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The purpose of this study was to uncover potential diagnostic indicators of pulmonary arterial hypertension (PAH), evaluate the
function of immune cells in the pathogenesis of the disease, and find innovative treatment targets and medicines with the potential
to enhance prognosis. Gene Expression Omnibus was utilized to acquire the PAH datasets. We recognized differentially expressed
genes (DEGs) and investigated their functions utilizing R software. Weighted gene coexpression network analysis, least absolute
shrinkage and selection operators, and support vector machines were used to identify biomarkers. The extent of immune cell
infiltration in the normal and PAH tissues was determined using CIBERSORT. Additionally, the association between
diagnostic markers and immune cells was analyzed. In this study, 258DEGs were used to analyze the disease ontology. Most
DEGs were linked with atherosclerosis, arteriosclerotic cardiovascular disease, and lung disease, including obstructive lung
disease. Gene set enrichment analysis revealed that compared to normal samples, results from PAH patients were mostly
associated with ECM-receptor interaction, arrhythmogenic right ventricular cardiomyopathy, the Wnt signaling pathway, and
focal adhesion. FAM171B was identified as a biomarker for PAH (area under the curve = 0:873). The mechanism underlying
PAH may be mediated by nave CD4 T cells, resting memory CD4 T cells, resting NK cells, monocytes, activated dendritic
cells, resting mast cells, and neutrophils, according to an investigation of immune cell infiltration. FAM171B expression was
also associated with resting mast cells, monocytes, and CD8 T cells. The results suggest that PAH may be closely related to
FAM171B with high diagnostic performance and associated with immune cell infiltration, suggesting that FAM171B may
promote the progression of PAH by stimulating immune infiltration and immune response. This study provides valuable
insights into the pathogenesis and treatment of PAH.

1. Introduction

Abnormally high blood pressure in the pulmonary arteries is
the hallmark of pulmonary arterial hypertension (PAH), a
disease or physiological condition with multiple known and
unidentified factors [1]. It is characterized by thickening of
the intima of the pulmonary artery wall, resulting in abnormal
hemodynamics and increased pulmonary resistance [2]. In
addition, PAH is a life-threatening cardiovascular illness that
can lead to impaired heart function and increased mortality

[3]. Over the past few decades, the prevalence of PAH has been
reported to range from 15 to 60 cases per million people per
year. Significant progress has been made in uncovering the
pathophysiology of PAH, as well as identifying prognostic bio-
markers and alternative treatments [4]. However, the molecu-
lar mechanism underlying PAH has not been elucidated.
Angiotropic and hyperplastic drugs, such as PDE-5 inhibitors,
endothelin receptor antagonists (ERAs), and prostacyclin
receptor agonists can increase exercise endurance and heart
function in PAH patients [5–7]. However, the efficacy of the
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treatment of PAH still needs to be improved for a better prog-
nosis for patients [8]. Thus, it is important to identify effective
biomarkers for PAH, study its pathogenesis, and develop tar-
geted therapies.

With the rapid development of gene sequencing technol-
ogy and bioinformatics research methods, it is now possible
to investigate the underlying causes of numerous diseases by
carefully assessing the potential changes in gene expression
between aberrant and paired normal tissues [4]. However,
only a few studies have used machine learning approaches
to uncover biomarkers for PAH [9, 10]. These techniques
include least absolute shrinkage and selection operator
(LASSO) logistic regression, support vector machine-
recursive feature elimination (SVM-RFE), random forest
(RF), and weighted gene coexpression network analysis
(WGCNA). As a regression analysis technique, LASSO anal-
ysis sets the coefficients of less significant variables to zero by
applying an L1-penalty (lambda) to screen for significant
variables and construct the best classification model [11].
The SVM-RFE analysis is a supervised machine learning
technique for classifying data points by maximizing the mar-
gin between distinct classes in a high-dimensional space
[12]. The RF analysis is a nonparametric approach for carry-
ing out classification under supervision [13]. RF encom-
passes decision trees derived from subdivided datasets. In
this study, a single RF classification model was trained and
analyzed to identify descriptors capable of discriminating
PAH samples from general samples. In addition, this
method, represented as WGCNA, is used to investigate gene
expression patterns within samples. Genes with consistent
expressing modes were subjected to the clustering process,
and the relationship between the module and a specific char-
acteristic or phenotype was determined [14]. Consequently,
these four machine learning techniques are widely used to
identify diagnostic markers and forecast models with high
precision and understandability.

In this study, we aimed to reanalyze the datasets previ-
ously published by Mura et al. [15], Stearman et al. [16],
and Zhao et al. [17], which included the GSE113439,
GSE117261, and GSE53408 datasets, respectively. In addi-
tion, two sets of microarray mRNA expression data were
combined to find genes that were expressed differently. We
used differentially expressed genes (DEGs) for functional
enrichment analysis and different machine learning
approaches for biomarker identification and investigated
the diagnostic value of biomarker expression in PAH
patients. Finally, we determined the proportion of immune
cell infiltration in PAH using the CIBERSORT tool. In the
future, we intend to use PAH patient data in the GEO data-
base to conduct bioinformatics research for the determina-
tion of biomarkers and specific immune cells associated
with PAH, with an ultimate goal to develop drugs that target
these biomarkers and immune cells to delay or reverse PAH
and improve patient outcomes.

2. Materials and Methods

2.1. Data Selection. The GSE113439, GSE117261, and
GSE53408 microarray datasets were retrieved from the Gene

Expression Omnibus (GEO) database (http://www.ncbi.nlm
.nih.gov/geo/), containing data for lung tissues collected
from 11 normal subjects and 15 PAH patients; 25 normal
subjects and 58 PAH patients; and 11 normal subjects and
12 PAH patients, respectively. The GSE113439,
GSE117261, and GSE53408 datasets were derived from the
GPL6244 platform. We validated our results using
GSE53408 expression profiling. Table 1 provides a complete
summary of these datasets.

2.2. Data Preprocessing and DEGs Screening. The probes
were converted into gene symbols by making use of the
probe annotation files that were given by the researchers.
Based on the annotated file of each dataset, unmapped
probes were eliminated. Multiple probes correspond to the
same gene, and the average of this gene in all samples was
used for subsequent analyses.

Batch effects were removed from the GSE113439 and
GSE117261 datasets using the “sva” function in R [18]. As
these datasets contain similar platforms, data can be merged.
Principal component analysis (PCA) plots were used on the
training matrices to highlight the influence of between-
sample rectification. These plots were created before and
after the “PCA” function was used to eliminate the inter-
batch effect [19]. The “limma” function [20] was used to fil-
ter DEGs and the “ggplot2” function [21] to show
differential gene expression. DEGs were considered statisti-
cally significant when adjusted P < 0:05 and |log2FC| was
>0.5.

2.3. Functional Enrichment Analysis. Using the “clusterProfi-
ler” function in R, we investigated DEG enrichment in Dis-
ease Ontology (DO), Kyoto Encyclopedia of Genes and
Genomes (KEGG), and Gene Ontology (GO) terms (22).
In a previous study, researchers used Metascape (http://
metascape.org) to conduct pathway enrichment analyses
and annotate biological processes to explain the information
included in each gene [22]. This study analyzed the DEGs
from the training dataset using Metascape’s GO and path-
way enrichment methods to determine the most important
functional biological keywords and signaling pathways. Sta-
tistical significance was determined based on the number
of enriched genes being ≥3 and P < 0:01. Additionally, all
the important phrases were categorized according to their
membership similarity, and the most enriched term from
each cluster was chosen as the representative term. By using
the ClusterProfiler function and the “c5.go.v7.4.sym-
bols.gmt” and “c2.cp.kegg.v7.0.symbols.gmt.” datasets, a
gene set enrichment analysis (GSEA) of the genomic array
was carried out.

2.4. Feature Selection Using the Random Forest Model. The
DEGs obtained were analyzed using the randomForest func-
tion in R [23]. First, the average rate of model miscalculation
across all genes was determined. The optimal number of var-
iables for the binary tree in the node was 3, and the best ran-
dom forest tree count was 500. Random forest models were
developed, and the dimensional importance value was com-
puted using the decreasing accuracy method (Gini
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Table 1: Characteristics of three datasets.

Datasets PAH Tissue source Normal Tissue source Platform

GSE113439 15

6 patients with idiopathic PAH, 4 patients with PAH
secondary to connective tissue disease, 4 patients with PAH
secondary to congenital heart disease, and 1 patient with

chronic thromboembolic pulmonary hypertension

11
Tissue flanking lung cancer

resections
GPL6244

GSE117261 58 Patients with PAH at transplant 25
Patients who do not have an

appropriate recipient but still meet
physiologic standards

GPL6244

GSE53408 12 The recipient’s lung at the time of lung transplantation 11
Normal tissue of cancer patients

undergoing surgery
GPL6244

PAH: pulmonary arterial hypertension.

PHA datasets from GEO
(GSE113439, GSE117261)

Normal and PAH samples
(Merged data set)

Differentially expressed genes
analysis (Adjusted P < 0.05

and |log2FC| > 0.5)

Random
forest

Support
vector

machine

Least absolute
shrinkage and

selection operator

Take the
intersection
(FAM171B)

Validation

�e relationship
between marker genes

and immune cells

Immune
infiltration

analysis

Key module
genes by
WGCAN

Differential
expression in

data sets

Diagnostic
efficacy in
data sets

P = 1.5e–06

in GSE53408

P = 1.8e–10

in merged
dataset

AUC = 1
in GSE53408

AUC = 0.873
in merged

dataset

Figure 1: Workflow for the study.
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Figure 2: Principal component analysis (PCA) analysis of gene expression datasets. The scatter plots’ points depict samples based on the top
two principal components (PC1 and PC2) of gene expression profiles without and with batch effect removal. (a) PCA cluster plot of
GSE113439 and GSE117261 before sample correction and batch effect removal. (b) PCA cluster plot of GSE113439 and GSE117261 after
sample correction and batch effect removal. The colors denote samples from two distinct datasets, respectively. Each dot represents a
sample; green represents a sample from GSE113439; purple represents a sample from GSE117261.
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Figure 3: Continued.
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coefficient method). Disease-specific genes were determined
as those with a significance value greater than 2 and ranked
among the top three.

2.5. Feature Selection Using the LASSO Regression Model.
LASSO is a method used to carry out gene selection and clas-
sification through regression analysis. The glmnet function
in the R package [24] was used to establish a logistic LASSO
regression model using 258 DEGs to identify significant pro-
spective gene combinations consistently related to PAH.
Ten-fold cross-validation was employed in this study to
define tuning parameters, and the partial likelihood of devi-
ance fulfilled the minimal criterion.

2.6. Feature Selection Using the SVM Classifier Model. The
feature selection approach is an effective method for extract-
ing useful data from available gene datasets [25]. SVM is a
supervised learning model used to accurately categorize data
points by optimizing the distance between two hyperplanes
[26]. SVM-RFE is a well-known feature selection approach
that has shown significant and increasing applicability in a

high-dimensional data analysis. Feature selection methods
are superior to many other feature selection algorithms in
terms of data overfitting and classification accuracy and are
useful in a variety of fields, including microarray gene
expression [27, 28].

2.7. Key Module Identification Using WGCNA. The system
biology approach, WGCNA, was used to generate gene coex-
pression networks to investigate gene-gene relationships
[29]. First, genes with a variance of over 25% across samples
in the integrated dataset were entered into the WGCNA
platform. Second, outlier samples were eliminated to con-
firm the reliability of the network construction outcomes.
Third, adjacency was determined using the pick-Soft-
Threshold function obtained using the soft thresholding
power, which was generated through coexpression similar-
ity. After transforming the adjacency matrix into a topolog-
ical overlap matrix (TOM), the associated dissimilarity (1-
TOM) was measured. Fourth, modules were identified using
a combination of hierarchical clustering and a dynamic tree-
cut algorithm. We employed average connection
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Figure 3: Visualizing the results of differential genes. (a) Clustering heat map of the genes exhibiting significantly differential expression
PAH versus normal samples. Statistically significant DEGs were defined as |log2Foldchange|> 0.5 and adjusted P value<0.05. Cyan
represents PAH samples; reddish-orange represents normal samples. (b) Volcano map of DEGs; red represents upregulated differential
genes, black represents no significant difference in genes, and the green represents downregulated differential genes. DEGs: differentially
expressed genes; PAH: pulmonary arterial hypertension.
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hierarchical clustering by minimum genome size (50) to
identify genes with similar expression patterns in gene mod-
ules [30]. Fifth, for modules related to clinical features, mod-
ule membership (MM) and gene significance (GS) were
calculated. Finally, the correlation between MM and GS of

important modules is shown. Furthermore, genes in the
modules were evaluated using the information included in
the modules. We identified the most important key module
associated with PAH by assessing the P value and Pearson’s
correlation coefficient of module eigengenes (MEs) and the

Table 2: The top 20 up- and downregulated DEGs in PAH and normal samples.

Genes Log2FC AveExpr T P value Adj. P value B

Upregulated

HBB 1.905556883 9.856392202 8.817638633 2.05E-14 5.16E-11 22.29719033

POSTN 1.706056477 9.004745628 7.883631545 2.56E-12 1.65E-09 17.65365235

HBA2 1.623246487 9.995273661 8.395393375 1.84E-13 3.35E-10 20.18546164

SFRP2 1.364599703 6.835061904 6.259692192 7.73E-09 6.77E-07 9.956619921

VCAM1 1.348484359 6.33270595 6.359079782 4.83E-09 4.68E-07 10.40761494

PI15 1.332181179 5.338197295 5.364027131 4.59E-07 1.68E-05 6.054507121

COL14A1 1.239026153 7.436785148 8.01864568 1.28E-12 1.03E-09 18.31809232

ASPN 1.234775416 7.13255928 5.807955926 6.29E-08 3.53E-06 7.949732975

WIF1 1.190095167 9.744898457 5.996873555 2.64E-08 1.78E-06 8.780077328

RGS1 1.141220379 7.504991123 6.443957755 3.22E-09 3.37E-07 10.79526605

CCDC80 1.12913297 8.080546692 5.183353767 1.01E-06 3.04E-05 5.30766633

ENPP2 1.028785935 9.494957558 5.544595076 2.06E-07 8.96E-06 6.815449702

OGN 1.012257941 7.501144893 5.987771459 2.75E-08 1.84E-06 8.739767044

GEM 0.983757223 7.038971522 6.81826404 5.28E-10 8.31E-08 12.53033356

ESM1 0.978601315 5.94799635 5.374557277 4.38E-07 1.63E-05 6.098491469

HAS2 0.971047451 6.507270998 3.905308804 0.000163209 0.001579558 0.510130208

PDE3A 0.937415523 7.215983585 8.816355258 2.07E-14 5.16E-11 22.29074747

AGBL1 0.928098439 6.426958445 5.706068912 1.00E-07 5.14E-06 7.507594521

FABP4 0.924223274 8.40626485 4.525883107 1.54E-05 0.000241578 2.725479162

ANGPT2 0.907969049 5.841628396 3.918091772 0.000155808 0.001526427 0.553359741

Downregulated

CSF3R -0.802339405 7.69132216 -9.322132247 1.46E-15 7.90E-12 24.83851182

AQP9 -0.806618791 7.940157165 -3.800645776 0.000237754 0.002124247 0.160190529

NKD1 -0.807008288 6.232544998 -8.187270593 5.40E-13 7.70E-10 19.15162494

FCN3 -0.894325549 10.56417571 -4.710864558 7.29E-06 0.000136457 3.42917004

MSMB -0.923641782 4.535954481 -3.117142176 0.002333392 0.012605115 -1.939453915

MGAM -0.963945588 5.678217693 -5.117611008 1.33E-06 3.74E-05 5.039674765

SLCO4A1 -0.975611085 7.118272517 -5.164935589 1.09E-06 3.21E-05 5.232380522

CHIT1 -0.981420709 5.221009621 -4.628773964 1.02E-05 0.000177714 3.114574322

LOC441081 -1.005779498 7.09466789 -7.367729041 3.48E-11 9.93E-09 15.14314687

S100A8 -1.041186811 10.0442234 -5.703814773 1.01E-07 5.14E-06 7.497859186

SAA1 -1.041252274 4.232431929 -5.085585452 1.53E-06 4.18E-05 4.909874548

LCN2 -1.051025788 6.391003715 -5.901638768 4.10E-08 2.48E-06 8.35982061

SOSTDC1 -1.098927062 6.477777826 -4.589229089 1.19E-05 0.000201156 2.964336963

MS4A15 -1.151439894 6.595835828 -5.303669318 5.97E-07 2.05E-05 5.803351239

BPIFA1 -1.157491285 4.694038015 -5.103986002 1.41E-06 3.91E-05 4.984392023

RNASE2 -1.163968826 5.60043777 -7.328408686 4.24E-11 1.18E-08 14.95389119

S100A9 -1.275518557 7.549020869 -7.393186829 3.07E-11 9.17E-09 15.26585058

IL1R2 -1.287495193 7.121522058 -4.727398557 6.82E-06 0.000129741 3.492972276

S100A12 -1.300940357 7.131519115 -5.502100612 2.49E-07 1.04E-05 6.635105221

BPIFB1 -1.955118819 6.8396727 -4.829346556 4.48E-06 9.46E-05 3.889569936
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Figure 4: Functional enrichment analyses of DEGs. (a) Gene Ontology (GO) enrichment analyses of DEGs. The x-axis shows the number of
genes enriched on the terms, and the y-axis shows the pathway terms. The q-value of each term is colored according to the legend. BP:
biological process; CC: cellular component; MF: molecular function; (b) Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
analyses of DEGs. The q value of each term is colored according to the legend. The different colors represent different pathway terms.
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Figure 5: Continued.
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Figure 5: Disease Ontology (DO) and Metascape analyses of DEGs. (a) DO enrichment analysis was performed on DEGs. The x-axis shows
the number of genes enriched on the terms, and the y-axis shows the pathway terms. The q value of each term is colored according to the
legend. DEGs are differentially expressed genes. (b) The network of the top 20 enriched term clusters. The color indicates cluster
identification, the thickness of the edge indicates the similarity score, and terms with a similarity score> 0.3 are connected by an edge. (c)
The top 20 clusters are shown in a heat map. Color is used to indicate cluster identification: the lower the P value, the darker the color.
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Figure 6: LogFC values were calculated for all genes, and gene set enrichment analysis (GSEA) analysis was performed based on logFC using
“c2.cp.kegg.v7.4.symbols.gmt” and “c5.go.v7.4.symbols.gmt” in the PAH samples. (a) Analysis of the GO pathway terms for all genes
enriched in the PAH samples using GSEA. (b) Analysis of the KEGG pathway terms for all genes enriched in the PAH samples using
GSEA. PAH: pulmonary arterial hypertension.
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disease feature associated with each module. MM denoted
the association between MEs and gene expression profiles.
Then, the GS of the modules, which represents the associa-
tion between genetic markers and disease characteristics,
was determined. Genes with high MM and GS values in
the critical module were significantly associated with disease
characteristics. We set MM>0.55 and GS>0.55 as the filter
criteria for selecting important genes in the critical module
after its selection.

2.8. Screening and Verification of Biomarkers. Next, inter-
secting genes identified using the four different methods
were chosen for subsequent analyses. The GSE53408 was
used as validation sets for the comprehensive assessment of
the efficacy of critical diagnostic markers. The datasets men-
tioned above were employed to validate differences in diag-
nostic markers expression between samples collected from
normal subjects and PAH patients. Diagnostic effectiveness
was then assessed by calculating the receiver operating
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Figure 7: Construct multiple machine learning models based expression of DEGs. (a) The effect of the decision tree number on the error
rate. The x-axis denotes the number of decision trees, while the y-axis shows the error rate. When approximately 100 decision trees are used,
the error rate is generally steady. (b) The results of Gini coefficient method in a random forest classifier. The x-axis displays the genetic
variable, and the y-axis the significance index. (c) Fine-tuning the least absolute shrinkage and selection operator (LASSO) model’s
feature selection. LASSO regression was used to narrow down the DEGs, resulting in the discovery of 28 variables as potential markers
for PAH. The ordinate represents the value of the coefficient, the lower abscissa represents log(λ), and the upper abscissa represents the
current number of nonzero coefficients in the model. (d) A plot illustrating the process of selecting biomarkers using the support vector
machine-recursive feature elimination (SVM-RFE) technique. The SVM-RFE technique was used to identify a subset of 37 characteristics
from the DEGs. DEGs: differentially expressed genes; PAH: pulmonary arterial hypertension.
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Figure 8: Continued.
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characteristic (ROC) according to the area under the curve
(AUC), which provided insight into the algorithm’s predic-
tive potential. A value of P < 0:05 indicated two-sided statis-
tical significance.

2.9. Immune Cell Infiltration Analysis. Using CIBERSORT
with the merged matrix, we evaluated immune cell infiltra-
tion. Afterwards, PCA was performed on the results using
the ggplot2 function in R and a 2D PCA map was produced.
The “corrplot” function was used to plot correlated data.
Correlations between 22 distinct infiltrating immune cell
types were determined using the “corrplot” function [31].
We constructed violin plots using the “ggplot2” function to
illustrate variations in immune cell infiltration.

2.10. Interaction between Immune Cells and Biomarkers. The
Spearman’s rank correlation test, performed with the help of
the R program, was used to investigate the potential signifi-
cance of a link between infiltrating immune cells and newly
discovered biomarkers. Correlations were shown through a
chart approach using the “ggplot2” function.

2.11. Statistical Analysis. The moderate t -test was performed
to filter DEGs, while Fisher’s exact test was used to evaluate
GO and KEGG annotation enrichments. Wilcoxon’s test was
conducted to determine immune cell counts. The statistical
analysis was done in the R program (version 4.1.1).

3. Results

3.1. Analysis Process. The workflow of this study is shown in
Figure 1.

3.2. Data Processing and DEG Selection. Expression matrices
for the GSE113439 and GSE117261 datasets were merged,
which included 27 normal samples and 22 PAH samples.
Next, normalization and batch effect removal were per-
formed, and a 2D PCA plot was used to represent the dataset

before and after batch effect removal (Figures 2(a) and 2(b)).
After data preparation, using the R software, we identified
258 DEGs in the normalized data, as illustrated by the heat
and volcano maps shown in Figures 3(a) and 3(b). DEGs
obtained by differential analysis of PAH and normal sam-
ples, which included 169 upregulated and 89 downregulated
genes are shown in Supplementary Table 1. Table 2 displays
the top 20 most upregulated and downregulated genes.

3.3. Functional Correlation Analysis. The results of the GO
enrichment analysis of DEGs are mainly presented in the
following aspects: biological process (BP): ribosome biogen-
esis, mitotic nuclear division regulation, and mitotic cytoki-
nesis; cellular component (CC): preribosome and centriole;
and molecular function (MF): DNA-dependent ATPase
and DNA helicase activity (Figure 4(a); Supplementary
Table 2). DEGs were abundant in eukaryotes, melanoma,
hypertrophic cardiomyopathy, and dilated cardiomyopathy,
according to the KEGG analysis (Figure 4(b);
Supplementary Table 3). Figure 5(a) illustrates the findings
of the DO analysis (Supplementary Table 4). DEGs were
most related to osteoarthritis, lung disorders including
chronic obstructive pulmonary disease and obstructive
lung disease, and cardiovascular diseases including
arteriosclerosis, atherosclerosis, myocardial infarction, and
coronary artery disease. To further comprehend the
functional and metabolic pathways connected with these
DEGs, an enrichment analysis was conducted utilizing
Metascape to uncover the top 20 clusters with the highest
significant enrichment (Figures 5(b) and 5(c);
Supplementary Table 5). The results of Metascape
enrichment are mainly manifested in the inflammatory
response, response to cytokines, and response to bacteria.
GSEA results suggested that in PAH samples, immune
response inactivation and adaptive immune responses
dominated GO biological processes (Figure 6(a);
Supplementary Table 6). And the enrichment pathway in
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Figure 8: Analysis of the weighted coexpression network in merged dataset. (a) Sample clustering of merged data set. The samples were
classified into two clusters that were significantly distinct. Cluster 1 was chosen for further analysis. (b) Selection of optimal thresholds.
The threshold is 5. (c) The threshold was set to 0.3 and minimum number of genes per module to 50 to merge modules that are similar
in the cluster tree. (d) Different modules are produced and shown in different colors by aggregating genes with strong correlations into a
same module. (e) Analysis of correlations between modules and PAH. The brown module was significantly correlated with PAH
(r = 0:59; P = 1e − 11) and with normal samples (r = −0:59; P = 1e − 11). (f) Correlation plot between MM (x-axis) and GS (y-axis) of
genes contained in the brown module. PAH: pulmonary arterial hypertension.
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Figure 9: Screening and verification of diagnostic markers. (a) Venn diagram showing overlapping marker with RF, Lasso, SVM-RFE, and
WGCNA. FAM171B mRNA expression is significantly higher in PAH samples than in normal samples, (b) the combined dataset
(P = 1:8e − 10) and (c) the GSE53408 (P = 1:5e − 06). ROC curves were constructed using publicly available data to assess the diagnostic
accuracy of FAM171B for PAH. (d) The combined dataset had an AUC of 0.873. (e) GSE53408 had an AUC of 1. ROC: receiver
operating characteristic; AUC: area under the ROC curve; PAH: pulmonary arterial hypertension.
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Figure 10: Comparing the composition of immune cell infiltration in the normal and PAH samples by using the combined data matrix of
GSE113439 and GSE117261 and visualized the results. (a) PCA cluster plot of immune cell infiltration between normal and PAH samples.
(b) The heat map of the 22 subpopulations of immune cells. (c) Correlation heat map of 22 types of immune cells. The size of the colored
squares represents the strength of the correlation: red represents a positive correlation; blue represents a negative correlation. The redder the
color, the stronger the correlation. (d) Violin diagram of the proportion of 22 types of immune cells. (The normal samples are marked as
blue color and PAH samples marked as red color. P values <0.05 were considered as statistically significant.) PAH: pulmonary arterial
hypertension; PCA: principal component analysis.
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KEGG mainly includes the chemokine signaling pathway,
cytokine–cytokine receptor interaction pathways, and
hematopoietic cell pathways (Figure 6(b); Supplemental
Table 6). These findings suggest that the immune response
significantly influences the development of PAH.

3.4. Random Forest-Identified Key Genes. A random forest
filter was then used to narrow down the 258 DEGs. After
determining the optimal parameter, mtry (the optimal num-
ber of variables in the binary tree in a node), we performed
recurrent random forest classification on all possible values
of 1–258 variables and evaluated the average error rate of
the model. The average error rate when all variables were
chosen is shown in Figure 7(a). Then, we chose 3 as the var-
iable number parameter. The number of variables, as well as
the out-of-band error, was kept to a minimum. Finally, we
determined the relationship between the model error and
the number of decision trees using 500 trees as the model’s
parameters (Figures 7(a) and 7(b)), which showed a steady
error in the model. After that, we calculated the variable sig-
nificance of the output results (Gini coefficient approach)
throughout the random forest model building process in
terms of decreasing accuracy and decreasing mean square
error. Next, we selected three genes with importance greater
than 2 (CSF3R, EPHA3, and FAM171B) as prospective genes
for subsequent investigations.

3.5. Selection of Significant Genes by Using the LASSO
Regression Model. To construct a LASSO regression model,
258 DEGs between the two groups were chosen. Next, the
best suitable log (λ) (=28) values were determined through
10-fold cross-validation (Figure 7(c)). Finally, 28 genes with
nonzero coefficients were identified (LTBP1, CSF3R,
ANKRD36C, HBB, HBA2, NKD1, PDE4D, HIVEP1, POSTN,
ADRA1A, FAM171B, BICC1, H1-0, RGS5, AHCYL2, FZD7,

RGS1, WIF1, LRRN4, PI15, CD14, ACE2, C5, BPIFB1,
SOSTDC1, IL13RA2, FAM107A, and TFPI2) and used for
subsequent analyses.

3.6. Selection of Significant Genes by Using the SVM-RFE
Model. A total of 37 genes (LTBP1, FAM171B, TSHZ2,
CSF3R, NT5E, EPHA3, HBB, HBA2, STAT4, ANKRD36C,
PDE7B, ADRA1A, PDE3A, ECM2, AHCYL2, NKD1,
SLC9A3R2, WIF1, HIVEP2, PSD3, ALAS2, LOC441081,
KRT4, H1-0, FGR, ABCC9, AHI1, GEM, SFRP2, C5, RORA,
BICC1, IL13RA2, PDE4D, FZD7, POSTN, and COL14A1)
with the lowest root mean square error were fitted into the
SVM classifier by the SVM-RFE method (Figure 7(d)).

3.7. Gene Coexpression Network and Module Identification.
First, genes were ordered from the largest to smallest in
terms of variance, and the top 25% (4992) of these genes
were selected for subsequent investigations. Second, the
flashClust function in R was used to carry out a cluster anal-
ysis, with a threshold of 65 and one outlier sample identified
and eliminated (Figure 8(a)). Cluster 1 contained 108 sam-
ples, which we intended to maintain. Third, the “pickSoft-
Threshold” mechanism of the WGCNA software package
was used to filter values from the power parameter range
of 1-20. In this research, we created a scale-free network with
a soft threshold of a power of 5 (scale − free R2 = 0:85)
(Figure 8(b)). The threshold was set at 0.3, and the mini-
mum gene number per module was set at 50, enabling the
merging of similar modules in the cluster tree
(Figure 8(c)). As shown in Figure 8(d), we found 11 modules
containing genes with similar coexpression characteristics.
The colors used to differentiate the modules were chosen
at random. As compared to the other modules, the module
eigengene (ME) of the brown model showed the most signif-
icant positive correlation and relationship with PAH

R = −0.2, p = 0.042
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Figure 11: Visualization of the results of immune cell infiltration and FAM171B correlation analysis based on the combined data matrix of
GSE113439 and GSE117261. (a) Correlation between FAM171B and infiltrating immune cells. The size of the dots represents the strength of
the correlation between genes and immune cells: the larger the dots, the stronger the correlation and vice versa. The color of the dots
represents the P value: the greener the color, the lower the P value, and the yellower the color, the larger the P value. (P < 0:05 was
considered statistically significant.) The correlation analysis in the expression of FAM171B and mast cells resting (b), monocytes(c), and
CD8 T cells (d).
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(r = 0:59; P = 1e − 11) (Figure 8(e); Supplementary Table 7).
Thus, the brown module comprised 921 genes. In addition,
we evaluated the correlation between gene MMs and GSs
in the brown module. As expected, significant positive
correlations were discovered between the MMs and GSs of
brown module genes (cor = 0:48, P = 3e − 54) (Figure 8(f)
and Supplementary Table 8). In the brown module, 27
essential genes (ABCC9, AHI1, ANKRD36, ANKRD36B,
ANKRD36C, ARHGAP21, CACNA2D1, ECM2, FAM171B,
FRMD4B, GLT8D2, JMY, KLF12, LUC7L3, MACF1,
N4BP2, NBEAL1, NT5E, PHIP, PNISR, RORA, RPS6KA5,
RUFY3, SHPRH, WIF1, ZNF483, and ZNF711) were
identified for subsequent analyses.

3.8. Biomarker Screening and Verification. A diagnosis-
related gene was generated by merging the genes identified
using the four approaches (Figure 9(a)). The difference in
FAM171B expression between normal and PAH samples
in the combined dataset and GSE53408 dataset were P =
1:8e − 10 (Figure 9(b)) and P = 1:5e − 06 (Figure 9(c)),
respectively. We generated ROC curves for the combined
dataset, and the GSE53408 dataset found that their ROC
AUCs were 0.873 (Figure 9(d)) and 1 (Figure 9(e)), respec-
tively. Although the small sample quantity may have influ-
enced the ROC values, these results demonstrate that
FAM171B helps to distinguish PAH samples from normal
samples.

3.9. Immune Cell Infiltration Analysis Findings. The com-
bined data matrices of the GSE113439 and GSE117261 data-
sets were analyzed using CIBERSORT, and the findings of
this analysis are shown in Supplementary Table 9.

PCA analysis was used to determine the difference
between PAH and healthy samples. The PCA cluster analysis
revealed a statistical difference between the two groups’
immune cell infiltration (Figure 10(a)). Using the data
matrix derived from the combined GSE113439 and
GSE117261 datasets, we assessed the infiltrating immune cell
composition in PAH and healthy samples (Figure 10(b)).
According to our results, the percentage of CD4 naïve T cells
(P < 0:05), resting NK cells (P < 0:05), monocytes (P < 0:05),
and neutrophils (P < 0:05) was substantially higher in
healthy samples than in PAH samples. In PAH tissues, how-
ever, the fraction of resting CD4 memory T cells (P < 0:05),
activated dendritic cells (P < 0:05), and resting mast cells
(P < 0:05) was considerably greater than in healthy samples
(Figure 10(c)). In addition, the interaction across 22 immune
cells was studied (Figure 10(d)). Naïve CD4 T cells showed
significant association with monocytes (r = 0:34), neutro-
phils (r = 0:3), and resting NK cells (r = 0:2) and a signifi-
cantly inverse relationship with activated dendritic cells
(r = −0:15) and resting mast cells (r = −0:07). Monocytes
showed significant association with neutrophils (r = 0:51)
and resting NK cells (r = 0:38) and a significantly inverse
relationship with resting mast cells (r = −0:33), activated
dendritic cells (r = −0:03), and resting memory CD4 T cells
(r = −0:32). Neutrophils showed significant association with
resting NK cells (r = 0:29) and activated dendritic cells
(r = 0:12) and a significantly inverse relationship with rest-

ing mast cells (r = −0:45) and resting memory CD4 T cells
(r = −0:25). Resting NK cells showed significant association
with activated dendritic cells (r = 0:23) and a significantly
inverse relationship with resting mast cells (r = −0:5) and
resting memory CD4 T cells (r = −0:24). Activated dendritic
cells showed significant association with resting mast cells
(r = −0:04) and resting memory CD4 T cells (r = −0:19).
Resting mast cells are significantly associated with resting
memory CD4 T cells (r = 0:24).

3.10. Correlation between FAM171B and Infiltrating
Immune Cells. We evaluated the relationship between the
immune infiltration outcomes and FAM171B. As shown in
Figure 11(a), FAM171B was strongly connected with resting
mast cells (r = 0:28, P = 0:0035; Figure 11(b)) and negatively
associated with CD8 T cells (r = −0:2, P = 0:042;
Figure 11(c)) and monocytes (r = −0:22, P = 0:024;
Figure 11(d)). Supplementary Table 10 shows the
relationship between FAM171B and immune cells.

4. Discussion

PAH causes shear stress, endothelial damage in the artery
wall, and unfavorable pulmonary vascular reconstruction
over time. A distinctive feature of PAH is pulmonary artery
remodeling caused by an imbalance of vascular wall prolifer-
ation and apoptosis; however, the precise mechanism by
which PAH occurs remains unknown [32]. Consequently,
it is essential to explore the biological processes underlying
the incidence and progression of PAH to allow earlier iden-
tification and treatment of the disease, improve the progno-
sis of the condition, and develop effective strategies for
reversing the disease process [33].

By comparing gene expression between PAH and nor-
mal samples, we identified 258 significant DEGs, including
169 upregulated and 89 downregulated DEGs. These DEGs
were subsequently analyzed by GO and Metascape
function-related enrichment analyses. These genes exhibited
significant correlations with immune responses and inflam-
matory signals (e.g., neutrophil activation during the
immune response, myeloid leukocyte migration, and neutro-
phil activation). KEGG analysis revealed that genes involved
in the coagulation cascades and complement, NF-κB signal-
ing, chemokine signaling, and ECM–receptor interactions
were enriched. The functional enrichment analysis results
confirmed further that inflammation and immunity play a
role in the occurrence and progression of PAH. Irrespective
of the etiology or type of PAH, inflammation usually occurs
in the lungs of patients suffering from the disease, with
immune cell infiltration [34]. Recruited immune cells pro-
duce localized and circulating cytokines, which cause alter-
ations in the pulmonary vascular system; these include
interleukin (IL)-1, IL-2, IL-4, IL-8, and IL-12p70, tumor
necrosis factor (TNF)-α, macrophage inflammatory pro-
tein-1α, and the chemokines, CXC3L1 (fractalkine), CCL5
(RANTES), and CCL2 [35, 36]. In patients with PAH, a rise
in the levels of serum inflammatory markers is a prognostic
indicator of disease severity and patient survival [35].
Inflammatory indicators, such as CCL2, CCL5, and
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fractalkine, have been associated with severe PAH [37]. In
the context of PAH, IL-6 is an indicator of right ventricular
failure, and investigations on humans and animals have
revealed an elevation in IL-6 levels during PAH [38]. In
addition, alterations in immunological processes signifi-
cantly contribute to PAH by inducing inflammatory cell
recruitment, pulmonary vasculature remodeling, and auto-
immune reactions [39]. In the PAH model, NF-κB signaling
is activated, and sevoflurane can modulate NF-κB signaling
by inhibiting p-IκB, p-p65, and p65 levels, reducing pulmo-
nary fibrosis, and preventing PAH [40]. TLR/NF-κB path-
way inhibition may also benefit PAH patients, reducing
inflammatory and immune responses and pulmonary vascu-
lar remodeling [41]. Cytokines IL-1β, IL-6, and TNF-α are
involved in PAH-related modifications of the pulmonary
artery wall [42]. The TLR family is pattern recognition
receptors that recognize microbial fragments and activate
the NF-κB pathway. Decreased TLR3 expression is associ-
ated with endothelial cell death and changes in the pulmo-
nary artery wall [43]. These data support the notion that
inflammation and immune responses play a role in PAH
development.

In the last 20 years, several different machine learning
strategies and feature extraction algorithms have been widely
applied for diagnosing and predicting diseases [44–49]. Most
of these studies apply machine learning methods to simulate
the progression of malignancy and find significant charac-
teristics that are then used in a categorization scheme.
According to the results of our study and those of other
researchers [50–56], this was the first study in which analyt-
ical methods for identifying PAH biomarkers use many
machine learning approaches, including RF, Lasso, SVM-
RFE, and WGCNA. Akter et al. [57] suggest that merging
different machine learning algorithms may boost prediction
performance and construct highly accurate diagnostic
models. Thus, using the four machine learning approaches
enabled us to identify potentially significant biomarkers crit-
ical for the evaluation of PAH. Finally, in this study,
FAM171B was selected and shown to be accurate for in-
depth verification, confirming our prediction and proving
its feasibility through the integration approach.

FAM171B is a protein yet to be identified, and its func-
tion is unknown. A group of researchers reported on a
mutant mouse with gastroschisis that had a mutation in
Slit3, as well as an extra point mutation in Fam171A1, a
related family member that has 35% amino acid identity
with FAM171B [58]. In addition to gastroschisis, this
mutant mouse was found to have a double-outlet right ven-
tricle with an atrioventricular septal defect, atrioventricular
septal defect, and ventricular noncompaction [59]. Further-
more, FAM171B is a member of the Fam171b protein fam-
ily, a family of secreted proteins with high and selective
expression levels in the brain; however, its function has not
yet been determined. Owing to these traits, Fam171b is one
of 106 genes known as the “core brain ignorome” [60]. Only
a few studies have demonstrated that this gene is involved in
developing congenital heart disease; however, its precise
function in the illness’s progression remains unknown. Since
the cardiopulmonary vascular system is closely related to

PAH, it is likely to become a potential therapeutic target
for reversing or delaying PAH progression.

We utilized CIBERSORT to evaluate immune cellular
components in PAH and normal samples and discovered
that PAH-associated biological processes are strongly con-
nected to several immune cell types. This investigation
showed that resting memory CD4 T cells, activated dendritic
cells, and resting mast cells are considerably expressed in
PAH samples. However, resting NK cells, monocytes, and
neutrophils are significantly expressed in normal samples.
In addition, it was discovered that FAM171B is substantially
expressed in PAH tissues. The correlation analysis revealed
that resting mast cells were significantly associated with
FAM171B, whereas CD8 T cells and monocytes were nega-
tively associated with FAM171B, indicating that high
FAM171B expression was closely associated with the extent
of infiltration of resting mast cells and CD8 T cells. These
results prove that the high resting mast cell counts reported
in PAH tissues and the high monocyte counts observed in
normal tissues may be connected to FAM171B. Therefore,
the results of this analysis indicate that FAM171B and many
inflammatory cell types are involved in the process of PAH;
this supports the need for further research into PAH molec-
ular pathways.

IL-5, IL-4, and IL-13, as well as antibodies (particularly
IgE), are produced by CD4+ TH2 cells [61]. Several studies
using animal models have investigated TH2 immune
responses as causative factors for PAH. For instance, TH2
responses, which include antigen sensitization and subse-
quent antigen challenge, may result in smaller pulmonary
artery muscularization due to interactions between CD4+

cells and IL-13 [62]. Hypoxia induces the resistin-like alpha
protein, which is associated with vascular remodeling [63].
The TH2 immune response also induces this protein. Den-
dritic cells (DCs) essential for activating naïve T cells are
crucial antigen-presenting cells in the immune function.
The ability of DCs to develop into many cell types, including
endothelial cells (ECs), may play a significant function in the
pathophysiology of vascular diseases [64]. The accumulation
of immature DCs in altered pulmonary arteries in experi-
mental and clinical PAH tissue samples suggests that they
may play a role in the immunopathology of PAH [65]. Anti-
bodies in the serum of patients with PAH and collagen vas-
cular disease directed against fibroblasts and endothelial
cells, in addition to nuclear antigens, may be a contributing
factor in the formation of these antigen-presenting cells [66].
Wang et al. [67] found that PAH patients had a lower pro-
portion of monocyte-derived DCs in their peripheral blood,
suggesting the involvement of the TH1 immune response in
the pathogenesis of PAH. During PAH, mast cells secrete the
vascular endothelial growth factor, which may induce dys-
function in angiogenesis [68]. In addition, during PAH, peri-
vascular mast cells produce chymase [69]. As chymase can
induce localized angiotensin II production, endothelin acti-
vation, and matrix metalloprotease activation, it may be
involved in vascular remodeling and vasomotor tone regula-
tion. In PAH-associated fibrosis, mast cell chymase may be a
significant target for the therapy of immune cell- and
autoantibody-associated pulmonary hypertension [70]. The
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levels of total serum tryptase in PAH samples were signifi-
cantly greater than those in control samples [71], indicating
high mast cell counts or enhanced mast cell activation. Thus,
multiple studies have identified the important role of
immune cell infiltration in PAH.

There were a few problems with this research. First,
increasing the number of individuals represented in the
sample and filling out all genetic data will make the illness
analysis and prediction more reliable. Second, to give reliable
evidence for the development of targeted therapeutic medi-
cines, the potential marker genes and pathways discovered
in this study need to be confirmed in additional research.
In the end, investigating the protein expression levels of
marker genes may provide more proof of the possible roles
that marker genes play in PAH. Additional research is nec-
essary to validate the biological function for our results.

5. Conclusions

Overall, FAM171B has strong diagnostic utility and is asso-
ciated with immune cell infiltration for PAH. We also dis-
covered that resting memory CD4 T cells, activated
dendritic cells, and resting mast cells may all play a role in
the development and progression of PAH. Furthermore,
FAM171B was significantly associated with resting mast cells
and negatively associated with CD8 T cells and monocytes.
These immune cells possibly affect PAH development, and
further research into their action may help identify immu-
notherapeutic targets and improve immunomodulation-
based PAH treatment.
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