without
CTCs, patients with CTCs experienced a 4.02-fold
risk of progression (HR 4.02, 95% CI 2.05 to 7.86,
Table 2). Similarly, the presence of CTCs was associ-
ated with shorter OS (14.2 months vs. not reached
[NR], log-rank P = 0.006), and patients with CTCs had
a 3.72-fold risk of death (HR 3.72, 95% CI 1.37 to
10.06) (Table 2, Fig. 1B). We conducted the same
analyses using the widely accepted cut-off of 5 CTCs
and obtained similar results (Figure S1).

Association between NLR and clinical outcomes
According to the cut-off (2.65) determined using the
ROC analysis, patients were classified into two groups:
the low-NLR (n = 21) and the high-NLR group (n = 42).
The high-NLR group exhibited lower PFS (6.5 months
vs. 11.4 months in low-NLR group), although the differ-
ence in PFS did not reach significance (log-rank P =
0.119) (Table 2, Fig. 1C). There was a statistically signifi-
cant difference in OS between the high-NLR and low-
NLR groups (17.7 months vs. NR, log-rank P = 0.023,
Fig. 1D). A 3.27-fold risk of death was observed in the
high-NLR group compared to the low-NLR group (HR
3.27, 95% CI 1.11 to 9.63) (Table 2).

Association between PLR and clinical outcomes
Using the cutoff of PLR (155.54) to classify the pa-
tients into two groups, we obtained the low-PLR (n =
23) and the high-PLR groups (n = 40). The high-PLR
group showed a trend towards earlier progression
(median PFS of 5.7 months vs. 11.4 months in the
low-PLR group) and lower OS (17.7 months vs. NR in
the low-PLR group) (Table 2). However, neither of
the survival metrics between the two groups reached
statistical significance (log-rank P = 0.091 and 0.077,
respectively) (Fig. 1E, F). The univariate Cox analyses
of associations between PLR and outcomes yielded
similar results (Table 2).

Table 1 Patient characteristics (N = 63) (Continued)

Variables N (%)

Albumin (g/dL), median (range) 4.1 (2.7–4.7)

Lactate dehydrogenase (IU/L), median (range)a 212 (149–560)

Vital status

Alive 40 (63.5)

Dead 23 (36.5)

ECOG Eastern Cooperative Oncology Group; ARSi androgen receptor signaling inhibitor
a: data were available from 24 patients
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Joint effect of CTC and NLR on clinical outcomes
To analyze the joint effects of CTC and NLR on clinical
outcomes, we subdivided the study population into four
groups: Group 1, CTC = 0 and NLR < 2.65 (n = 9); Group
2, CTC = 0 and NLR ≥ 2.65 (n = 17); Group 3, CTC ≥ 1

and NLR < 2.65 (n = 12); and Group 4, CTC ≥ 1 and
NLR ≥ 2.65 (n = 25) (Table 2). Comparing the PFS with
the log-rank test, we found that the median time to pro-
gression decreased from Group 1 to Group 4 (20.1, 12.2,
6.1, and 3.3 months, respectively, log-rank P < 0.001)

Table 2 Univariate analysis of associations with clinical outcomes

Variables Total Event Median survival (mo) Log-rank P HR (95% CI) P

Association with PFS

CTC

0 26 14 18.1 < 0.001 Ref.

≥ 1 37 31 5.0 4.02 (2.05–7.86) < 0.001

NLR

< 2.65 21 14 11.4 0.119 Ref.

≥ 2.65 42 31 6.5 1.65 (0.87–3.12) 0.123

PLR

< 155.54 23 14 11.4 0.091 Ref.

≥ 155.54 40 31 5.7 1.72 (0.91–3.24) 0.095

Risk group

CTC = 0 and NLR < 2.65 9 4 20.1 < 0.001 Ref.

CTC = 0 and NLR≥ 2.65 17 10 12.2 1.92 (0.59–6.29) 0.279

CTC ≥ 1 and NLR < 2.65 12 10 6.1 Ref.

CTC ≥ 1 and NLR≥ 2.65 25 21 3.3 2.12 (0.97–4.61) 0.059

CTC = 0 and PLR < 155.54 11 5 20.1 < 0.001 Ref.

CTC = 0 and PLR ≥ 155.54 15 9 17.9 1.42 (0.47–4.29) 0.531

CTC ≥ 1 and PLR < 155.54 12 9 7.5 Ref.

CTC ≥ 1 and PLR ≥ 155.54 25 22 4.1 2.27 (1.02–5.08) 0.046

Association with OS

CTC

0 26 5 NR 0.006 Ref.

≥ 1 37 18 14.2 3.72 (1.37–10.06) 0.010

NLR

< 2.65 21 4 NR 0.023 Ref.

≥ 2.65 42 19 17.7 3.27 (1.11–9.63) 0.031

PLR

< 155.54 23 5 NR 0.077 Ref.

≥ 155.54 40 18 17.7 2.38 (0.88–6.43) 0.086

Risk group

CTC = 0 and NLR < 2.65 9 1 NR 0.002 Ref.

CTC = 0 and NLR≥ 2.65 17 4 NR 3.12 (0.34–28.34) 0.313

CTC ≥ 1 and NLR < 2.65 12 3 NR Ref.

CTC ≥ 1 and NLR≥ 2.65 25 15 9.1 3.79 (1.09–13.13) 0.036

CTC = 0 and PLR < 155.54 11 2 NR 0.007 Ref.

CTC = 0 and PLR ≥ 155.54 15 3 NR 1.19 (0.20–7.18) 0.846

CTC≥ 1 and PLR < 155.54 12 3 NR Ref.

CTC≥ 1 and PLR ≥ 155.54 25 15 13.7 2.85 (0.82–9.86) 0.098

CTC circulating tumor cell; NLR neutrophil-to-lymphocyte ratio; PLR platelet-to-lymphocyte ratio; PFS progression free survival; OS overall survival; NR not reached;
HR hazard ratio; CI confidence interval
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(Table 2, Fig. 2A). However, the differences in PFS be-
tween Group 1 and Group 2 (log-rank P = 0.271), or be-
tween Group 3 and Group 4 (log-rank P = 0.054) were
not statistically significant. We then conducted similar
analyses for OS, and found that patients in Group 4 had
the shortest median OS of 9.1 months (Fig. 2B). More-
over, among the patients with detectable CTCs (Groups
3 and 4), those with a high NLR had significantly shorter
OS than those with a low NLR (log-rank P = 0.024, Fig.
2B), indicating a further prognostic stratification using
NLR. It should be noted that, among the patients with-
out CTCs, the difference in OS between high and low
NLR groups was not statistically significant (log-rank
P = 0.288), thus the stratification effect of NLR only

existed in the patients whose tumor cells presented in
circulation. Univariate Cox analysis also showed that,
compared to patients with both CTCs and low NLRs,
those with both CTCs and high levels of NLR had a
3.79-fold risk of death (HR 3.79, 95% CI 1.09–13.13)
(Table 2).

Joint effect of CTC and PLR on clinical outcomes
Similarly, we classified patients into four groups based
on their CTC counts and PLR values: CTC = 0 and
PLR < 155.54 (n = 11); CTC = 0 and PLR ≥ 155.54 (n =
15); CTC ≥ 1 and PLR < 155.54 (n = 12); and CTC ≥ 1
and PLR ≥ 155.54 (n = 25). The overall differences in
PFS and OS among the four groups were both

Fig. 1 Kaplan-Meier survival plots of mCRPC patients. The survival differences were compared: (1) between patients without CTC and those with
CTCs (≥1) (A for PFS analysis and B for OS analysis); (2) between patients with low levels of NLR and those with high levels of NLR (C for PFS
analysis and D for OS analysis); (3) between patients with low levels of PLR and those with high levels of PLR (E for PFS analysis and F for OS
analysis). Survival differences were compared with the log rank test, with P < 0.05 denoting significance. mCRPC: metastatic castration-resistant
prostate cancer; CTC: circulating tumor cell; NLR: neutrophil-lymphocyte ratio; PLR: platelet-lymphocyte ratio; PFS: progression-free survival; OS:
overall survival
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significant (log-rank P < 0.001 and P = 0.007, respect-
ively, Fig. 2C and D). Furthermore, among the pa-
tients having ≥1 CTCs, those with high PLR values
had shorter PFS and OS than those with low PLR
values, and the survival differences were significant
for PFS analysis (log-rank P = 0.041). Similar results
were obtained from univariate Cox analyses. Com-
pared to the patients with CTCs and low PLRs, those
with CTCs and high PLRs had significantly increased
risk for PFS (HR 2.27, P = 0.046) (Table 2).

Evaluation of predictive power of a model combining NLR
or PLR
To demonstrate whether NLR or PLR provided add-
itional prognostic value, the performance between a
CTC model with and a model without NLR/PLR were
estimated and compared by time-dependent ROC
analyses. We found that the performance of a model
in combination of CTC and NLR was higher than a
CTC only model in predicting death risk (AUC:

82.2% vs. 72.0% at 3 m, P < 0.001; 84.3% vs. 73.5% at
6 m, P < 0.001; 82.4% vs. 69.3% at 9 m, P < 0.001;
81.5% vs. 72.4% at 12 m, P = 0.061; 77.5% vs. 71.7% at
18 m, P = 0.271; 74.2% vs. 73.4% at 24 m, P = 0.893,
Fig. 3). Thus, NLR added prognostic value to that of-
fered by CTC alone, although the discriminatory
power decreased over time. No significant result was
obtained in other combination models, except for a
significantly higher performance in predicting death
risk at 3 m using a CTC plus PLR model than a CTC
only model (AUC 81.4% vs. 72%, P < 0.001).

Multivariate analysis of joint associations with clinical
outcomes
The univariate analyses suggested that NLR and PLR
might provide additional prognostic information among
patients with CTCs. To find out whether the identified
associations were independent of clinical confounders,
we developed multivariate Cox models by combining
confounding variables such as ECOG PS identified from

Fig. 2 Kaplan-Meier survival plots of mCRPC patients. The survival differences were compared among four risk groups which was stratified
according to the status of CTCs (absence/presence) and NLR level (low/high) (A for PFS analysis and B for OS analysis), or according to the status
of CTCs (absence/presence) and PLR level (low/high) (C for PFS analysis and D for OS analysis). Survival differences were compared with the log
rank test, with P < 0.05 denoting significance. mCRPC: metastatic castration-resistant prostate cancer; CTC: circulating tumor cell; NLR: neutrophil-
lymphocyte ratio; PLR: platelet-lymphocyte ratio; PFS: progression-free survival; OS: overall survival
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univariate analyses (Table S1). Figure 4 shows the results
from multivariate Cox analyses. Among the patients with
one or more CTCs, the association between NLR and
OS remained statistically significant (HR 5.89, 95% CI
1.18 to 29.40, P = 0.031) after adjusting covariates (PS,
treatments, PSA, and ALP) (Fig. 4B), further confirming
the prognostic stratification from NLR in addition to
CTC enumeration alone. Other unfavorable prognostic
factors included previously receiving chemotherapy, high
PSA, and high ALP values (Fig. 4).

Discussion
The vast majority of prostate-cancer specific deaths
occur in the setting of castration-resistant disease. Vali-
dated prognostic biomarkers can be used to more accur-
ately inform physicians and patients and to assist in the
development of life-prolonging treatment plans. Multiple
hematological biomarkers have been associated with
prognosis of CRPC, such as PSA [20–23], ALP [24, 25],
LDH [23, 26], and HGB [23, 27]. These routine labora-
tory parameters, although imperfect, are always com-
bined into statistical models to predict mCRPC
outcomes [27, 28].
CTCs have promising prognostic and predictive value in

cancers including CRPC [3, 29]. In a recent phase III

clinical trial of abiraterone acetate plus prednisone versus
prednisone alone in patients with mCRPC, a biomarker
panel containing CTC number and LDH level was shown
to be a surrogate for OS at the individual-patient level [30].
NLR and PLR are inflammatory parameters that also confer
poor outcomes in mCRPC [13, 14, 31, 32] and are easily
available from routine complete blood counts and more
stable compared to absolute counts [33]. However, the add-
itional prognostic value of NLR and PLR has never been
evaluated in the context of CTCs. Based on the data from
our mCRPC cohort, we observed unfavorable outcomes in
the patients with CTCs (≥1 or ≥ 5) and high levels of NLR
or PLR. Importantly, we found that NLR could further clas-
sify risk of death among those with CTCs, but not among
those without CTCs. The performance in predicting risk of
death was improved by adding NLR to a CTC model, al-
though the discriminatory accuracy decreased over time.
Moreover, the joint association was independent of clinical
confounders. These results suggest a new avenue for im-
proving risk-stratified management of mCRPC.
The shedding of tumor cells into circulation is a neces-

sary, but not sufficient condition for the formation of me-
tastases [30, 34]. The interplay between tumor cells and
host microenvironment plays an important role in tumor
cell dissemination. Chronic inflammation is a classic and

Fig. 3 Time-dependent ROC analyses for survival prediction models. AUCs (%) in predicting progression or death risk of mCRPC patients over
time were estimated and compared between a CTC only model and a model in combination of CTC and NLR (A for progression risk and B for
death risk), or a model in combination of CTC and PLR (C for progression risk and D for death risk). ROC: receiver operating characteristic; AUC:
area under the curve; mCRPC: metastatic castration-resistant prostate cancer; CTC: circulating tumor cell; NLR: neutrophil-lymphocyte ratio; PLR:
platelet-lymphocyte ratio. Star indicates a P value of < 0.001 when comparing the AUC derived from a CTC only model and that from a
combination model
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prevalent example of ongoing perturbation within the
microenvironment. Sustained inflammation contributes to
proliferation and survival of malignant cells, angiogenesis,
metastasis, and subversion of adaptive immunity [31].
Moreover, cancer-associated systemic inflammation is
likely to interfere with effective treatments due to the
interaction between the systemic inflammation and the in-
hibition of cytochrome P450 [31], which is especially im-
portant for mCRPC patients because of the widely used
first-line agent abiraterone acetate, a CYP17 inhibitor.
Neutrophil extracellular traps, which are neutrophil-
derived DNA webs released in response to inflammatory
cues, have been shown to sequester CTCs and promote
metastases [35]. Furthermore, CTC-neutrophil clusters
have been detected in the blood of metastatic breast can-
cer patients, and the association between neutrophils and
CTCs drives cell cycle progression within the bloodstream
and expands the metastatic potential of CTCs [15]. Low
absolute lymphocyte counts have been associated with a
generalized state of immunosuppression in several types
of cancer [13]. Both increased neutrophil-dependent sys-
temic inflammatory response and a lower lymphocyte-
mediated antitumor immune response will lead to an ele-
vated NLR [14]. Therefore, the individual and joint associ-
ations of CTC and NLR with OS identified in this study is
biologically plausible, although the exact mechanisms

underlying their joint impact need to be further
elucidated.
Our study focused on mCRPC patients, which ensures

a more homogenous study population. By integrating
NLR and PLR - two inexpensive and convenient
hematological parameters from routine blood tests - into
prognostic models, we determined that NLR provides
additional prognostic value in patients with CTCs for
improved risk stratification and optimal management.
The major limitations of this study included small sam-
ple size, lack of independent validation, and not adjust-
ing important confounders such as LDH due to
incomplete data. In addition, although enrolled patients
were relatively homogeneous in terms of tumor stages
and the state of castration resistance, the therapies they
received were still heterogeneous, given the fact that a
portion of patients were previously treated; however, it
was infeasible to conduct a regimen-based subgroup
analysis due to insufficient power.

Conclusion
Among mCRPC patients with detectable CTCs, a high
NLR is a negative prognostic factor for overall survival.
The additional prognostic stratification of NLR needs to
be further tested in future large prospective studies.

Fig. 4 Multivariate analyses of associations with clinical outcomes in mCRPC patients. Risk groups were defined according to CTC counts and NLR
values (A for PFS analysis and B for OS analysis), or defined according to CTC counts and PLR values (C for PFS analysis and D for OS analysis).
Covariates applied in the model for PFS included chemotherapy after blood draw (yes vs. low), PSA (high vs. low), and ALP (high vs. low). For the
OS model, the following covariates were also applied: ECOG performance status (1 vs. 0, ≥2 vs. 0), previous chemotherapy (yes vs. no), and ARSi
after blood draw (yes vs. no). mCRPC: metastatic castration-resistant prostate cancer; ARSi: androgen receptor signaling inhibitor; CTC: circulating
tumor cell; NLR: neutrophil-lymphocyte ratio; PLR: platelet-lymphocyte ratio; PSA: prostate-specific antigen; ALP: alkaline phosphatase; PFS:
progression-free survival; OS: overall survival; HR, hazard ratio; CI: confidence interval
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