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Abstract: Point cloud data is essential measurement information that has facilitated an extended
functionality horizon for urban mobility. While 3D lidar and image-depth sensors are superior
in implementing mapping and localization, sense and avoidance, and cognitive exploration in an
unknown area, applying 2D lidar is inevitable for systems with limited resources of weight and
computational power, for instance, in an aerial mobility system. In this paper, we propose a new
pose estimation scheme that reflects the characteristics of extracted feature point information from
2D lidar on the NDT framework for exploiting an improved point cloud registration. In the case of
the 2D lidar point cloud, vertices and corners can be viewed as representative feature points. Based
on this feature point information, a point-to-point relationship is functionalized and reflected on a
voxelized map matching process to deploy more efficient and promising matching performance. In
order to present the navigation performance of the mobile object to which the proposed algorithm is
applied, the matching result is combined with the inertial navigation through an integration filter.
Then, the proposed algorithm was verified through a simulation study using a high-fidelity flight
simulator and an indoor experiment. For performance validation, both results were compared and
analyzed with the previous techniques. In conclusion, it was demonstrated that improved accuracy
and computational efficiency could be achieved through the proposed algorithms.

Keywords: scan matching; registration; normal distribution transform; localization; pose estimation

1. Introduction

For the past ten years, navigation research for autonomous vehicles such as drones,
cars, and mobile robots has been extensively exploited in association with onboard sensor
implementation diversity. The Global Positioning System (GPS) has been the most repre-
sentative and widely used system, suitable for open-sky environments such as outdoor
and rural areas [1]. However, as the vehicle gradually enters urban and indoor areas,
reliability degradation mostly occurs caused by satellite signal denial and multipath errors.
To overcome this, various studies investigating autonomous operation [2–6] have emerged
considering these environments, as famously represented by SLAM (Simultaneous Local-
ization and Mapping) [4–6].

SLAM consists largely of components that generate a map of the surrounding environ-
ment and estimates location. It can also be divided into visual SLAM, Lidar-based SLAM, or
a hybrid of Lidar and visual SLAM, depending on the primary sensor implementation [6].
Traditionally, cameras have been most widely used, yet recent works employing lidar have
increased outstandingly, owing to the sensor’s effective dissemination. In practice, the
lidar mounted on the vehicle measures the distance and intensity and thus provides point
cloud data against surrounding areas. Then the accumulated measurement is processed to
generate a 3D map and to estimate the pose of an onboard vehicle through a registration
procedure with the constructed map.

The point cloud registration algorithm (sometimes called scan matching) has been an
important topic in computer vision (i.e., image processing) and robotics, which finds the

Sensors 2021, 21, 5670. https://doi.org/10.3390/s21165670 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s21165670
https://doi.org/10.3390/s21165670
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21165670
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21165670?type=check_update&version=2


Sensors 2021, 21, 5670 2 of 18

best transformation (e.g., rotation and translation) that matches two different point cloud
sets. Traditionally, the Iterative Closest Point (ICP) algorithm [7], which allows the distance
between two data set points to be minimal through a repetitive performance inspection, has
been widely used, and various improvements are still made, such as NICP [8] and voxelized
GICP [9]. In general, ICP results do not always guarantee global optimal performances
and are highly dependent on its initial guess. Given an incorrect initial pose, the ICP-
based method can generate a local optimal or wrong solution. In addition, there is a
disadvantage in that the amount of computation increases in proportion to the amount of
point cloud data. This feature leads to disseminating the Normal Distribution Transform
(NDT) algorithm [10,11]. NDT, unlike ICP, is a method employing the Gaussian probability
distribution for scan matching, where point cloud map is voxelized for a point-to-point
matching process. As a result, the impact of increasing point cloud data can be minimized,
thus the NDT has been demonstrated to be more robust and accurate in real-time operation
than ICP [12]. Due to these advantages, NDT has been widely adopted in autonomous
vehicles [13,14].

Besides this, various kinds of matching algorithms [15–17] have been reported accord-
ing to each performance requirement in the applications. Polar Scan Matching (PSM) [15] is
a method belonging to a point-to-point matching category, which has faster characteristics
than ICP because burdensome point-to-point search processes can be avoided by simply
matching the association between points with the same bearing angle. In order to take
advantage of the laser scanner measurement structure that outputs the distance to the
bearing, the lidar polar coordinate system is mainly used. The proposed algorithm has been
validated with kalman filter SLAM using a SICK LMS 200 laser range finder. Correlative
Scan Matching (CSM) [16] is a scan matching algorithm based on cross-correlation between
point cloud data. In obtaining the posterior distribution probability for the robot’s pose,
Bayes’ rule and the pre-built 2D lookup table are used for accelerating computation. In [16],
experimental results report robustness to initial noise and outperformance of existing ICP
and ICL. Coherent Point Drift (CPD) [17] is an approach to find a solution by rephrasing
the point set matching problem into a formulation of probability density estimation. To
achieve this, it is used to align the measured dataset in the direction where the likelihood
is maximized around the center of the Gaussian Mixture Model (GMM). The algorithm
is characterized by reducing computational complexity through fast gauss transform and
low-rank matrix approximation.

In each application, the algorithm varies according to its sensor configuration, mea-
surement type and the corresponding performance requirements. In this study, a unique
measurement environment containing edges and vertices, such as transmission tower and
truss bridge, is considered for its application. We assume a 2D lidar measurement in these
conditions, while a 3D map is available for point cloud registration. Especially, a new
scan matching technique is developed such that the probability distribution of scan points
and the score function are uniquely constructed for best resolution of the pose estimation
problem. Compared with the typical NDT algorithm, the proposed method suggests that
feature points (e.g., corner) are distinctively extracted from the point cloud data, then the
accumulated feature points approximate the covariance of the distribution by which the
score function of the distribution is effectively updated.

As noted, this paper mainly focuses on developing a localization technique using
lightweight point cloud data from 2D lidar while the map is already implemented. In
this context, computational efficiency with comparable estimation performance can be
regarded as essential design criteria. Thus, quantitative analysis with the existing scan
matching methods is included for performance comparison, where both simulation and
experimental results are employed to demonstrate each algorithm’s performance. This
paper is organized as follows: Section 2 presents related work on the registration algorithm
based on NDT. In Section 3, we describe in detail the NDT-based algorithm with feature
points. Next, we conduct the simulation and experimental to validate and show the results.
Finally, the paper concludes and suggests future work.
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2. Related Work

In this section, a brief literature survey of the related topic is summarized. First, as
a basis of the proposed algorithm, NDT was introduced by Bieber et al. in 2003 [10] and
expanded in three dimensions by Martin Magnusson in 2006 [11]. NDT is a method for
matching scan points to target points through the underlying probability condition in
which the scan point measurements from lidar serve as input, and the prebuilt 3D point
cloud map provides target points. Typically, the target points in the map are preliminarily
voxelized, then the map is divided into cells of a uniform size for calculating the mean
and covariance of each cell. Next, each scan point is corresponded with cells to solve an
optimized target point. Voxelization can improve computational power by reducing the
number of target points by the size of the voxel grid. In principle, the original method can be
seen as a point-to-distribution (P2D) approach as it directly matches the scan points and the
probability distribution of the voxelized targets. Afterward, Stoyanov applied probability
methods for both scan points and target points to improve registration speed [18].

Map accuracy also influences the performance of the registration algorithms. In
2013, Sarrinen [19] represented a new 3D space called Normal Distribution Transform
Occupancy Map (NDT-OM) that combines the advantages of occupancy grid maps with
NDT maps. The occupancy grid map has such a robustness that only stationary parts of the
surrounding environment are generated in a representational form based on the probability
of cell occupancy. On the other hand, the NDT map has the advantage of compactness
by voxelizing the point cloud map to express each cell in a gaussian probability density.
Still, the disadvantage is that traces remain together in a dynamic environment where new
objects can frequently appear and disappear. By dividing the space into a uniform grid size,
the geometric features of the point’s continuity and local space may also disappear. To solve
these problems, Composite Clustering NDT (CCNDT), which calculates the probability
distribution with the clustered points, was introduced in 2020 by Liu et al. [20]. This
work suggested the application of a probability distribution using Density-Based Spatial
Clustering with Applications (DBSCAN) and k-mean clustering methods, rather than a grid
of constant size. Consequently, the presented method could maintain both local features
while maintaining the continuity of target points.

In 2017, Andreasson et al. [21] extended the cost constraint by adding full pose
information to the NDT-D2D (distribution-to-distribution) [18] approach. Previously, ego-
motion estimation (e.g., odometry) was simply used as an initial pose guess. However, in
the presented work, it is suggested that the objective function incorporates ego-motion
estimation with uncertainty, thus its performance is revealed to be more accurate under
feature-poor and self-similar environments. In 2018, Liu et al. [22] proposed an Improved
NDT (INDT) that registers using fractional pre-processed feature points only. For this, the
work applied a Fast Point Feature Histogram (FPFH) descriptor and Hausdorff distance
method to extract feature points. The presented method also contributed to improving
accuracy by replacing single-Probability Density Functions (PDF) with mixed PDFs. The
papers of [23,24] introduced an NDT-ICP algorithm that combines and operates NDT and
ICP sequentially. The suggested method divides the registration process into two stages
and performs a coarse registration with NDT. Then, a fine registration is carried out with
the ICP process. Through this hybrid mechanism, the coarse registration result of NDT
could be significantly enhanced.

In relation to the previous literature, the features of this paper are characterized
as follows. Assuming a pre-generated map, a voxelized NDT map with constant grids
commonly used in SLAM is employed. The adapted score function of the proposed
algorithm has similarities with the previous reference [21], yet the objective function
employs a unique classifier coefficient depending on point characteristics. The INDT
approach in [22] also extracts and uses feature points during the scan matching procedure,
yet differs from the proposed methods in that extracted feature points are only used for
the registration process. Due to this reasoning, the INDT in [22] is excluded from the
performance comparison algorithm because poor performance is achieved through INDT
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with a relatively smaller number of feature points for the 2D measurement environment.
On the other hand, the NDT-ICP method in [23], which performs NDT and ICP sequentially,
is implemented as a performance comparison algorithm. In view of hybrid implementation,
the proposed approach has similarity, but it has the advantage of executing NDT and ICP
in parallel during each registration period for computational efficiency. On the other
hand, the proposed algorithm has limitations as follows. First, 2D lidar measurements are
fundamentally assumed, which can be vulnerable to altitude estimation. If there are few
candidates for feature extraction, the proposed method simply degenerates into a NDT
scheme without effective performance enhancement.

The proposed algorithm details are described in Section 3. The main contributions of
the study are summarized as follows.

(1) Develops classification and integration mechanism with different point clouds, allow-
ing both point-to-point and point-to-distribution based scan matching.

(2) Adapts the uncertainty of feature points into the pose optimization scheme.
(3) Presents localization accuracy in the real world through INS integration.
(4) Validates the proposed algorithm through the results of the reference method from

both simulation and experiments.

3. Algorithm Implementation

In this section, the fundamentals of a registration algorithm are illustrated in associ-
ation with the NDT. Then a modified registration concept is put forward that integrates
point-to-point matching with distribution-to-point matching framework.

3.1. NDT Formulation

NDT is a representative registration algorithm that matches a two-point cloud data
set based on probability information. For this, the map is voxelized such that it divides
the map into a cell of a uniform size. The mean µ and covariance Σ of the included points
mi (i = 1, · · · , n) in each cell are computed as

µ =
1
n ∑n

i=1 mi (1)

Σ =
1
n ∑n

i=1(mi − µ)(mi − µ)T (2)

Then a normal distribution N(µ, Σ) for scan point xi (i = 1, · · · , n) measured by lidar
is generated, using the previously obtained mean and covariance. The Probability Density
Function (PDF) for xi is described as

p(xi) =
1√

(2π)D|Σ|
exp

(
−(xi − µ)TΣ−1(xi − µ)

2

)
(3)

where D is a dimension of scan point xi, and PDF p(xi) is the probability that scan points xi
will be included in cells with a normal distribution N(µ, Σ). Figure 1 shows a visualization
of the PDFs computed within each cell with 1m side length. This is called the NDT map.
The higher the probability in each cell, the brighter and denser are the parts observed.

Given PDFs for scan points xi, decision criterion on alignment is determined via the
maximum sum of PDF. This sum is evaluated as a score of the transform parameter y,
which can also be called the NDT score function, s(y).

s(y) = ∑n
i=1 p(T(y, xi)) (4)

T(y, xi) = Rrot xi + t (5)

where y =
[
tx, ty, tz, φx, φy, φz

]T is the transform parameter, which includes translation

t =
[
tx, ty, tz

]T and rotation φNDT =
[
φx, φy, φz

]T about the x–y–z axis between two
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different point cloud data, and T(y, xi) is the transformation function, which transforms
points xi by transform parameter y. This can be calculated as Equation (5). Rrot, t in (5)
denotes the rotation matrix and translation vector, respectively. The next step is to optimize
the score function in (5). The optimization problem is typically solved via numerical
minimization framework. In this work, Newton’s method for finding the minimum value
of the nonlinear function is selected. By setting the negative score function−s(y), Newton’s
method is described as

H ∆y = −g (6)

gi =
∂s
∂yi

, Hij =
∂2s

∂yi ∂yj
(7)

where H is the hessian matrix and g is the gradient of the score function. The solution
∆y continues to be added in the current estimate until reaching convergence, and finally
estimates the best y within tolerance for scan points to match the map.

y← y + ∆y (8)

Figure 1. NDT Map.

3.2. NDT-P2P

In a typical NDT algorithm, all scan points are uniform in constructing normal dis-
tribution. Considering a navigation environment with frequent edges and vertices, we
propose that scan points are divided into feature points and other points through a feature
extraction procedure. Figure 2 shows an example of feature extraction around corners.
Blue dot marker shows scan points measured by 2D lidar, and black square marker shows
the point cloud map. Red & magenta dot markers represents corners. As shown in this
case, scan points are divided into two categories according to their geometric distribution,
where corners can be explicitly extracted as feature points. For extracting the feature point,
the method in reference [25] is used.
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Figure 2. Point cloud map and point cloud data measured by 2D lidar.

In this study, a penalty coefficient λ is introduced to separately establish score functions
during the scan optimization process. Specifically, penalty coefficient λ is set to λ = 1
for the point cloud except for corner points. In this case, a normal NDT process for the
corresponding points is taken, for which the probability distribution using the mean and
covariance of the voxelized map is employed. In case of feature points such as corners,
penalty coefficient is set to λ = 0, thus a point-to-point matching process is applied. The
accuracy of matching between points can be represented by the Euclidean distance with
the following definition.

d
(

xkey, xtarget

)
=‖ xkey − xtarget ‖L2 (9)

The subscript ‘key’, ‘target’ in (9) implies a corner of the scan points and a map point
closest to a corner point. At this time, there is a data association problem in determining
the map point xtarget corresponding to the corner point xkey. In this study, the shortest
distance between points is obtained by using the k-Nearest Neighbor (KNN) algorithm. On
the other hand, if feature points can be directly extracted on the map, these points serve as
target points. In (10)–(11), probability density function and score function for the separated
feature points are described.

p
(

xkey

)
= exp

[
−1

2

(
xkey − xtarget

)T
Σ−1

key

(
xkey − xtarget

) ]
(10)

s
(→

p
)
= ∑ exp

[
−1

2

(
x′key − xtarget

)T
Σ−1

key

(
x′key − xtarget

) ]
(11)

where Σ−1
key is the inverse matrix of covariance for feature point, and x′key is a transformed

xkey by y as a result of Equation (5). The probability depends on the distance between xkey

and xtarget, and if p
(

xkey

)
equals 1, then two points are considered to be matched.

Uncertainty was obtained through the accumulation of corner points and applied to
covariance Σkey. The accumulated lidar measurements during the stationary period give
noise characteristics for the point cloud data. If the points of a particular position measured
by moving lidar are accumulated, the points will continue to be stamped in the same
position with no errors in the ideal environment. With this idea, we stack the extracted
feature points and obtain uncertainty from the accumulated points. Figure 3 illustrates the
stacked corner points. The corners can be clustered into four sets. We obtained covariance
from points within the window size using a moving window, and this value is applied to
the point-to-point matching process.
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Figure 3. Accumulated corner extracted from scan points.

A hybrid formulation combining conventional NDT and pointwise matching for
corner points is summarized in (12). The resulting correspondences between scan points
and map points are illustrated in Figure 4.

p(x) = λ exp
[
− 1

2 (x− µ)TΣ−1(x− µ)
]
+ (1− λ) exp

[
− 1

2
(
x− xtarget

)TΣ−1
key
(
x− xtarget

)]
(12)

s(y) = −∑ p(T(y, x)) (13)

where λ is the feature points delimiter among scan points, and λ equals 0 in the case of
a point being a feature point; otherwise, λ equals 1. For example, if no feature points
from scan points exist, this is the same as a normal NDT since λ is assigned to 1 for all
points. Finally, the process of obtaining an optimal solution for a score function in (13) is
numerically performed, taking Newton’s gradient method.

Figure 4. Correspondence between scan points and map points.

The proposed algorithm is comprehensively summarized in Algorithm 1. In the
algorithm process, it is noted that, unlike NDT based on probability distribution, the
information of feature points can be used separately to improve registration performance.
Yet the voxelized mapping process during the initialization part is the same as NDT; this
may result in the loss of local statistical information on the map as an inherent drawback.



Sensors 2021, 21, 5670 8 of 18

Algorithm 1. Register scan points χscan to map Mmap using NDT-P2P

NDT-P2P ( χscan 3 { x1, x2, · · · , xi }, Mmap 3 { m1, m2, · · · , mi } )
1: { Initialization : } same as NDT in Reference [11]
2: { Points Extraction : }
3: Allocate feature group structure χkey

4: Extract feature points xkey that contains χscan

5: Store feature points xkey in feature group χ
key
(i)

6: if feature group size > window size j do
7: Remove a j-th prior feature point in feature group
8: end if
9: for all feature group xkey ∈ χ

key
(k) do

10: χ
key
(i) =

{
x1

key, x2
key, · · · , xj

key

}
← all feature points within i-th group

11: µkey ← 1
j ∑

j
k=1 xk

key

12: Σkey ← 1
j ∑

j
k=1

(
xk

key − µkey

)(
xk

key − µkey

)T

13: end for
14: { Registration : }
15: While not converged do
16: score← 0
17: g← 0
18: H ← 0
19: for all points xi ∈ χscan do
20: if xi is feature points do
21: find the closest point xtarget ∈ Mmap from xi
22: else
23: find the cell that contains T(y, xi)
24: end if
25: score ← score + p(T(y, xi)) (see Equation (12))
26: update g
27: update H
28: end for
29: solve H ∆y = −g
30: y← y + ∆y
31: end while

3.3. INS Integration

The registration process estimates the new pose information, which is slow because
of 2D lidar’s update rate. For the integrated navigation, the registration output was
combined with the INS mechanization, which implements a high update rate using the
Extended Kalman Filter (EKF) framework. The output of proposed registration ‘NDT-P2P’
is a transform parameter that is further used as the measurement update of EKF. The
conceptual block diagram of the presented method is illustrated in Figure 5.

First, a navigation state is defined as (14), and a simple error model considering a
low-cost INS is described as (15).

δx =
[

δpn δvn δ∅n δba δbg
]T

15×1 (14)

δ
.
x = F δx + G w (15)

where

F =


03×3 I3×3 03×3 03×3 03×3

03×3 03×3

[
×Cn

b

(
ab − ba

)]
−Cn

b 03×3

03×3 03×3 03×3 03×3 −Cn
b

03×3 03×3 03×3 03×3 03×3
03×3 03×3 03×3 03×3 03×3

 (16)
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G =


03×3 03×3
−Cn

b 03×3
03×3 −Cn

b
03×3 03×3
03×3 03×3

 (17)

w =
[

wacc wgyro
]T (18)

The superscript ‘n’ means the navigation frame, and the symbol ‘δ’ means an error
state, i.e., true state minus estimated state. pn, vn, ∅n are position, velocity and attitude in
the navigation frame, respectively. Especially, attitude error δ∅n means an angle vector for
the 3-axis and is assumed to be small. Cn

b is the Direction Cosine Matrix (DCM) that rotates
from body frame to navigation frame. ba, bg respectively represent an IMU sensor bias of

accelerometer and gyroscope in the body frame.
(

ab − ba

)
is the specific force vector of

the accelerometer, and w represents the noise terms of the accelerometer and gyroscope.

Figure 5. The block diagram of INS integration with NDT-P2P.

The following is the measurement model of EKF. After registration, rotation matrix
and corrected position are used in this updated process.

δzk =

[
T
(
y, p̂−INS

)
− p̂−INS

φNDT

]
= H δx + υ (19)

H =

[
I3×3 03×3 03×3 03×3 03×3
03×3 03×3 I3×3 03×3 03×3

]
(20)

R = E
{

υυT
}
=

[
Rp 03×3

03×3 R∅

]
(21)

where T
(
y, p̂−INS

)
denotes the corrected position, obtained by transforming estimated posi-

tion p̂−INS by y. φNDT = [φN , φE, φD]
T is the rotation part of transform parameter y in the

navigation frame. The rotation of the transform parameter can be applied directly because
the scan points measured by lidar in the body frame were converted to navigation frame,
and registration was performed. H is the observation matrix, and R is the measurement
noise. Measurement noise can be adjusted by considering lidar’s noise and INS error.
Table 1 summarizes the employed EKF.
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Table 1. Extended Kalman Filter’s formula.

(Predict) (Update)

P−k = A Pk−1 AT + B Q BT Kk = P−k HT (H P−k HT + R
)−1

(A = I + F dt, B = G dt) Pk = (I − Kk H) P−k
x̂−k = f (x̂k−1, u) x̂k = x̂−k + Kk δzk

4. Simulation and Experiment

To verify the proposed algorithm, we conducted a simulation study as well as a test
using a moving cart in an indoor corridor. We compared the results of NDT-P2P to other
reference algorithms [11,23] and analyzed overall performance.

4.1. Simulation

A simulation study was carried out using a Unity-based flight simulator [26]. In
this, a pre-built map consisting of 3D point cloud data is used and algorithm is verified
through the virtual sensor data including accelerometer, gyroscope and point cloud. The
simulation scenario assumes a drone to inspect the power transmission tower, where
circular trajectory is generated, with heading oriented to the center of tower. Considering
the effect of electromagnetic fields (EMF) from the high voltage power line, we assumed a
GNSS denied flight environment.

Figure 6 shows the virtual environment implemented in the flight simulator. The right
subplot shows a point cloud map of the transmission tower and the trajectory generated
from the simulator. The total number of map points is 2050, which work as target points
for the proposed algorithm. The measurement update rate of IMU and lidar is 100 Hz and
5Hz, respectively. The proposed algorithm was coded with C++ language including point
cloud library (PCL) [27].

Figure 6. Unity-based simulator (Left) and flight path of simulation (Right).

As a result of the simulation, the errors of estimated position and attitude are plotted
in Figure 7 and the resulting RMSE is summarized in Table 2. For performance comparison
with the previous works, the conventional NDT and NDT-ICP is implemented and results
are analyzed together. In performance analysis, the mean of the squared distance from
the transformed point to the target can be used as an indicator of the accuracy of the
transformation (TF accuracy). In Table 2, the TF accuracy of the methods with a point-
to-point scheme shows better performance in general. However, due to 2D lidar, the TF
accuracy cannot be regarded as a direct criterion for localization accuracy. For example,
when a 3D cube map and 2D rectangular shaped points are assumed, registration is possible,
but it may show uncertainty while estimating the pose. Therefore, we present localization
results combined with INS using the transform parameter as the filter’s measurements.
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Figure 7. The errors of the estimated position and attitude.

Table 2. Transformation accuracy and RMSE for Figure 7.

NDT
Ref. [11]

NDT-ICP
Ref. [23]

NDT-P2P
(Proposed)

TF accuracy (m) 0.0438 0.0094 0.0387

Position (m)

North 0.401 0.112 0.344

East 0.403 0.109 0.408

Down 0.567 0.531 0.474

2D 0.569 0.157 0.534

3D 0.803 0.554 0.714

Attitude (◦)

Roll 0.151 0.155 0.151

Pitch 0.145 0.105 0.159

Yaw 2.508 1.571 2.080

In Figure 7, the blue line denotes the NDT algorithm, the green line denotes the
NDT-ICP algorithm, and the red line denotes the proposed algorithm. It is observed that
the proposed NDT-P2P typically demonstrates a position accuracy with sub-meter level
throughout the simulation periods. Relatively, position accuracy is slightly degraded than
NDT-ICP, yet a better result is obtained compared with a conventional NDT algorithm.
Similar results are observed in the case of attitude estimation. The attitude estimation in
the horizontal axis shows fairly good performance, in which the accuracy is obtained by
sub-degree level. Without vertical measurement, the yaw estimation error is relatively
enlarged, up to several degrees. This is because only point cloud data from the drone’s
horizontal plane is acquired, considering a lightweight 2D lidar deployment condition.
Therefore, the altitude is more vulnerable to sensor noise characteristics.

Next, computational efficiency is analyzed for each method. In the simulation result,
it is observed that the registration algorithm’s process time takes the longest for NDT-
ICP and is fastest for NDT-P2P. Figure 8 summarizes this result, where medians are
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displayed for easy notice. NDT-P2P searches for the closest point to feature point results
more efficiently than NDT, which finds surrounding cells correspondingly. NDT-ICP
takes a longer time than other algorithms because NDT-ICP performs NDT and then ICP
sequentially. Although the proposed NDT-P2P includes feature point extraction time, total
computational efficiency is achieved with the suggested scan point classification strategy,
while estimation accuracy is maintained with a competent level of performance.

Figure 8. The process time by algorithm.

4.2. Experiment

Unlike SLAM that performs mapping and localization simultaneously, this study aims
mainly to analyze a vehicle’s localization performance with the proposed algorithm in
a situation where a 3D point cloud map exists. As shown in Figure 9, the measurement
system is configured on a moving cart. Then, a practical test is conducted around an indoor
hallway environment. Consistent with the simulation study, limited scan points in the
horizontal plane are efficiently used for localization. The equipment used in the test is
summarized in Table 3.

Figure 9. Test equipment.
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Table 3. The equipment used in the test.

Mapping (Preprocess) Localization

LiDAR Ouster OS1-16 (3D LiDAR) Hokuyo UST-20LX (2D LiDAR)
Main Board Intel NUC (i7-8559U) NVIDIA Jetson Xavier NX

IMU - ADIS16448

As an infrastructure, a surrounding map is constructed using 3D lidar measurement
and mapping algorithm. As shown in the left subplot of Figure 9, the system was configured
with 3D lidar and a points cloud map about the hallway was constructed. A representative
lidar slam algorithm, the LeGO-LOAM [28], is used for the mapping purpose. Figure 10a
illustrates an indoor environment and the point cloud map created. As a result of mapping,
points on the ceiling and floor side are observed. In applying the NDT-P2P algorithm, these
points on the ceiling and floor are practically removed from the reference map as shown in
the right lower plot in Figure 10a. In this process, since the map is assumed to be prebuilt,
useless points such as outlier, ceiling and floor on the map were removed manually.

Figure 10. (a) Experimental environment and constructed indoor map. (b) Vehicle trajectory composed from line segment
(1) to (6) shown in the 2D map.

Next, in localization, experiments were conducted using 2D lidar and IMU. The
update rate of 2D lidar and IMU is 10 Hz and 100 Hz, respectively. In accordance with
lidar’s update rate, the proposed NDT-P2P is updated in every 10 Hz. Figure 10b shows
a test trajectory, where the heading of the moving platform always orients to the moving
direction. The navigation results through this trajectory test are shown in Figure 11a.
In addition, the number of feature points extracted for each epoch is shown. Unlike
simulations that use virtual sensor data, the experiment used down-sampled points. This
point cloud processing can reduce noise and enable robust corner extraction.

In Figure 11a, the upper subplot shows the estimated position of each algorithm. In the
figure, it can be observed that each method demonstrates a similar position estimate result.
For a detailed analysis, estimation difference between methods is first shown in Figure 11b.
In this plot, the blue dotted line denotes the error between NDT and NDT-P2P and the
green line denotes the error between NDT-ICP and NDT-P2P. It is stationary in the period
between 0 to 18 s, and the cart begins to move at approximately 18 s. The estimation result
reveals that NDT-P2P yields a more similar performance to NDT than NDT-ICP. Based on
the NDT-P2P result, there is a difference of 7 cm, 0.5 deg from NDT for position and attitude,
respectively. There is also a difference of 12 cm in the position and 0.9 deg of attitude from
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NDT-ICP. It can be confirmed that the altitude error is relatively large compared to the
horizontal position error due to the constrained measurement characteristics from 2D lidar.

Figure 11. (a) Estimated position by algorithms and number of feature points extracted. (b) The error of position and
attitude by NDT, NDT-ICP based on NDT-P2P.

In the previous performance analysis, time synchronous error characteristics from true
path was unavailable since no infrastructure for reference trajectory is assumed. To resolve
this, we introduced a traceback method that analyzes the difference between reference map
and practical point cloud at particular time instants. When displaying point cloud data
from the estimated position, the estimated accuracy can be predicted by the statistics of
misalignment residuals between map and scan points. In particular, we focused on three
locations for a quantitative analysis, which is marked with red arrows in Figure 11a. Each
point corresponds to 24 s, 27.3 s, and 41.5 s. The first two instants represent the largest
distance from reference path and the most significant differences between the proposed
algorithm and NDT-ICP, respectively. Figure 12 shows the traceback results for two instants.
The blue dot represents the estimated position and point cloud data of NDT-ICP, whereas
the red dot is for NDT-P2P. At a 24 s point, it is observed that position of all algorithms is
away from the reference path in the negative east direction. This means that the localization
error was shown in the easterly direction, although the cart actually moved along the
reference path. At a 27.3 s point, NDT-P2P is matched more closely to the map in the
northward direction than NDT-ICP. In this instant, it can be concluded the proposed NDT-
P2P method is more accurate than NDT-ICP. At a 41.5 s point, little difference is observed
between NDT-ICP and NDT-P2P.
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Figure 12. The point cloud data from estimated position by NDT-ICP, NDT-P2P.

A further quantitative error analysis is performed based on the structure of the ref-
erence path during partial intervals. For example, the eastern error from the reference
path can be obtained assuming a negligible deviation to the east direction when the cart is
moving in the northward direction. On the contrary, the north error from reference path can
be obtained when the cart is moving to the east direction. Table 4 shows the RMS error of
fractional interval according to each partial path as shown in Figure 10b. Except for periods
in which the path changes, such as the turning head of the cart, only the section that moves
straight with a fixed heading is considered. The NDT-ICP algorithm has the largest error
during path-(2), which corresponds to the result in the middle subplot of Figure 12 (i.e.,
scan instant of 27.3 s). For path-(6), all three methods present similar error performance
as indicated in the last subplot of Figure 12. In summary, the average performance of the
proposed algorithm presents superior accuracy over other methods.

Table 4. RMSE for Figure 11a.

Path ID NDT
Ref. [11]

NDT-ICP
Ref. [23]

NDT-P2P
(Proposed)

Path (1) 0.1461 0.1189 0.1474

Path (2) 0.0411 0.1311 0.0329

Path (3) 0.0299 0.0175 0.0372

Path (4) 0.1090 0.1232 0.0993

Path (5) 0.1235 0.0828 0.1009

Path (6) 0.0858 0.0899 0.0872

Total 0.0535 0.5634 0.5048

In addition, Figure 13 illustrates the measurement update time for each registration
algorithm. It shows the same tendency as Figure 8 of the simulation. Note that process
time is mainly affected by the size of considered point cloud sets and the registration’s
tunning parameters such as iteration, grid size, step size, etc. Thus, the difference in time
between simulation and experiments is influenced by these tuning parameters.
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Figure 13. The process time by algorithm in an experiment.

5. Conclusions

NDT, as a point-to-normal distribution matching technique, has an advantage in
process time and robustness over point-to-point matching, yet possesses defects in terms
of aligning accuracy. In this study, we combine a matching technique between points on
the basis of NDT using a statistical method. Specifically, the feature points (e.g., corner)
are extracted from the point cloud data and applied in the cost function. In this way,
the extracted corner points are accumulated during a window to generate probability
distribution, which is further used in formulating the scan point optimization process.

The proposed algorithm is validated through simulation and experiment. We pre-
sented the localization performance of the vehicle via INS integration. In comparison with
other methods, the proposed NDT-P2P has superior performance to NDT, which is widely
used in applications, in aspects of accuracy and registration time. In an embedded system
with limited resources, the computational efficiency of the algorithm is also an important
factor. NDT-P2P can be a better choice than NDT-ICP in terms of accuracy. In summary,
since traditional NDT is currently being used for mobile robots and autonomous vehicles,
we expect that the proposed algorithm, inherited with its characteristics and benefits, can
replace NDT. Furthermore, the presented algorithm can be more effectively deployed in
the environment where feature extraction is facilitated, such as indoor, urban building
areas, or environments with enlarged map complexity. In the future, it will be possible
to analyze the performance according to the feature-to-scan points ratio. Feature points
limited to corners can also be extended to lines, shapes, etc.
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