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LIHC (liver hepatocellular carcinoma) mostly occurs in patients with chronic liver disease. It is primarily induced by a vicious cycle
of liver injury, inflammation, and regeneration that usually last for decades. The G protein nucleolar 2 (GNL2), as a protein-
encoding gene, is also known as NGP1, Nog2, Nug2, Ngp-1, and HUMAUANTIG. Few reports are shown towards the specific
biological function of GNL2. Meanwhile, it is still unclear whether it is related to the pathogenesis of carcinoma up to date.
Here, our study attempts to validate the role and function of GNL2 in LIHC via multiple databases and functional assays. After
analysis of gene expression profile from The Cancer Genome Atlas (TCGA) database, GNL2 was largely heightened in LIHC,
and its overexpression displayed a close relationship with different stages and poor prognosis of carcinoma. After enrichment
analysis, the data revealed that the genes coexpressed with GNL2 probably participated in ribosome biosynthesis which was
essential for unrestricted growth of carcinoma. Cell functional assays presented that GNL2 knockdown by siRNA in LIHC cells
MHCC97-H and SMCC-7721 greatly reduced cell proliferation, migration, and invasion ability. All in all, these findings
capitulated that GNL2 could be a promising treatment target and prognosis biomarker for LIHC.

1. Background

Liver cancer is composed of primary carcinoma and meta-
static carcinoma [1, 2]. As far as the most common
inducers of carcinoma-associated mortality in the world,
primary liver carcinoma ranks second, thus becoming a
great public health challenge [3–5]. Primary liver carci-
noma consists of liver hepatocellular carcinoma (LIHC),
intrahepatic cholangiocarcinoma (iCCA), and other rarely
seen neoplasms [6, 7]. Mostly, LIHC occurs in patients
with chronic liver disease, and it is generally caused by a
vicious cycle of liver damage, inflammation, and regenera-
tion that usually span several decades [8–11]. Like other
malignant neoplasms, the widely generated biological alter-
ation in LIHC pathogenesis comprises activated oncogene
and inactivated neoplasm inhibitor genes [12]. Since its
discovery over 60 years ago, alpha-fetoprotein (AFP) has

been the most commonly used biomarker in LIHC man-
agement [4, 13, 14]. However, LIHC is classified as a
complicated disease accompanied by several risk factors
caused pathogenic mechanisms. Thus, to characterize
LIHC only by a single biomarker is not feasible. To explore
the pathogenesis of LIHC and uncover the candidate bio-
markers become urgently needed.

As a protein-encoding gene, the G protein nucleolar 2
(GNL2) is also named by nucleostemin (NS), which is essen-
tial for stem cell growth and development [15, 16]. GNL2 is
highly expressed in tissues, such as testis and bone marrow
[17, 18]. Presently, there are no researches on the particular
biological function of GNL2, and little is known about its
relationship with carcinoma pathogenesis.

Here, our study is aimed at investigating whether there is
an association of GNL2 expression with the prognosis in
LIHC patients. In addition, our study also wants to validate
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its inhibitory effect on LIHC cell proliferation, migration, and
invasion by in vitro experiments.

2. Material and Methods

2.1. Identification of the Differentially Expressed Genes
(DEGs) in TCGA Database. The Cancer Genome Atlas
(TCGA) database, as the National Cancer Institute (NCI)
and the National Human Genome Institute (NHGRI) sup-
ported the project, was employed to obtain mRNA expres-
sion profile of liver carcinoma and normal samples. It could
offer all-inclusive maps of the main alterations of genomic
in multiple sorts of carcinomas. ∣log2 fold change ðFCÞ ∣ >1
and P value <0.05 were considered to be parameters for iden-
tifying the DEGs. The protein-protein network (PPI) of the
selected DEGs was constructed by the Search Tool for the
Retrieval of Interacting Genes (STRING) database.

2.2. Gene Expression Profiling Interactive Analysis (GEPIA)
Database. GEPIA is an interacting online server for the anal-
ysis of RNA sequencing data of tumorous and healthy sam-
ples from the Genotype-Tissue Expression (GTEx) and
TCGA datasets. The URL of GEPIA is http://gepia.cancer-
pku.cn. In this study, we used GEPIA to determine GNL2
expression in different stages of liver carcinoma and then
perform patient survival analysis and identify similar genes.

2.3. Kaplan-Meier Plotter Database. The Kaplan-Meier plot-
ter (https://kmplot.com/analysis/), functioning as a web tool,
is used to validate survival biomarkers in the light of meta-
analysis. The information of gene expression profile and
various survival data comprising overall survival (OS),
relapse-free survival (RFS), and disease-specific survival
(DSS) come from the well-known public databases, including
GEO (only Affymetrix microarrays), EGA, and TCGA.
Kaplan-Meier plotter was taken to generate the survival
curves of GNL2, and log rank P values, as well as hazard ratio
(HR) with 95% confidence intervals, were calculated.

2.4. Biological Process and Pathway Enrichment Analysis. The
top 1000 genes coexpressed with GNL2 (sorted by Pearson
correlation coefficient) in LICH-tumor and LICH-normal
dataset were identified by GEPIA. To assess the gene-

annotation enrichment, we utilized the online tool Enrichr
(https://maayanlab.cloud/Enrichr/). Enrichment annota-
tions were presented as Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway and Gene Ontology (GO) bio-
logical process. Data were plotted and visualized using an
online platform http://www.bioinformatics.com.cn.

2.5. Cell Culture and Transfection. The human LIHC cell
lines MHCC97-H and SMCC-7721 were obtained from the
China Center for Type Culture Collection in 2020 and
authenticated by short tandem repeat analysis. All cells were
routinely cultured in DMEMmedium (Thermo Fisher Scien-
tific, Inc., USA) supplemented with 10% FBS (Thermo Fisher
Scientific, Inc., USA) in an incubator with 5% CO2 at 37

°C.
SiRNA targeting GNL2 (si-GNL2) and a negative control
siRNA (si-NC) were acquired from GeneCopoeia, Inc.
(USA). When MHCC97-H and SMCC-7721 cells confluence
reached up to 80% on the following day, they were trans-
fected with indicated siRNAs utilizing Lipofectamine 2000
(Invitrogen, USA) as the manual described. Reduced effi-
ciency of GNL2 was determined by qRT-PCR at 48 h post-
transfection. The siRNAs used were as follows: si-GNL2-1,
5′-CACGTGTGATTAAGCAGTCATCATT-3′; si-GNL2-2,
5′-CCATACAAAGTTGTCATGAAGCAAA-3′; si-NC, 5′
-UUCUCCGAACGUGUCACGUTT-3′.

2.6. Quantitative Reverse-Transcription PCR (qRT-PCR)
Assay.Overall RNA was harvested from indicated cells utiliz-
ing TRIzol reagent (Invitrogen, USA). qRT-PCR was carried
out on a Bio-Rad Single Color Real-Time PCR system (Bio-
Rad Laboratories, Inc., USA) with SYBR-Green Real-Time
PCR Master Mix (Toyobo Life Science, Japan). β-Actin was
used as an internal control.

2.7. Cell Proliferation Assay. 2,000 of si-NC- and si-GNL2-
transfected cells were plated in per well of 96-well plates,
followed by maintaining 0, 24, 48, and 72 h at 37°C. 10μl of
CCK-8 reagent was added into each well at the indicated
time, followed by another 2 h incubation. The wavelength
at 450 nm was read in a Varioskan Flash spectrophotometer
(Thermo Fisher Scientific, Inc., USA).
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Figure 1: Volcano plot illustrated the DEGs existing in liver carcinoma samples and normal ones based on TCGA dataset. Genes with
upregulation were presented as the red dot, while those with downregulation were shown as the blue dot.
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2.8. Transwell Assay. For cell migration assay,Matrigel needed
not to be precoated in the Transwell chamber (Corning, NY).
The Transwell upper chamber was added 50,000 si-NC- or si-
GNL2-transfected cells suspended in serum-free DMEM
medium, and the lower chamber was added DMEM medium

with 10% FBS, followed by maintaining 24h at 37°C. Then,
migrated cells underside were rinsed by PBS, fixed by metha-
nol, and stained by DAPI. Positive cells were photographed
and counted under a microscope. Five random fields were
selected and counted the average. For cell invasion assay,
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Figure 2: PPI network of the DEGs. Nodes displayed proteins, and edges exhibited the interactions between proteins.
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2mg/mL Matrigel was precoated in the upper chamber.
The remaining procedures were the same as the cell migra-
tion assay.

2.9. Statistical Analysis. Our data were analyzed by the SPSS
software (IBM Corp., USA) and were represented as the
mean ± SD. The Student t-test was employed to analyze the
difference in mRNA expression from TCGA database. The
correlation existing in expression and pathological stage of
carcinoma was assessed by one-way ANOVA. The differ-
ences in survival ratio between highly expressed GNL2 and
lowly expressed GNL2 groups were detected by Kaplan-

Meier analysis and log-rank test. The Student t-test was
employed to compare the difference of the si-GNL2-
transfected group with the si-NC-transfected group. The
great statistical difference indicated P < 0:05.

3. Results

3.1. Identification of the DEGs and Overexpressed Gene GNL2
in LIHC. As indicated before, to define the DEGs in liver car-
cinoma and normal samples, we obtained gene expression
information from TCGA database. Totally, 361 DEGs were
selected, comprising 283 genes with increased expression
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Figure 3: Highly expressed GNL2 was in LIHC, and its higher expression was associated with carcinoma stages. (a) To analyze GNL2
expression level in normal and tumor tissues of the liver based on TCGA dataset. ∗∗∗P < 0:001. (b) Analysis of GNL2 expression level in
different liver carcinoma stages based on GEPIA dataset.
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Figure 4: GNL2 high expression was a poor prognosis factor for LIHC. (a) GEPIA analysis of the OS curves of LIHC patients with highly
expressed or lowly expressed GNL2. (b) GEPIA analysis of the DFS curves of LIHC patients with highly expressed or lowly expressed GNL2.
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Figure 5: Continued.
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and 78 genes with decreasing expression (Figure 1 volcano
plot). Figure 2 displayed the PPI network, 110 nodes (pro-
teins) and 159 edges (proteins interactions). Besides, it was
observed that the degree of GNL2 was high which partly
revealed the potential role of GNL2 as a candidate biomarker
for LIHC.

3.2. Validation of the Relationship between the Stages of Liver
Carcinoma and the Expression of GNL2. TCGA database
analysis showed that LIHC tumor tissues highly expressed
GNL2 in comparison with normal tissues (Figure 3(a)).
Then, GEPIA analysis discovered the associations between
various pathological carcinoma stages of LIHC patients and
GNL2 expression level. It was found that GNL2 expression
was significantly associated with the pathological carcinoma
stages of LIHC (Figure 3(b), P = 0:00163). Our results dem-
onstrated that GNL2 exhibited an important part in clinical
practice.

3.3. Prognostic Value of GNL2 for LIHC Patients. Subse-
quently, we employed GEPIA to investigate the relationship of
GNL2 expression with LIHC patient’s prognosis. Figures 4(a)
and 4(b) demonstrated theOS andDFS curves of LIHC patients
with different GNL2 expression levels. Kaplan-Meier analysis
plus the log-rank test was taken to assess the impacts of the
expression of GNL2 on OS and DFS. Compared to the lowly
expressed GNL2 group, the highly expressed GNL2 group
exhibited a shorter OS and DFS (log rank P = 9:2e − 06 and
0.011, respectively). Additionally, we further verified that high
expression of GNL2 led to poor prognosis in LIHC patients
by Kaplan-Meier plotter database analysis. Figures 5(a), 5(d),
and 5(g) showed that LIHC patients with highly expressed

GNL2 had shorter OS, RFS, and DSS compared to those with
the lowly expressed group, in line with the GEPIA analysis.
Given the high incidence of hepatocellular carcinoma was
mainly due to the prevalence of hepatitis virus infection, we
further evaluated the prognosis of LIHC patients stratified
according to hepatitis virus infection. The results showed that
the hepatitis virus did not affect the prognosis of GNL2
(Figures 5(b), 5(c), 5(e), 5(f), 5(h), and 5(i)).

3.4. Biological Process and Pathway Enrichment Analysis.We
conducted KEGG and GO enrichment analyses of genes
coexpressed with GNL2 in LIHC tumor and normal tissues
to validate the function of GNL2 in liver carcinoma.
Figure 6(a) displayed the results of KEGG pathway enrich-
ment, including cell cycle, mRNA surveillance pathway, pro-
teasome, ribosome, RNA transport, DNA replication,
Fanconi anemia pathway, ribosome biogenesis in eukaryotes,
spliceosome, and homologous recombination. Figure 6(b)
showed the enriched biological processes of the genes coex-
pressed with GNL2 as the following: rRNA processing
(GO:0006364), rRNA metabolic process (GO:0016072),
ribosome biogenesis (GO:0042254), mRNA processing
(GO:0006397), translation (GO:0006412), RNA splicing via
transesterification reactions with bulged adenosine as nucle-
ophile (GO:0000377), mRNA splicing via spliceosome
(GO:0000398), gene expression (GO:0010467), cellular mac-
romolecule biosynthetic process (GO:0034645), and ncRNA
processing (GO:0034470).

3.5. Cell Functional Results of GNL2 Downregulation in LIHC
Cells. We transfected siRNAs into MHCC97-H and SMCC-
7721 cells to evaluate the effects of ablated GNL2 on cell
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function (Figures 7(a) and 7(b)). CCK-8 assay data showed
that si-GNL2-transfected cell proliferation was significantly
hindered in comparison with control si-NC-transfected cells
after 24, 48, and 72h treatment (Figures 7(c) and 7(d)). In
addition, Transwell assay data revealed that transfection of
si-GNL2 in LIHC cells could suppress invasion and migra-
tion abilities (Figures 8(a)–8(d)). Therefore, GNL2 knock-

down largely curbed MHCC97-H and SMCC-7721 cell
proliferation, invasion, and migration.

4. Discussion

LIHC is a malignant neoplasm that often occurs in the liver,
which is related to drinking, viral hepatitis, eating moldy
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food, genetics, etc. [19]. Currently, the studies about LIHC
are few. As for LIHC treatment, Kim et al. summarized and
discussed clinical researches towards systematical chemical
therapy for advanced cancer [20]. Zhang and Zhang found
FoxP4 functioned as a tumor promoter in LIHC cells by tran-
scriptionally regulating Slug and highlighted the potential
effects of FoxP4 on the prognosis and treatment of LIHC
[21]. The early stage is often asymptomatic, and obvious
symptoms like liver area pain, fever, and fatigue usually
appear in the advanced stage [22]. It is possible to cure LIHC
in its early stage, but the treatment is complicated in the mid-
dle and advanced stages [23, 24]. Therefore, it is necessary to
have a better understanding of the molecular mechanism
involved in liver carcinoma initiation and to screen novel
biomarkers. In this study, we screened 361 DEGs and
GNL2 was one of the significantly upregulated genes. Besides,
GNL2 was observed to have a high degree in the PPI network.
Thus, we considered GNL2 as candidate biomarkers for
LIHC.

NS or GNL3 (nucleostemin) and GNL3-like (GNL3L) are
two members of the GNL2 family [25]. The two both com-
prise an MMR_HSR1 domain, depicted by five GTP binding
motifs formed as a cyclic order. The two have a common
Grnlp homologous sequence in yeast, highly similar to the
sequence in vertebrates. GNL3L is the vertebrate aileron of
NS, while GNL2 is single both in vertebrates and inverte-
brates. NS is a protein playing essentially in stem cell growth

and maintenance [15]. However, few pieces of research are
conducted to explore the relation between GNL2 and disease.
Herein, our study plans to explore the role and function of
GNL2 in LIHC.

As far as gene expression information from the TCGA
database, GNL2 was highly expressed in LIHC tumor sam-
ples compared to that in normal samples, implying GNL2
was a possible oncogene in LIHC. After analysis of the asso-
ciations between various pathological carcinoma stages of
LIHC patients and GNL2 expression, the data revealed that
high expression of GNL2 was significantly associated with
advanced cancer stages. Kaplan-Meier analysis based on
GEPIA and Kaplan-Meier plotter datasets consistently
verified that LIHC patients with highly expressed GNL2
exhibited a shorter survival ratio. What was more, in vitro
knockdown functional experiments demonstrated that
reducing GNL2 by siRNA impeded LIHC cell proliferation,
migration, and invasion abilities. Based on the above find-
ings, GNL2 was probably considered as a treatment target
and a biomarker for LIHC patients’ prognosis.

The alteration of ribosome biogenesis often occurs in car-
cinoma cells due to the rising need for protein synthesis in
unrestricted cancer growth [26]. Ribosome biosynthesis is a
complicated biological process required for the coordination
of multiple factors and a huge cellular energy investment.
The ribosome is essential for protein production and there-
fore is essential for cell survival, growth, and proliferation.
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Ribosomal biogenesis begins in the nucleolus, including ribo-
somal RNA synthesis and processing, ribosomal protein
assembly, and transport to the cytoplasm [27]. Interference
in ribosome biogenesis can promote cell cycle arrest, apopto-
sis, or senescence and thus is usually associated with carci-
noma, aging, and some other related degenerative diseases
[28]. The hyperactivation of ribosome biogenesis usually
occurs in tumor cells to cope with a rising need in protein
synthesis and maintain unrestricted growth [29]. Impor-
tantly, the hyperactivation of ribosome biogenesis can be ini-

tiated by overexpressing oncogenes or eliminating neoplasm
suppressing genes. In our study, we found that GNL2 was
largely associated with altered ribosome biogenesis in cancer
cells through KEGG and GO enrichment analyses, thereby
playing a vital role in carcinoma initiation and progression.

This study has some limitations. First, we did not con-
struct an overexpression vector of GNL2, and we further
explored the regulation of GNL2 overexpression on the pro-
liferation, invasion, and migration of LIIHC cells. Secondly,
we have not used clinical samples to analyze GNL2 mRNA

1.5

1.0

0.5

0.0
si-NC

MHCC97-H

si-GNL2Re
la

tiv
e c

el
l n

um
be

r o
f i

nv
as

io
n

⁎⁎

si-NC si-GNL2

MHCC97-H

(a)

SMCC-7721

SMCC-7721

si-NC si-GNL2

si-NC si-GNL2
1.5

1.0

0.5

0.0

Re
la

tiv
e c

el
l n

um
be

r o
f i

nv
as

io
n

⁎

(b)

MHCC97-H

MHCC97-H

si-NC si-GNL2

si-NC si-GNL2
1.5

1.0

0.5

0.0

Re
la

tiv
e c

el
l n

um
be

r o
f m

ig
ra

tio
n

⁎

(c)

SMCC-7721

SMCC-7721

si-NC si-GNL2

si-NC si-GNL2
1.5

1.0

0.5

0.0

Re
la

tiv
e c

el
l n

um
be

r o
f m

ig
ra

tio
n

⁎⁎

(d)

Figure 8: Cell functional results of GNL2 downregulation in LIHC cells. Validation of cell invasion capability in si-GNL2-transfected (a)
MHCC97-H and (b) SMCC-7721 cells by Transwell assay. ∗P < 0:05; ∗∗P < 0:01. Validation of cell migration capability in si-GNL2-
transfected (c) MHCC97-H and (d) SMCC-7721 cells by Transwell assay. ∗P < 0:05; ∗∗P < 0:01.

10 BioMed Research International



and protein levels. In future studies, we will collect more clin-
ical samples for analysis of GNL2 mRNA and protein levels.

5. Conclusion

To our knowledge, this study reported the function of GNL2
in LIHC for the first time, and the results showed that GNL2
was a new biomarker for predicting the prognosis of LIHC
patients. Bioinformatics analysis showed that GNL2 was
greatly raised in LIHC, and its overexpression was closely
related to cancer stage and poor prognosis. Enrichment anal-
ysis suggested that GNL2 was largely related to ribosome bio-
synthesis which was essential for cancer unrestricted growth.
Ablating GNL2 resulted in the reduction of cell proliferation,
migration, and invasion abilities. These findings demon-
strated that GNL2 could be a promising treatment target
for LIHC.
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