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Intra-tumor cellular heterogeneity is a major challenge in cancer therapy. Tumors are

composed of multiple phenotypic subpopulations that vary in their ability to initiate

metastatic tumors and in their sensitivity to chemotherapy. In many cases, cells can

transition between these subpopulations, not by genetic mutation, but instead through

reversible changes in signal transduction or gene expression programs. This plasticity

begins at the level of the microenvironment where local autocrine and paracrine signals,

exosomes, tumor–stroma interactions, and extracellular matrix (ECM) composition create

a signaling landscape that varies over space and time. The integration of this complex

array of signals engages signaling pathways that control gene expression. The resulting

modulation of gene expression programs causes individual cells to sample a wide

array of phenotypic states that support tumor growth, dissemination, and therapeutic

resistance. In this review, we discuss how information flows dynamically within the

microenvironmental landscape to inform cell state decisions and to create intra-tumoral

heterogeneity. We address the role of plasticity in the acquisition of transient and

prolonged drug resistant states and discuss how targeted pharmacological modification

of the signaling landscape may be able to constrain phenotypic plasticity, leading to

improved treatment responses.
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INTRODUCTION: TWO PERSPECTIVES ON TUMOR
HETEROGENEITY

It has long been understood that tumors are composed of multiple cellular subpopulations that
vary in their ability to initiate new tumors (Fidler, 1978) and in their sensitivity to chemotherapy
(Heppner et al., 1978). When subpopulations of cells within tumors differ markedly in drug
resistance, treatment becomes much more difficult, as a single cytotoxic therapy cannot eliminate
all of the malignant cells. Heterogeneity in tumor initiation potential also complicates treatment,
because even if a therapy kills the vast majority of tumor cells, it will ultimately fail if the few
remaining cells are able to expand or disseminate to initiate new tumor sites. Understanding the
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nature of heterogeneity and the factors that drive it would enable
better prediction of effective therapeutic strategies.

Over the past decade, insight into cancer cell heterogeneity
has emerged from two distinct fields. First, research into the
tumor microenvironment (TME) has revealed that the behavior
of tumor cells is dramatically modulated in response to their
immediate surroundings; for extensive review see Bissell and
Hines (2011) and Quail and Joyce (2013). Mapping of the cellular
milieu of tumors in detail has revealed that molecular signals
presented by neighboring stromal cells and extracellular matrix
(ECM) engage receptors on the surface of tumor cells, triggering
intracellular signaling pathways. The resulting induction of gene
regulatory circuitry plays a determinative role in the phenotype
expressed by a cancer cell. While these signaling pathways are
often functionally modified by genetic mutations, DNA sequence
alone is insufficient to capture the full range of potential for any
cancer cell; mutant cells still respond to extracellular cues, albeit
with altered sensitivity. Thus, tumor cell heterogeneity cannot
simply be ascribed to genetic diversity within a tumor, but also
to the broad variation in signaling cues derived from tumor cells
themselves and the many stromal cells that make up the tumor
ecosystem (Marusyk et al., 2014; Tabassum and Polyak, 2015).

In parallel, an emerging field has investigated the physical
basis of cellular heterogeneity originating in the biochemistry
of signaling. From the earliest studies of signal transduction
using the E. coli lac operon as a model, it has been clear that
genetically identical cells respond divergently to environmental
stimuli (Novick and Weiner, 1957). At first glance, this
variation could be ascribed simply to “noise” in the molecular
processes of receptor binding and the relay of intracellular
messengers (Korobkova et al., 2004). However, advances in
live-cell fluorescence microscopy have made possible well-
controlled cell culture experiments that have revealed a deep
and intricate underlying structure to the diversity of signaling
responses (Levine et al., 2013). Key among these results is the
observation that an individual cell’s potential to respond to a
signaling cue varies from cell to cell and is non-genetic in nature,
but is nonetheless heritable for one or more cellular generations
(Spencer et al., 2009). Whereas these studies cannot reproduce
the physiological complexity of a tumor, they have a clear
implication: because the biochemistry of signaling drives variable
responses in genetically identical cells even under controlled
conditions, the same diversification probably occurs in vivo and
contributes to the heterogeneity of tumor cells.

The common feature shared by both of these perspectives
is the concept that tumor cell heterogeneity can arise from the
unique, cell-specific operation of signal transduction pathways
within each individual tumor cell. This concept contrasts with the
current notion that ongoing genetic mutations are the primary
source of heterogeneity in tumors. In reality, both genetic and
non-genetic factors contribute substantially to the phenotypic
diversity within tumors, but as of yet, there are few approaches
that can definitively resolve their relative contributions. The
role of intra-tumoral genetic heterogeneity has been reviewed
extensively, and for the purposes of this review we defer to
other discussions of this topic (Vogelstein et al., 2013; Alizadeh
et al., 2015), acknowledging the importance of mutation as a

parallel source of phenotypic diversity in tumors. We focus
our attention here on how both complex microenvironments
and physico-chemical properties of signal transduction cascades
contribute to cellular heterogeneity, even in the absence of
genetic differences, an important topic that has received more
limited attention (Brock et al., 2015).

As an organizing theme, we present a thought experiment
in which two genetically identical tumor cells, originating from
the same cell division, experience different microenvironments,
and integrate the respective extracellular signals in their gene
expression programs, finally resulting in different drug responses
(Figure 1). We discuss each stage in this hypothetical divergence,
beginning with a discussion of the sources of heterogeneous
signals in the microenvironment. We discuss what is understood
about variability in the signaling process leading up to regulation
of gene expression, followed by the gene expression programs
that give rise to persistent phenotypic states and variation in drug
resistance. We end with a discussion of how variability in drug
sensitivity may be measured and targeted to improve therapeutic
responses.

A LANDSCAPE OF HETEROGENEOUS
SIGNALS

All cells reside in a microenvironment defined by both cellular
and non-cellular components. The classic example is the stem cell
niche which is a spatially and temporally ordered environment
composed of ECM and stromal cells that provide signals to
maintain a given cell state (Adams and Watt, 1989; Medema and
Vermeulen, 2011; Sato et al., 2011). When a progeny of a stem
cell division moves away from the niche, distances of even a few
cell widths will expose it to new cues, setting it on a different
phenotypic trajectory (e.g., differentiation). The general concept
of a niche can be extended to any cell, in the sense that its
phenotype is guided by cues from its local microenvironment.

In normal tissues and organs, the microenvironment is
organized and maintained over time, supporting homeostasis.
However, in cancer the microenvironment becomes
corrupted, leading to the formation of many disorganized
and heterogeneous niches (Bellail et al., 2004; Lu et al., 2012;
Frenkel et al., 2015; Natrajan et al., 2016). As such, the local
signals received by an individual tumor cell from fibroblasts,
immune lineages, ECM, and/or vascular endothelium vary in
composition and strength within the tumor stroma, over small
scales. Proximity of tumor cells to stable vs. growing vasculature
exposes them to different concentrations of nutrients, hormones,
and other cues (Carmeliet and Jain, 2000; Ghajar et al., 2013;
Marusyk et al., 2016). The composition of signals secreted by
individual stromal cells is also variable due to fibroblast and
myeloid subtypes that either co-exist in differing ratios, or
are localized in specific regions within the TME (Kiskowski
et al., 2011; Carmona-Fontaine et al., 2017). In the following
section, we briefly discuss the cell types present in the tumor
stroma, examples of their spatial distribution and subtypes, and
the signaling cues they provide to shape tumor cell phenotype
within the TME. Throughout our descriptions we consider how
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FIGURE 1 | A single tumor cell gives rise to genetically identical daughter cells

that vary in phenotype based on exposure to heterogeneous signaling cues

and intrinsic variation in signal integration. (Stage 1) Daughter cells are exposed

to unique signaling cues in the dynamic tumor microenvironment (TME).

Abundance of ECM (dark green), cancer associated- fibroblasts (orange),

tumor associated immune cells (blue and green), vasculature (red), and

exosomes (purple) vary in abundance and secretory composition throughout

the TME, exposing tumor cells to unique signaling microenvironments. (Stage

2) Signals arising from the microenvironment are integrated by membrane

receptors and transduced via downstream kinases that modulate transcription

factor activation. Inherent cell-to-cell variation in the sensitivity of cells to

signaling cues coupled with regional variation in microenvironmental signaling

composition contributes to the differential regulation of transcription factors

between single cells. (Stage 3) The factors described in Stage 1 and 2 are

compounded by transcriptional noise and epigenetic variation leading to

cell-to-cell variability in gene expression profiles. (Stage 4) The culmination of

microenvironmental signaling and gene expression (Stage 1–3) results in the

generation of heterogeneous tumor cell phenotypes (red vs. yellow cells)

despite genetically identical backgrounds. As a consequence of phenotypic

heterogeneity, some tumor cells will display altered sensitivities when exposed

to chemotherapeutic agents, contributing to fractional killing.

two daughter cells, resulting from a tumor cell division, could
remain in relatively close proximity, yet exhibit heterogeneous
phenotypes secondary to the unique sets of extracellular signals
within their respective niches (Figure 1, Stage I).

Cancer-Associated Fibroblasts (CAF)
Fibroblasts are the most abundant cell type in solid tumors
and heavily influence the phenotypic behavior of tumor cells
in their local proximity. A compendium of studies have shown
that fibroblasts adopt a “cancer-associated fibroblast” (CAF)
state, exposing tumor cells in their secretory radius to a host
of phenotype-modifying growth factors; for extensive review see
(Bhowmick et al., 2004b; Kalluri, 2016). For example, hepatocyte
growth factor (HGF), and transforming growth factor β (TGFβ)
are known to enhance tumor cell proliferation and promote
the acquisition of invasive phenotypes, such as epithelial-to-
mesenchymal transitions (EMT) (Stoker et al., 1987; Miettinen
et al., 1994; Bhowmick et al., 2004a). Additionally, CAFs produce
chemotactic factors and cytokines. Gradients of stromal-derived
factor-1 (SDF-1) increase the migratory capacity of tumor
cells and provide directionality, whereas cytokines, such as
interleukin-6 (IL-6), modulate the proliferation and therapy
response characteristics of tumors (Adams et al., 1991; Orimo
et al., 2005).

CAFs are not a single entity; they are composed of multiple
functionally distinct subtypes and exhibit regional variation in
density within the TME (Sugimoto et al., 2006; Kiskowski et al.,
2011; Rudnick et al., 2011; Brechbuhl et al., 2017). Early studies
hypothesized that CAFs arose from resident fibroblasts that were
reprogrammed by tumor-secreted factors. Indeed, it is likely that
many CAFs are derived from resident cells. However, recent
evidence supports more diverse origins that may contribute
to the observed heterogeneity in this population of cells. It
has been demonstrated that a proportion of CAFs arise from
mesenchymal stems cells (MSC) recruited to the TME from
the bone marrow (Worthley et al., 2009). Other mesenchymal
cell types, including smooth muscle cells and endothelial cells,
have also been implicated as sources of CAF generation (Madar
et al., 2013). And, remarkably, tumor cells themselves appear
to represent a large CAF reservoir through trans-differentiation
from epithelial to mesenchymal states (Zeisberg et al., 2007).
These diverse origins raise the possibility that “CAFs” represent
not just functional subtypes, but distinct populations of cells that
are yet to be defined beyond current morphological and marker
expression standards (e.g., smooth muscle actin, vimentin).

As a consequence of their heterogeneity, the signals derived
from fibroblast subtypes, and their relative strength in the TME,
can alter the phenotypic characteristics of adjacent tumor cells
in different ways. For example, in the breast, sub-populations
of CD146 or prostaglandin E2 (PG2E) expressing fibroblasts
have been identified. These studies show that an increased
ratio of CD146(–) fibroblasts suppresses estrogen receptor (ER)
expression and renders cells insensitive to tamoxifen (Brechbuhl
et al., 2017). However, altering the ratio of CD146(+/−)
fibroblasts over time can restore ER expression, and sensitivity
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to chemotherapy, indicating a non-genetic mechanism by which
the stroma can control ER expression in proximal tumor
cells. In a similar manner, PGE2(+) fibroblasts enhance tumor
growth through secretion of IL-6; thus, controlling the ratio
of PGE2(+/−) fibroblast subpopulations can either enhance
or suppress tumor growth in a breast cancer model (Rudnick
et al., 2011). Finally, CAFs also exhibit focal effects on tumor
phenotypes, regulating local growth and invasion characteristics
(Gao et al., 2010; Puram et al., 2017). CAFs from the interface
zone (i.e., the junction between the tumor and normal tissue)
induce a highly invasive tumor phenotype compared to the
effect of “normal” fibroblasts or CAFs isolated from the tumor
parenchyma (Gao et al., 2010). While the regional and subtype-
specific signals produced by these cells are not known, these
findings provide compelling evidence for the ability of CAFs
to modulate the phenotypic repertoire of tumor cells in a
region-specific manner.

Vasculature, Nutrient Density, and Hypoxia
Vascular networks are of critical importance in tumorigenesis.
They deliver oxygen and nutrients vital to sustain rapid growth
of tumor cells and provide a conduit for the delivery of
immune cells to, and dissemination of tumor cells from, the
primary tumor. However, vessels are not passive participants
in tumorigenesis; they actively signal to tumor cells to form
functional niches (Carmeliet and Jain, 2000). For example,
depending upon proximity to a vascular wall, or a growing
tip, tumor cell phenotype can be vastly different. Tumor cells
residing along a vascular wall niche often take on a cancer
stem cell-like (CSC) state and exhibit relative quiescence, or
even enter dormant states, based on the local signaling milieu
(Calabrese et al., 2007; Ghajar et al., 2013; Malladi et al., 2016).
Conversely, cells in niches established by growing vessel tips are
exposed to regionally high levels of growth factors, such as TGFβ,
and proliferate rapidly (Ghajar et al., 2013). Similarly, vascular
integrity is also important. Compromise of the endothelial wall
leads to a local influx of platelets and serum proteins into
the microenvironment similar to a wound environment. These
events are not benign. Platelets release TGFβ and other soluble
factors, and serum proteins, such as albumin, contain functional
domains that can bind membrane receptors and initiate signal
transduction (Laursen et al., 1990; Ivens et al., 2007; Labelle et al.,
2011). Nutrient abundance and oxygen tension are also impaired
in these regions. The degree of metabolic state change in tumor
cells, necrosis, and immune cell infiltration are enhanced by
lack of functional vasculature (Helmlinger et al., 1997; Gatenby
and Gillies, 2004; Carmona-Fontaine et al., 2017). Thus, signals
arising from the vasculature (i.e., perivascular vs. growing tip), or
its state of function, aremajor determinants tumor cell phenotype
on a niche-specific basis.

Immune Cells
Immune lineages play important roles in the positive and
negative regulation of tumor growth (Wels et al., 2008;
Gajewski et al., 2013; Coffelt et al., 2016). Histopathologic
characterization of tumors reveal that these cells are functionally
and spatially heterogeneous throughout the TME, with

the relative abundance of specific immune cell types, or
functional sub-states, carrying significant prognostic value
(Gooden et al., 2011; Heindl et al., 2015; Natrajan et al.,
2016; Tashireva et al., 2017). Due to the complexity of
tumoral immunity we will only touch briefly on a few
aspects of this important TME component. However, the
importance of the immune system in the balance of tumor
growth vs. clearance cannot be underscored enough, as is
evidenced by the recent surge in immuno-oncology-based
therapeutics.

Like CAFs immune cells can take on tumor-associated states.
For example, macrophages and neutrophils are reprogrammed to
tumor-associated TAM and TAN states, respectively (Fridlender
et al., 2009; Egners et al., 2016). Also, similar to CAFs, TAM,
and TAN populations can be divided into functional sub-types,
referred to as polarization states, which confer either pro-
or anti-tumor behaviors to these cells. In the case of TAMs,
signals from the TME can polarize their function either toward
anti-tumor M1, or tumor promoting M2 states (Chanmee
et al., 2014). Neutrophil polarization follows the same respective
pattern toward N1 or N2 polarization (Fridlender et al., 2009).
Importantly, these states coexist in the TME, with the relative
ratios driven by regional signaling inputs.

One TME that favors the polarization of TAMs and TANs
into their tumor promoting states is the hypoxic niche (Egners
et al., 2016). In this niche, a host of cytokines and growth factors
secreted by necrotic and ischemic tumor cells act as potent
chemo-attractants (Murdoch and Lewis, 2005). Once recruited
to these regions, direct sensing of local oxygen gradients and
tumor cell-derived metabolites polarizes TAMs toward the M2
state (Carmona-Fontaine et al., 2017). TGFβ produced by tumor
cells perpetuates this transition and also drives the polarization
of TANs toward the N2 state (Fridlender et al., 2009). As a result,
M2 and N2 cells become coordinate regulators of the local niche
structure through production of pro-angiogenic factors, such as
VEGF, and secretion of ECM remodeling enzymes. Concurrently,
M2 cells release other growth factors, including EGF and TGFβ,
that promote tumor proliferation and the migration of tumor
cells away from the hypoxic niche. These events generate a
microenvironment that promotes tumor expansion and supports
metastatic dissemination (Wyckoff et al., 2004; Condeelis and
Pollard, 2006; Bonde et al., 2012; Carmona-Fontaine et al., 2017).
Therefore, it is not surprising that large necrotic regions and
marked infiltration by these cells are clinically correlated with
poor prognosis (Vaupel et al., 2001).

T-cells present yet another source of cellular and functional
heterogeneity in the TME. Signals released from tumor cells and
other immune cells act as potent chemo-attractants for T-cells.
However, physical and chemical barriers in the TME impair
T-cell localization or function on a region-to-region basis. This
is particularly true in the hypoxic niche where signals released
from necrotic tumor cells and infiltrating TAMs recruit cytotoxic
T-lymphocytes (CTL) to this region (Haddad and Saldanha-
Araujo, 2014). However, local derangements in vascular structure
often impair infiltration of these tumor-killing cells (Nagy et al.,
2009). CTLs that are able to reach this location are inhibited by
high levels of TGFβ released from TAMs and tumor cells, and low
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oxygen tension (Kim et al., 2008, p. 301; Anderson et al., 2017).
This leads to impaired cell killing function, shifting the balance in
favor of tumor growth within the hypoxic niche. In other regions
of the tumor, T-cells are interspersed throughout the parenchyma
where the relative ratio of their subtypes determines the net
effect on tumor growth. This is particularly true with respect to
ratios of CTLs to T regulatory (Treg) cells. Like TAMs, Treg cells
produce significant amounts of TGFβ, creating a chemical barrier
that inhibits CTL proliferation and cell-killing (Anderson et al.,
2017). As a result of these actions, increased Treg levels are linked
with tumor growth and overall poor prognosis in the clinical
population (Gooden et al., 2011).

These vignettes highlight only a limited number of aspects
of immune function within tumor tissues, which continue to
be investigated intensively. Nonetheless, they begin to establish
a mechanism by which different immune components, and
variation in their functional states and localization within the
TME, carry the potential to modulate tumor cell behavior on a
region-to region-basis.

Extracellular Matrix
The ECM provides the structural as well as the signaling
foundation regulating normal tissue function. The concept that
ECM signals via specific receptors to the nucleus, first proposed
by Bissell et al. (1982) has now been demonstrated broadly (Lu
et al., 2012). Disruption of ECM composition contributes to the
generation of dysfunctional niches, leading to altered cell polarity
and ultimately tissue morphology, which are the foundation of
dysplastic and neoplastic transitions. We will briefly touch upon
a few salient features of the ECM; however, for extensive review
we defer to others (Bissell and Hines, 2011; Lu et al., 2012).

Extracellular matrix structure and composition are regulated
by multiple cell types in the stroma and affect numerous aspects
of tumor cell behavior. Stromal cells, such as fibroblasts, modify
the ECM through via production of enzymes which degrade
collagens and laminins. Degradation of the ECM releases matrix
bound growth factors (e.g., TGFβ, VEGF) and ECM degradation
products that stimulate the infiltration of immune cells, promote
angiogenesis, and act directly on tumor cells (Bhowmick et al.,
2004b). Concurrently, stromal cells produce new fibronectin and
laminin forms altering the microenvironment. As such, changes
in ECM structure and composition vary with the regional
composition of stromal cells within the TME. For example,
CAFs, which are enriched at the tumor interface zone, copiously
secrete pro-invasive forms of laminin, leading to enrichment
of laminin-332 and high levels of TGFβ in this region of the
tumor (Kim et al., 2011). Similarly, the interface zone is also
enriched with collagen I that is arranged in linear patterns
which act as tracks for tumor cells to migrate along (Provenzano
et al., 2006; Egeblad et al., 2010). Changes in ECM stiffness and
composition are sensed and integrated by tumor cells through
integrin-mediated signal transduction pathways that modulate
cell polarity and invasive properties (Lühr et al., 2012; Acerbi
et al., 2015). Importantly, sensing of ECM stiffness alsomodulates
cellular response characteristics to growth factors, regulating the
ability of tumor cells to respond to signaling cues, such as TGFβ,
and adopt pro-invasive EMT states (Leight et al., 2012). Thus,

extracellular cues arising from matrix composition and stiffness,
coupled with its role in direct signaling and signaling modulation
(e.g., growth factor storage), make the ECM multifaceted in its
ability to control tumor cell fate.

Emerging Signaling Mechanisms
Extracellular vesicles have recently gained attention in the cancer
field for their roles in intercellular communication; for extensive
review see Raposo and Stoorvogel (2013). They are composed
of several classes based on size. Microvesicles range in size from
100 to 1,000 nm and are formed by outward budding from the
cell membrane (Cocucci et al., 2009). Exosomes range in size
from ∼30 to 100 nm, are formed via the endocytic system, and
are thought to be released by fusion of the multivesicular body
with the cell membrane (Ostrowski et al., 2010). Membranous
vesicles such as apoptotic bodies also fall under the umbrella
of extracellular vesicles and have important biological function;
however, we will not discuss them here. Unlike soluble growth
factors, extracellular vesicles convey multiple molecular signals
in a single packet. They can transport an array of cargo, such
as DNA, mRNA, miRNA, and proteins, including functional
receptors and multiple growth factors (Thakur et al., 2014;
Hoshino et al., 2015; Becker et al., 2016). Importantly, their cargo
is highly dependent upon cell type and state. Thus, extracellular
vesicle cargos transfer quantitative phenotypic information about
host cell state that modify the phenotype of adjacent cells, and
importantly, cells in distant microenvironments throughout the
body (Peinado et al., 2012; Lázaro-Ibáñez et al., 2017).

The recognized contributions of extracellular vesicles in
cancer are growing rapidly. Currently, much of our knowledge
comes from studies exploring the role of tumor-derived
exosomes on the stroma. Nonetheless these studies provide
compelling evidence for the capacity of extracellular vesicles to
induce plasticity in their target cells. In the local TME, tumor-
derived exosomes and microvesicles activate fibroblasts, myeloid
lineages, modulate blood vessel growth and leakiness, and alter
ECM structure and composition (Becker et al., 2016). At distant
sites such as the lung and liver, tumor-derived exosomes are taken
up by resident cells, which leads to phenotypic reprograming and
the establishment of premetastatic niches (Peinado et al., 2012;
Costa-Silva et al., 2015; Hoshino et al., 2015). Reprogramming
of cell state often results in focally altered patterns of ECM
deposition, such as increases of fibronectin expression, and
regional patterns of immune cell invasion to these areas (Costa-
Silva et al., 2015; Hoshino et al., 2015). As a result, circulating
tumor cells more readily establish residence at these sites and are
able to develop into large metastatic colonies over time.

The role of stromal-derived extracellular vesicles in regulating
tumor cell phenotype is less developed; however, the existing
data are striking. Current evidence suggests that extracellular
vesicles are secreted by all cell types in the TME. CAF-derived
exosomes have been shown to promote the sustained growth
of tumor cells through transfer of metabolic intermediates,
promote breast cancer cell invasion through activation of the
cell migration pathways, and modulate therapeutic resistance
(Boelens et al., 2014; Zhao et al., 2016; Donnarumma et al.,
2017). Exosomes from other stromal sources, such as TAMs,
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have similarly been shown to modulate the invasive potential of
tumor cells (Yang et al., 2011), while endothelial cell exosomes
induce vasculogenesis and modulate therapeutic response (van
Balkom et al., 2013; Bovy et al., 2015). Finally, microvesicles
released from the stroma have been shown to have similar effects
compared to exosomes, modulating tumor dormancy vs. growth
states and sensitivity to chemotherapeutic agents (Boelens et al.,
2014; Sansone et al., 2017a,b). Thus, similar to the effect of soluble
signals arising from the stroma, extracellular vesicles appear
capable of inducing a wide variety of tumor cell phenotypes.

Microenvironmental Contributions to
Therapeutic Resistance
Several drug tolerant phenotypes have been described in
the literature, such as EMT and CSC-like states (Shibue
and Weinberg, 2017). Local signals from the TME influence
generation of these cell states in a region-specific manner. For
example, TGFβ, IL-6, exosomes, and many other CAF-secreted
cytokines and growth factors have been shown to drive
mesenchymal transitions (Yamada et al., 2013; Boelens et al.,
2014; Yu et al., 2014). This results in drug-resistant EMT
phenotypes that are enriched in sites like the invasive tumor front
where CAFs are densely localized (Nakayama et al., 1998; Puram
et al., 2017). Similarly, the hypoxic niche creates a signaling
milieu conducive to drug tolerant EMT states (Yang et al., 2008).
Finally, regions like the perivascular niche are often enrichedwith
CSCs, which are thought to favor a slow growing phenotype and
chemo-resistance (Calabrese et al., 2007; Abdullah and Chow,
2013).

Targeted therapies have attempted to improve the efficacy
of treatment by inhibiting specific pathways utilized by,
or overexpressed, in cancer. For example, the receptor
tyrosine kinase (RTK), epidermal growth factor receptor
(EGFR), is frequently mutated in lung cancer, activating the
Ras/ERK pathway and driving cell proliferation (Paez et al.,
2004). Similarly, another RTK, vascular endothelial growth
factor receptor (VEGFR), regulates vessel growth and tumor
angiogenesis (Leung et al., 1989). In both cases targeted therapies
exist to block the microenvironmental cues that stimulate these
pathways (e.g., EGF and VEGF) and their proliferative and
pro-angiogenic effects, respectively. However, resistance to these
RTK targeted therapies, and even agents that act downstream
of these receptors, is frequently observed. In part, this occurs
secondary to the complexity of signals arising from stromal
components (Junttila and de Sauvage, 2013). CAFs, TAMs, and
other cell types in the stroma secrete multiple growth factors,
such as EGF, HGF, and PDGF, which activate RTKs through
a common Ras/ERK signaling pathway. As such, blockade of
EGFR or VEGFR can be overcome by redundant activation
of Ras/ERK signaling through other RTKs given the right
microenvironmental signaling niche (Straussman et al., 2012;
Wilson et al., 2012).

Changes in ECM composition and cell polarity sensed by
integrins also drive chemotherapeutic resistance. β4-integrin
mediated polarity has been shown to mediate therapy resistance
through NF-κB signaling (Weaver et al., 2002). In a similar

manner, several studies have shown the fibronectin and other
ECM components are capable of inducing resistance through
modulation of signaling pathways, such as PI3K/Akt (Pontiggia
et al., 2012; Cho et al., 2016). As we have discussed, the ECM
is dynamic and variable in composition throughout the TME,
implying that resistance-inducing capabilities of the ECM may
be variable on a cell-to-cell or regional level.

These brief highlights emphasize the regional variation in
stromal composition and signals (cell extrinsic factors) that
compose the TME. Returning to our hypothetical daughter cells,
we can envision how the two cells, while remaining in relatively
close proximity, could sample a variety of extracellular cues as a
result of the dynamic and region-specific variability of the TME
(Figure 1, Stage 1). In the following section, we will move on
to explore how signals are integrated by individual tumor cells,
and discuss how intrinsic variation could synergize with variation
in signaling from the microenvironment to enhance phenotypic
heterogeneity and modulate therapy response.

DYNAMICS AND DIVERSIFICATION IN
SIGNAL TRANSDUCTION

Signal transduction pathways connect extracellular cues to
the regulation of gene expression. As our two hypothetical
cells receive distinct cues from the components of their TME
niche, different intracellular pathways will be stimulated in each
one (Figure 1, Stage 2), ultimately leading to different gene
expression programs (Figure 1, Stage 3). In principle, this process
of stimulated gene expression is profoundly determinative for
cell phenotype; it is the orchestrated differential expression of
genes that creates the broad diversity of cell types in the adult
body. However, at the single-cell level there is inherent variability
in signaling and gene expression response to the same signaling
cue, blurring the lines between signal input and predictable gene
expression output.

Inherent Variability in Signaling
Live-cell microscopy with genetically encoded biosensors has
revealed that many biochemical events fluctuate continuously
within individual cells, with diverse time scales and frequency
patterns (Locke and Elowitz, 2009; Levine et al., 2013). Early
work in bacteria and yeast explored the physical basis for
this variability, and concluded that one potential source is the
stochastic nature of biochemical reactions occurring on a very
small scale (Elowitz et al., 2002; Volfson et al., 2006). Another
source is the heritable propagation of cellular states or properties
induced by transient exposure to stimuli unique to each cell.
If a subpopulation of cells exposed transiently to a stimulus
induces expression of a long-lived gene product, that elevated
expression level can persist long after the stimulus is removed,
and even through cell division events (Kaufmann et al., 2007).
The elevated expression of that gene can then affect the reception
and processing of subsequent signals. For example, exposure to a
cytokine such as interferon-γ can elevate levels of TNF-receptor,
making the cell responsive to TNFα for days after the interferon-
γ is removed (Tsujimoto et al., 1986). Studies of cell-to-cell
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variation have typically categorized these sources as “intrinsic” or
“extrinsic,” respectively (Swain et al., 2002).

More recently, studies have investigated the reliability
of signaling pathways by quantifying the degree to which
information about the concentration of an extracellular
stimulus is preserved in the activation of downstream effectors
(Cheong et al., 2011). Surprisingly, most signaling pathways
have a measured channel capacity of only 1–2 bits, meaning
they can respond differentially to, at most, 2–4 different
concentrations of the extracellular stimulus (Uda et al., 2013;
Selimkhanov et al., 2014). More work remains to be done to
refine these measurements, but the emerging view is that the
intracellular response to a given signal is far from an absolute
and precise measurement of the extracellular cue; instead, it is
contingent on the pre-existing state of the cell, the biochemical
limits of the pathway (for example, saturation of a particular
step in the pathway), and thermodynamically stochastic
events.

Variation Over Time: Dynamic
Heterogeneity in Signal Transduction
If we were able to directly monitor multiple signaling pathways
within our two hypothetical cells, we would likely observe
continual fluctuations and pulses of activity as they respond to
both static and evolving cues in their microenvironment. Cancer-
relevant signaling pathways, such as p53, Ras/ERK, and NF-
kB, respond to constant stimuli in the form of discrete pulses
that ultimately influence gene expression and ultimately cell
phenotype; however, the characteristics of these responses vary
on the cell-to-cell level.

Lahav and colleagues demonstrated that the transcription
factor p53 is activated in discrete hour-long pulses following a
DNA-damaging event (Lahav et al., 2004). Further investigation
revealed significant heterogeneity in single-cell p53 responses to
fixed concentrations of cisplatin. Under these conditions, cells
that accumulated p53 at a rapid rate (1–2 days) underwent
apoptosis, whereas cells that accumulated the same peak levels of
p53 over several days survived (Paek et al., 2016). Investigation
of the Ras signaling pathway has revealed a similar regulatory
behavior, in which activation of the proliferative kinase ERK
downstream of Ras occurs in discrete bursts, ranging from
20min to several hours in length, with the duration and
frequency of bursts modulated by growth factor concentration,
autocrine signals, and cellular density (Aoki et al., 2013).
Tracking of single cell responses showed substantial cell-to-
cell variation in ERK signaling dynamics, prompting genetically
identical sister cells to make different decisions to enter S-
phase (Albeck et al., 2013). In vivo monitoring of ERK activity
reveals similar patterns of pulsatile signaling, indicating that
signaling operates in a similar manner under physiological
conditions (Hirata et al., 2015). These surprising patterns of
activity reveal a new level of complexity in the response to
signaling cues, supporting the concept that time-dependent
cell-to-cell variation in signaling dynamics contributes to the
generation of heterogeneous phenotypes.

Divergence in Gene Expression
The functional output of many signaling pathways involved
in cancer is the regulated expression of a defined subset of
genes. Accordingly, recent studies have focused on correlating the
dynamic activity in a signal transduction pathway to the resulting
downstream changes in gene expression level (Tay et al., 2010;
Lee et al., 2014; Porter et al., 2016; Wilson et al., 2017). At the
level of transcription itself, tracking of mRNA abundance reveals
that transcription of many genes occurs in the form of “bursts,”
in which multiple copies of mRNA are produced, and which are
interspersed by dormant periods where no transcripts are made
(Suter et al., 2011). The upsurge in mRNA in response to an
upstream signal can come from either an increase in the length
or frequency of bursts, or an increase in the rate of transcript
production during the bursts; interestingly, both scenarios can
be observed for the same gene in response to different stimuli
(Molina et al., 2013). While a simple model might suggest that
the pulses in upstream signals (activity of p53, ERK, NF-kb)
correspond to bursts in mRNA production, this does not appear
to be strictly the case; for instance, no transcriptional bursting
was observed in ERK target genes even when bursts of upstream
ERK activity are enforced using optogenetic stimulation (Wilson
et al., 2017). Within the context of an ordered tissue, probabilistic
gene expression can enhance the dynamic range of regulated
gene expression, because the response of multiple neighboring
cells can be averaged (Garcia et al., 2013). Theoretical studies
also support the idea that cell-to-cell variability can enhance the
reliability of signaling at the tissue level (Suderman et al., 2017).

Another potential driver of divergent gene expression between
individual cells is the ability of time-dependent processes of
mRNA and protein translation to discriminate transient input
signals from chronic ones. This effect may be particularly
important in Ras/ERK-stimulated gene expression, where ERK
is known to control the expression of many of its target genes,
such as Fra-1—a transcription factor controlling metastatic
behavior—through a “feedforward” regulatory circuit that
modulates multiple steps in the expression process (Murphy
et al., 2004). For example, a sufficiently long burst of ERK
activity may be capable of both stimulating mRNA production
(by phosphorylating Elk-1 and other transcription factors) and
stabilizing the Fra-1 protein product through phosphorylation
once it has eventually been translated. Conversely, a shorter pulse
of ERK activity long enough to stimulate the mRNA production
step but terminating before translation has been completed
would fail to produce phosphorylated (and stable) Fra-1 protein
(Murphy et al., 2002). Given that Ras/ERK signaling is often
highly dynamic (as discussed above), such temporal filtering
may be important in determining the particular gene expression
program resulting from a cue that stimulates the Ras pathway.
It has also been proposed that expression of dual specificity
protein phosphatases (DUSPs), ERK target genes that feed back
to dephosphorylate nuclear ERK, may act to bias gene expression
toward transient rather than constant activity (Wilson et al.,
2017). Moreover, recent studies suggest that there may be yet
more diversification in the expression process. Surveys of the
mRNAs produced by ERK or p53 activation reveal a diversity of

Frontiers in Cell and Developmental Biology | www.frontiersin.org 7 April 2018 | Volume 6 | Article 44

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Davies and Albeck Signaling-Driven Cancer Cell Plasticity

parameter values, such as mRNA half-life, that result in different
temporal responsiveness among targets of the same gene (Porter
et al., 2016; Uhlitz et al., 2017). Together, these temporally-
modulated sources of diversification may effectively allow the
same pathway to induce very different gene expression profiles,
depending on the duration of pathway activation. Accordingly,
predicting single-cell gene responses to stimuli or inhibitors
will require mapping each gene’s input-output relationship at
the single-cell level. However, such data are now in reach,
using genome engineering to insert fluorescent reporters at
endogenous gene loci and to track expression levels over time in
response to defined signaling events (Gillies et al., 2017; Wilson
et al., 2017).

Altogether, single-cell studies of signal transduction-
mediated gene regulation have revealed many layers of output
diversification in response to stimuli. Practically, for our
two hypothetical cells, these sources of variation could allow
them to exhibit different intracellular responses even in the
absence of substantial variation in their microenvironment. This
provides yet another possible mechanism for the generation of
intratumoral heterogeneity, and more importantly, a mechanism
by which cells arising from clonal populations can diverge in
their sensitivities to chemotherapeutic agents, as we discuss
below.

FROM GENE EXPRESSION TO DRUG
RESISTANCE

After the signaling processes described thus far, our two
hypothetical cells are likely to be quite different in their gene
expression profile, even though their genomes remain identical in
sequence. These expression differences may result in divergence
in their threshold for drug tolerance, such that upon exposure to
a similar concentration of a cytotoxic drug, one will cell survive
while the other succumbs to the treatment (Figure 1, Stage 4).
Similarly, the cells may have different capacities for surviving
stressful situations that arise physiologically, such as hypoxia
within the TME. In this section, we consider how the gene
expression changes that have accumulated may result in these
divergent survival responses.

Drug Resistance as a Function of Gene
Expression
One major factor determining drug resistance is the expression
of members the ABC transporter family, which include the
multi-drug resistance (MDR) genes. These transporters are
capable of exporting various compounds from the cytoplasm,
including chemotherapeutic drugs, and their expression thus
increases cellular tolerance of cytotoxic therapies. Expression of
the ABC transporters is known to be regulated by Wnt signaling,
multiple microRNAs, the transcription factors Nrf2 and Runx3,
and the histone methyltransferase EZH2 (Chen et al., 2016),
making it possible for microenvironmental signals to modulate
transporter levels. There are at least three ABC transporter genes
involved in cancer drug resistance—P-glyocoprotein/MDR1
(ABCB1), MRP2 (ABCC2), and BCRP (ABCG2)—which have

distinct, but overlapping, spectra of substrates. Thus, the
threshold of drug tolerance mediated by MDR expression can
be expected to vary as a function of signals received from the
microenvironment, but is difficult to predict for any individual
cell due to its multi-factorial nature.

Also important in determining cellular drug sensitivity
are regulators of apoptosis, including the Bcl-2 family of
proteins, because many chemotherapeutic agents induce cell
death through apoptosis. There are at least 17 genes in the Bcl-2
family in humans, with both pro- and anti-apoptotic roles, and
the overall threshold for the induction of apoptosis is set by
the aggregate levels of these opposing proteins (Certo et al.,
2006). The expression of many Bcl-2 family members is under
control of signaling pathways that lie downstream of TME signals
(Holohan et al., 2013). Similarly, expression levels of the many
components of the DNAdamage repairmachinery can determine
the cellular tolerance for DNA-damaging therapies (Bouwman
and Jonkers, 2012). Expression profiles can also affect drug
sensitivity indirectly; for example, expression levels of cyclins and
CDK inhibitors modulate the rate of cell cycle progression, which
can in turn determine the sensitivity to chemotherapeutics, such
as microtubule stabilizers, that target cells at specific stages of
the cell cycle. Thus, the overall ability to tolerate drug exposure
is determined by the composite expression levels of dozens of
proteins, some of which have specificity for certain drugs or
drug classes, and others which control cell death responses more
generally. Drug resistance therefore behaves as a complex trait of
individual cells.

Connecting Gene Expression Profiles to
Cell States
With ∼20,000 genes in the human genome, there are an
extremely large number of possible expression profiles for
each cell, even if it is assumed that each gene has only two
expression states (“on” or “off”) and that many genes are
coordinated in their expression status. Of course, many of
these states are in reality either unstable or unreachable due to
conflicting regulation, such as the simultaneous expression of two
transcription factors that each inhibit the other’s transcription
(Brock et al., 2009). Conversely, certain states are self-reinforcing
due to positive feedback regulation, leading to the concept that
there are “attractors”—stable regions within the overall space
of gene expression profiles where cells tend to cluster (Huang
et al., 2005). Considering our two cells that began with the same
expression profile, a key question is how far these two cells may
diverge in their overall expression status—potentially crossing
from one attractor state to another—and whether this divergence
will affect their metastatic and chemoresistance properties.

Functional studies support the relevance of attractor states
for tumor cells, and suggest that tumor cells may transition
between discrete expression profiles correlating with drug
resistance (Ponti et al., 2005; Chiba et al., 2006). Well known
examples of such states and transitions include the EMT and
CSC states identified within some cancer types, prompting the
model of a dynamic equilibrium of cell states underlying tumor
heterogeneity (Gupta et al., 2011). However, precisely defining
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the expression profiles corresponding to these states remains
challenging and will likely require single-cell resolution. For
example, if high expression levels of genes A and B together
create a drug resistant state, single-cell methods will be needed
to detect such cells because population-based methods cannot
distinguish whether A and B are co-expressed within the same
cells or separately in two different subpopulations of cells. While
genome-wide expression profiling for large populations of cells
has been possible for more than 15 years, practical methods for
single-cell profiling have only recently become widely available
and remain limited by the inherent technical challenges in
accurately sampling the ∼1 pg of mRNA present in each cell.
Moreover, single-cell profiling provides only a static snapshot of
the expression profile at the time of the assay and provides little
information on dynamic transitions, making it difficult to link
to functional properties such as drug resistance. Nonetheless, as
they mature, single-cell profiling technologies promise to provide
molecular clarity in mapping the cell states accessible to tumor
cells. Of particular interest are methodologies capable of tracking
dynamic cellular behavior over time and correlating this behavior
with the genome-wide expression profile within the same cell
(Lane et al., 2017).

A key question is therefore whether the expression profile of
tumor cells can be used to accurately predict drug responsiveness.
Such tests, based on population-level measurements of mRNA
abundance, are clinically available and have prognostic value
(van ’t Veer et al., 2002; Paik et al., 2004; Drukker et al., 2014; Shah
et al., 2017). However, single-cell resolution of gene expression
profiles are now feasible and could in principle more accurately
predict clinical of interest (Anjanappa et al., 2017), since resistant
and metastatic cells may be present as minor subpopulations that
are obscured by the bulk of the tumor and any contaminating
non-tumor cells. A remaining challenge is to ascertain whether
there are discrete cell states identifiable by expression signatures
that are broadly predictive of tumor cell characteristics. In this
regard, it will be critical to determine whether attractor states
corresponding to drug resistance behavior do in fact exist and can
be detected by their expression profile. An alternative possibility
is that the many layers of variation in gene expression, as
discussed above, create a continuous landscape of expression
states rather than discrete cell types; this could substantially
complicate the analysis of tumor subpopulations.

Maintenance of Drug-Resistant States
Over Time
States of drug tolerance may persist for times ranging from hours
to weeks. Some drug-resistant states have been attributed to
epigenetic mechanisms (Sharma et al., 2010). Typically, the term
epigenetics is used to refer to chromatin modifications, including
DNA methylation and histone acetylation or phosphorylation
that can modulate gene expression patterns and which persist
across multiple cell generations (Easwaran et al., 2014).
These covalent modifications can play a role in resistance to
chemotherapeutics are often highly stable, allowing a particular
gene expression profile to persist for weeks or longer. However,
they may be reversed by inhibitors of chromatin-modifying

enzymes, accelerating the loss of the resistant phenotype (Sharma
et al., 2010).

Considered more broadly, the concept of epigenetics includes
any heritable cellular trait controlled by factors other than
nucleic acid sequence. For example, protein expression levels
can vary between genetically identical cells, and these differences
can be preserved through cell division, making related cells
more likely to contain similar protein expression levels (Sigal
et al., 2006). Life-or-death differences in cell fate can result,
as fluctuations in the levels of Bcl-2 family and other proteins
can determine sensitivity to apoptosis inducers such as TRAIL
or chemotherapeutics (Spencer et al., 2009). Because of the
relatively short time needed for protein turnover to reshuffle
expression levels, such states tend to persist for shorter
periods of time, typically from hours to a few days (Flusberg
et al., 2013; Flusberg and Sorger, 2015). In such cases, the
cells surviving a cytotoxic treatment repopulate the original
distribution, enabling a similar fraction of cells to be killed by
a second round of the same treatment. Quantifying the time
needed for the redistribution of resistance properties can thus
be useful for determining the optimal frequency of cytotoxic
treatments.

LOOKING FORWARD

We have traced here the flow of information from heterogeneous
extracellular signals originating in the microenvironment,
through variance-prone signaling networks, to regulate cell fate
at the level of gene expression, emphasizing that this process
tends to diversify rather than constrict cellular responses to a
narrow range (Figure 1, Stages 1–4). In the context of a normal
tissue, such diversity may be important for maintaining proper
tissue function, for example by maintaining subpopulations of
cells prepared to respond to a broad range of stimuli or stressors,
or by increasing the dynamic range of the mean response
(Suderman et al., 2017). In the context of a tumor, where signals
are spatially and temporally heterogeneous, the same properties
likely contribute to tumor cell resilience by creating diverse
subpopulations with selective survival advantages (relative to
normal cells) as they disseminate to foreign environments and
evade therapy. The key question that now arises is how these
advances in understanding the molecular diversity of cancer cells
can be translated intomore effective therapies (Brock et al., 2009).
We consider here how single-cell technologies may impact the
diagnosis and the development of new compounds or treatment
regimens for cancer.

Correlating Prognosis and Treatment
Efficacy With Single-Cell Measurements
Ideally, transient therapy-resistant subpopulations (or
subpopulations with the potential to become resistant) could
be detected, and appropriate treatment strategies chosen
depending on the distribution of single-cell profiles within
each patient’s tumor. Yet, while the technology for measuring
such heterogeneity is now available, in the form of methods for
single-cell sequencing of genetic and transcriptional profiles,
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significant obstacles remain before this information can be fully
deployed in predicting patient responses to therapy.

First, it remains to be determined whether accurate
detection of non-genetic heterogeneity and characterization
of subpopulations within a tumor is practically feasible
within a clinical setting. Single-cell sequencing of genomic
DNA from nuclei in frozen tumor sections has established
technical feasibility of single-cell isolation and sequencing
and has demonstrated that sampling of 50–100 cells was
sufficient to capture all of the predominant clones with a
high level of confidence (Gao et al., 2016). However, the
greater variability in transcriptional profiles may require the
sequencing of a substantially larger number of cells to detect
rare subpopulations. This number will depend on both the
complexity of the population as well as the size and spatial
heterogeneity of the tumor. Identifying clear predictive trends
in such data also faces a significant statistical barrier, because
in increasing the complexity of tumor classification, it becomes
difficult to include sufficient numbers of patients to power
statistical tests. Finally, it will be necessary to integrate models
of variability in the genome and transcriptome to understand
clonal evolution of tumors over time. Modeling of the clonal
diversity within tumors has revealed a complex interplay by
which certain clones play a supportive role for other cells within
the tumor through secreted factors, and elimination of these
clones can broadly reduce tumor cell viability (Marusyk et al.,
2014). However, such changes can also enhance the viability of
other clones (Waclaw et al., 2015), making the overall outcome
difficult to predict with our current understanding.

Regardless of the specific technologies used, much still
depends on better models linking transcriptional profiles to
cellular phenotypes. This remains a daunting challenge; even
at the bulk tumor level, predicting treatment response from
genetic or transcriptomic profiling remains difficult for the
majority of cancers (Niepel et al., 2017), despite a small number
of high-profile examples in which a driver mutation predicts
drug responsiveness (e.g., HER2 amplification in breast cancer
or B-Raf mutation in melanoma). Interestingly, measuring
signaling responses provides a more effective means than genetic
markers for predicting drug sensitivity in cell culture models
(Niepel et al., 2013), suggesting that single-cell resolution could
improve accuracy by revealing the constituent subclones and
their sensitivities. Further advances will require moving from
reductionist cell culture systems to more realistic models that
incorporate the effects of the microenvironment.

Therapeutic Strategies to Counteract
Cellular Heterogeneity
The concepts presented here imply that therapeutic strategies
should target not simply the central tendencies and static genetic
complement of a tumor, but also the many subpopulations
of transient cell states co-existing within the tumor and their
potential to change their signaling and transcriptional profile in
response to drugs (often termed an adaptive response). Early
attempts to address this complexity searched for drugs that
selectively target cancer cells with high potential to reinitiate

tumors (Gupta et al., 2009). Other studies, recognizing that drugs
shift the signaling behavior of tumor cells to induce resistant
cellular phenotypes, have identified pathways involved in this
adaptation and demonstrated the effectiveness of simultaneous
inhibition of these pathways (Tandon et al., 2011; Rexer et al.,
2014). These advances notwithstanding, there remains further
potential to use information on cellular heterogeneity to improve
therapeutic responses.

A clear demonstration of the role of variability in drug
sensitivity is the long-standing observation that multiple
rounds of chemotherapy are typically more effective than
single treatments. If genetic variability alone were the cause
of drug resistance, the surviving cells would all be genetically
resistant and no benefit would be achieved from additional
rounds. By understanding the mechanisms and kinetics of
transitions between sensitive and resistant states, the timing of
drug treatments can be better tailored to maximize the number
of cells responding (Flusberg and Sorger, 2013). Alternatively,
therapeutic approaches that reduce the intracellular heterogeneity
of gene expression prior to treatment with a cytotoxic drug
could improve the efficacy of tumor cell killing. A number
of compounds that alter chromatin modification, such as
bromodomain inhibitors, may be useful in this regard by
preventing cells from entering resistant transcriptional states
(Sharma et al., 2010). Conversely, antibodies blocking the effects
of extracellular components may be used to limit the impact of
the microenvironment in generating intratumoral heterogeneity.
While the first generation of such molecules, such as inhibitors
of VEGF or matrix metalloproteases have limited efficacy, the
potential remains for multi-pronged interventions to normalize
the TME. One recent study has provided an exciting example of
how crosstalk between tumor cells and CAFs orchestrates the
divergence of basal and ER-positive subtypes of breast cancer
and can be interrupted by inhibitors to revert tumor cells to a
more easily treated subtype (Roswall et al., 2018). In addition,
immune system-based approaches promise to provide a new
arsenal of tools that could be less dependent on the native
microenvironmental heterogeneity.

Further Advances in Understanding the
Fundamental Mechanisms of Variation
A limitation of many of the studies discussed here is that
they each primarily investigate a single pathway, and provide
little insight into how signaling networks function under
physiological conditions when multiple pathways converge.
Significant technical limitations remain for understanding how
multiple microenvironmental signals are integrated by individual
tumor cells, in a dynamic way. At the imaging level, the
maximum number of pathways that can be simultaneously
interrogated in a live single-cell remains ∼4 (Regot et al., 2014).
At the analysis level, methods for signal engineering have yet
to be adapted for use on the relatively sparse and noisy data
from live-cell experiments. Single-cell mRNA sequencing has
provided a wealth of data on where cells cluster within the
many-dimensional space of possible gene expression patterns.
Application of this technology has already vastly expanded our
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knowledge of the phenotypic and stroma cell states present in the
TME. However, these data are snapshots and do not reveal how
frequently transitions are made between cell states. Nonetheless,
further studies using high-content imaging and single cell
genomic approaches will allow interrogation of individual cells
within a population to understand how signaling dynamics are
integrated and determine gene expression programs. Combining
these modalities with physiologically relevant 3-dimensional,
and multicellular, culture models will allow us to measure
tumor–stroma signal cross-talk with new precision. Importantly,
further development of computational methods and models will
be essential to interpret these complex experiments. Combining
these approaches will more accurately determine the relative
contributions of extrinsic and intrinsic factors to cell fate
determination. In doing so we will gain valuable insight into how
these factors contribute the plasticity of tumors and ultimately
how to control them for therapeutic benefit.
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