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The main application of ChIP-seq technology is the detection of genomic regions that bind to a protein of interest. A large

part of functional genomics’ public catalogs is based on ChIP-seq data. These catalogs rely on peak calling algorithms that

infer protein-binding sites by detecting genomic regions associated with more mapped reads (coverage) than expected by

chance, as a result of the experimental protocol’s lack of perfect specificity. We find that GC-content bias accounts for sub-

stantial variability in the observed coverage for ChIP-seq experiments and that this variability leads to false-positive peak

calls. More concerning is that the GC effect varies across experiments, with the effect strong enough to result in a substantial

number of peaks called differently when different laboratories perform experiments on the same cell line. However, ac-

counting for GC content bias in ChIP-seq is challenging because the binding sites of interest tend to be more common in

high GC-content regions, which confounds real biological signals with unwanted variability. To account for this challenge,

we introduce a statistical approach that accounts for GC effects on both nonspecific noise and signal induced by the binding

site. The method can be used to account for this bias in binding quantification as well to improve existing peak calling

algorithms. We use this approach to show a reduction in false-positive peaks as well as improved consistency across

laboratories.

[Supplemental material is available for this article.]

Chromatin immunoprecipitation followed by NGS (ChIP-seq) is
widely used for detecting the genomic locations of transcription
factor binding and histone modifications. ChIP-seq is widely
used, with the majority of data provided by the ENCODE (The
ENCODE Project Consortium 2012) and modENCODE (Celniker
et al. 2009) projects producedwith this technology. Aftermapping
the NGS reads, themain part of the quantitative analysis is to infer
the genomic sites where the protein of interest binds by finding re-
gions with an enrichment of mapped reads. The regions reported
by this analysis are referred to as peaks due to the appearance of
the coverage plots (Pepke et al. 2009). Several competing peak
detection algorithms have been described in the literature (Ji
et al. 2008; Jothi et al. 2008; Kharchenko et al. 2008; Valouev
et al. 2008; Zhang et al. 2008; Rozowsky et al. 2009; John et al.
2011; Rashid et al. 2011). Although details of these competing ap-
proaches vary, most follow similar general principles. First, after
reads are mapped, coverage is calculated for binned regions of
the genome. In principle, only regions including binding sites
should have counts larger than zero. However, due to nonspecific-
ity of the experimental protocol,we observe a background level. This
background level is then modeled, and statistical inference is used
to distinguish between count levels that can be explained with the
background model and those that are higher than expected by
chance. The latter are reported as peaks.

GC-content bias has been reported for several NGS applica-
tions (Dohm et al. 2008; Alkan et al. 2009; Cheung et al. 2011;
Benjamini and Speed 2012; Jiang et al. 2015). For genomic DNA
data, PCR amplification of DNA fragments during library prepara-

tion is one factor that introduces this bias (Aird et al. 2011; Ross
et al. 2013). The bias has also been observed in RNA-seq data
(Love et al. 2016). Solutions to this bias have been published for ge-
nomic DNA (Benjamini and Speed 2012; Jiang et al. 2015) and
RNA-seq data (Hansen et al. 2012; Love et al. 2016). However, be-
lowwe explainwhy these approaches are not directly applicable to
ChIP-seq data.

Using ENCODE (The ENCODE Project Consortium 2012)
data, we show that GC-content bias is also present in ChIP-seq
technology. Furthermore, we demonstrate that the way in which
GC content affects coverage varies across samples and laboratories
and that this unwanted variability is substantial enough to result
in different laboratories calling different regions as peaks.
Unfortunately, solutions forGC-bias correction, published for oth-
er NGS applications, are not directly applicable to ChIP-seq exper-
iments. This is because, in many instances, binding sites are
expected to occur in or near high GC-content regions such as
gene promoters. If we naively correct for GC content, wemay erase
the biologically relevant signals we are interested in detecting.
Here, we present an approach based on amixturemodel, which ac-
counts for GC-content bias separately for effects related to protein
binding and differential nonspecific binding. We demonstrate
how this approach greatly reduces false-positive peaks and im-
proves agreement across laboratories. The approachwas developed
for and tested on punctate ChIP-seq for transcription factors.
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Results

GC affects coverage and it does so differently in different labs

To demonstrate the challenges presented by GC-content bias and
the advantages presented by our method, we downloaded and
processed raw ENCODE (The ENCODE Project Consortium
2012) ChIP-seq data measuring transcription factor binding
(CTCF, POLR2A, YY1, EP300, and GATA2) in the GM12878,
HeLa-S3, HepG2, HUVEC, K562, and NHEK cell lines (see
Methods section and Supplemental Table S1). Unless otherwise
mentioned, all the examples described in this section are based
on the CTCF data set. We use this particular binding protein as
an example because data is available for all six cell lines and exper-
iments performed by three independent laboratories each run-
ning at least two replicated experiments (one laboratory ran
three replicates for cell lines GM12878 and K562) with at least
one million mapped reads.

To explore the extent and characteristics of the bias, we seg-
mented the genome into 10K base-pair bins. After GC content
was computed for each of these bins, for each sample of the
HUVEC cell line, we counted reads for each bin. Plotting counts
versus GC content reveals two clusters in each of the samples
(Fig. 1A–F; Supplemental Fig. S1). The presence of two clusters
is in agreement with the previously noted observation that
ChIP-seq reads can result from either (1) a background level or
(2) protein-binding regions (Zhang et al. 2008), with the latter as-
sociated with peaks. In both replicates from one laboratory, we
observe that counts increase with GC content in both back-
ground and signal clusters (Fig. 1A,B). Of particular concern is
the fact that the way GC content affects coverage is different
in another laboratory (Fig. 1C,D) in which counts decrease
with GC content. In a third laboratory, the GC-content bias is
only present in one of the two replicates (Fig. 1E,F). A similar re-
sult has been previously reported for genomic DNA (Benjamini

Figure 1. Evidence of GC-content effects at the bin level and its downstream result on peaks demonstrated on the CTCFHUVEC cell line. (A) The genome
is divided into 10-kb bins and counts are computed in the first replicate of laboratory UW as well as the GC content of each bin. Counts are plotted against
GC content. (B) As in A but for the second replicate. (C) As in A but for the first replicate of laboratory UTA. (D) As in C but for the second replicate. (E) As in A
but for the first replicate of laboratory Broad. (F) As in E but for the second replicate. (G,H) Examples of two peaks that change substantially from laboratory
to laboratory. The peaks shown in G and H were selected to illustrate how coverage plots can change from laboratory to laboratory and that the change
appears to be driven by GC content. These regions are associated with the bins annotated with the letters ‘G’ and ‘H’ in A–F.
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and Speed 2012; Jiang et al. 2015) and
RNA-seq (Love et al. 2016).

Note that here we use the large
bin size for exploratory and illustrative
purposes only since it results in enough
of a reduction in sampling variance to
clearly highlight the GC-content bias.
Similarly, we used the HUVEC data to
illustrate the challenge because it ex-
hibited the strongest GC-content bias.
The resulting data visualization (Fig. 1;
Supplemental Fig. S1) motivated the
approach that we now describe and is ap-
plied to smaller bin sizes that are more
appropriate for peak calling.

GC bias leads to variability of ChIP-seq

peak calling

The effects described above are strong
enough to affect downstream analysis,
such as peak detection. For example, cov-
erage can change drastically across labo-
ratories depending on the GC content
of the region (Fig. 1G,H; Supplemental
Fig. S2). Note that, in the high GC-con-
tent region, laboratory UW shows a peak, but laboratory UTA
does not, while in the low GC-content region it is the other way
around. These regions are not isolated examples. In fact, the agree-
ment in peak calls across laboratories (Supplemental Fig. S3A) is
rather low. For example, the peaks reported for the HUVEC
cell line on the ENCODE (Landt et al. 2012) portal report in
37,920, 44,033, and 37,412 peaks called for the three laboratories,
respectively, with 24.3% of regions reported by only one laborato-
ry. Note that ENCODE uses the IDR algorithm (Li et al. 2011) to se-
lect peaks that consistently appear on two replicates for each
laboratory; thus, the number of peaks reported for each laboratory
may be significantly affected by the quality of the replicates rather
than by suboptimal performance from peak callers. To see if GC
content was a major driver of these differences, we compared the
GC content of the peak regions detected just by laboratory
UW, to those detected just by laboratory Broad, to those detected
just by laboratory UTA, and found a strong difference (Fig. 2A).
Note that these differences cannot be due to biology but rather
must be a result of differences in experimental conditions. These
results demonstrate that, if left unaccounted for, GC-content
bias will lead current peak callers to report a substantial number
of false positives.

Mixture model estimates GC-content effect for background

and signal

Published work on GC-content bias correction has found that
modeling GC-content effects at the fragment level is, currently,
the optimal approach (Benjamini and Speed 2012; Love et al.
2016). However, this approach is not directly applicable to ChIP-
seq data. One reason is that most peak calling algorithms operate
on bin level information. Specifically, these algorithms define
bins, compute coverage in these bins, and then peaks are inferred
from these coverage measurements (Ji et al. 2008; Kharchenko
et al. 2008; Zhang et al. 2008; John et al. 2011; Rashid et al.
2011). Here we develop amethod thatmakes use of an approxima-
tion that permits the adaptation of published peak calling algo-

rithms so that they adjust for GC-content bias. Although we
focus on the SPP algorithm (Kharchenko et al. 2008) because it
was used by the ENCODE project, our approach applies to any
peak algorithmbased on coverage computed in bins. The approach
can also be used to adjust enrichment scores for predefined regions
—for example, regions considered interesting by an investigator or
regions reported by a peak caller.

The first step in our approach is to estimate a sample-specific
GC-content effect from the data. This effect is defined by estimat-
ing the GC-bias for both background level and binding signal for
any given potential binding region (Fig. 3A). Suppose our targeted
protein binds to a region centered at genomic location i0 and has
length l. Computing the GC content of the genomic region start-
ing at i0− (l/2) and ending at i0 + (l/2) is straightforward. However,
due to the fact that DNA is randomly cut into fragments of sizes
ranging from 200 to 500 bp (depending on the experimental pro-
tocol), the sequenced reads associated with this binding site map
to a larger region of the genome (Fig. 3A). Specifically, if frag-
ments are, on average, size h, then the peak region will span
from i0 + (l/2)− h to i0− (l/2) + h. Note also that once outside of
the [i0− (l/2), i0 + (l/2)] range, the probability that a specific frag-
ment appears decreases as its center is further from i0. Specifically,
these different probabilities imply that we should use the follow-
ing weights:

wi =

i − i0 − l
2
+ h if i [ i0 + l

2
− h, i0 − l

2

[ ]

h− l+ 1 if i [ i0 − l
2
, i0 + l

2

( )

i0 − l
2
+ h− i if i [ i0 + l

2
, i0 − l

2
+ h

[ ]
.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

The shape of wi can be seen in Fig. 3B. This implies that the
total GC-content bias affecting fragments associated with a pro-
tein binding at [i0− (l/2), i0 + (l/2)] is a weighted average of all
the GC-content effects of all potential fragments in the bin [i0 +
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Figure 2. GC content of peaks called by only one laboratory. (A) For the CTCF HUVEC cell line, we
formed four groups of peaks reported by the ENCODE portal. We split them into those called only in lab-
oratory UW, those called only in laboratory Broad, those called only in laboratory UTA, and those called in
all three.We computed the GC content for each of these peak regions, shown in four box plots. (B) As in A
but after finding peaks with our algorithm.
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(l/2)− h, i0− (l/2) + h]. We therefore define the effective GC content
(EGCC) associated with a bin centered at i0 as

1
h(h− l+ 1)

∑i0− l
2 + h

i=i0+ l
2 − h

wixi,

where xi is 1 if genomic location i is G or C, and 0 otherwise. Note
that a positive side effect of this approach is that it results in a GC-
content covariate that is less sensitive to the bin size
(Supplemental Fig. S4). The parameters l and W (Fig. 3A) are esti-
mated separately for each experiment, as described in detail in
the Methods section. Note that h =W + l/2.

With an EGCC in place for any given genomic location, we
can then estimate GC-content effects for both the background lev-
el and signal using a mixture model. Specifically, we pose a mixed
generalized linear model with two components corresponding to
coverage due to specific binding and background regions, respec-
tively. We assume that each component follows a negative bino-
mial distribution with the log of the rate a smooth function of
EGCC. When fitting this model to the HUVEC data, the fitted
GC-content-dependent effects demonstrate that each laboratory
introduces a different type of bias for both the signal and back-
ground (Fig. 4). See the Methods section for details.

Adjusting binding quantification for GC-bias reduces

batch effects

We computed counts for each of the regions reported as CTCF
peaks in at least one cell line by ENCODE (Kundaje et al. 2015)
for each of the GM12878, HeLa-S3, HepG2, HUVEC, K562, and
NHEK samples. We constructed amatrix with these binding quan-
tifications and performed principal component analysis (PCA) on
the log-transformed values in this matrix. The first two principal
components (PCs) do not separate by cell line, as expected (Fig.
5A). Furthermore, the large variation seen within each cell line is
largely explained by the different laboratories (Fig. 5A). We then
adjusted the values in this matrix for GC content using our mod-
el-based approach and recomputed the PCs. The results weremark-
edly improved (Fig. 5B), with the samples now clearly clustering by
cell line andmuch of the batch effects removed. The improvement
in specificity and batch effect removal was evident from plotting

mean squared residuals summarizing
across laboratory variability, computed
within cell line, before and after GC-con-
tent correction and noting a substantial
reduction (Fig. 5C). Because the variabil-
ity is driven by the difference in GC-
content biases rather than laboratory,
we expect our method to outperform
batch-effect adjustment tools such as
ComBat (Johnson et al. 2007). As the
GC-content effects and laboratories are
not perfectly correlated, we expect some
of the GC-content bias to remain even
after applying ComBat. We confirm this
by rerunning the PCA after applying
ComBat and noting that the unwanted
variability is not removed (Supplemental
Fig. S5). In addition, our approach has
the further advantage that it can be ap-
plied to a single experiment, while Com-
Bat requires multiple samples.

To show that our approach improves downstream results for
other transcription factors, we applied the same analysis to
POLR2A, another binding protein run on several cell lines and
across three laboratories (see Methods and Supplemental Table
S1). Although the GC-content effect was not as strong in this ex-
periment as in the CTCF experiment, our method still showed im-
proved specificity (Supplemental Fig. S6).

Integrating GC-content adjustment into peak calling algorithms

Our model-based approach provides an adjustment value for any
genomic bin. This implies that it can be integrated with peak algo-
rithms that use bins as raw data (Ji et al. 2008; Kharchenko et al.
2008; Zhang et al. 2008; Rashid et al. 2011). Here, we demonstrate
the advantages of our approach by adapting the peak detection al-
gorithm used by ENCODE, namely the ChIP-seq processing pipe-
line (SPP) (Kharchenko et al. 2008). SPP starts by estimating the
average half-width of the binding protein, referred to here as W
(see Methods section for details). With this estimate in place, the
SPP algorithm then computes read counts for positive and nega-
tive strands separately for each genomic location i, denoted here
with Yi,+ and Yi,−, respectively (red fragments in Fig. 3A). The Yi,+

represents positive strand counts in a region starting at i−W and
ending at i, and the Yi,− represents negative strand counts in a re-
gion starting at i and ending at i +W. As described by Pepke et al.
(2009), these counts should be large when a protein binds a region
centered at i. To account for local background, SPP also computes
counts in regions that should be associated with nonspecific bind-
ing, denoted here with Bi,+ and Bi,−, respectively (blue fragments in
Fig. 3A). The background level Bi,+ represents positive strand
counts in a region starting at i and ending at i +W, and the back-
ground level Bi,− represents negative strand counts in a region
starting at i−W and ending at i. As described by Pepke et al.
(2009), there should be no counts in these regions when a protein
binds a region centered at i. Then, for each i, SPP defines the enrich-
ment score as a geometric mean of the signal counts minus the
average background signal Si = 2

�������������
Yi,+ × Yi,−

√ − (Bi,+ + Bi,− ).
Note that this is the geometric average of the signal minus the ar-
ithmetic average of background multiplied by two. To find candi-
date peaks, SPP then estimates binding significance and uses the
local maxima of enrichment scores to call peaks. To correct for

protein
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…
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W
h

l i0 + l/2 - h
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Genomic location
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ei

gh
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Figure 3. Illustration of regions related to the enrichment score and effective GC-content calculation.
(A) The regions associatedwith the counts denoted by Yi,+, Yi,−, Bi,+, Bi,− in the paper are denoted with the
regions 1, 4, 2, and 3, respectively. The red and blue lines represent fragments that are true signals and
background noise, respectively, with their start positions labeled as bars on the DNA plot with corre-
sponding colors. The start positions for forward strand fragments are labeled above the line while reverse
strand fragments are labeled under the line. A cartoon indicating the signal coverages formed by forward
and reverse strands is also added on the DNA plot. (B) Illustration of nucleotide weights when calculating
effective GC content for a bin centered at location i0.
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GC, we simply compute the effective GC content of each bin and
adjust Yi,+, Yi,−, Bi,+, Bi,− accordingly (see Methods). We then used
an approach similar to SPP to quantify uncertainty for each candi-
date peak reported by our GC-corrected SPP algorithm (Methods
and Supplemental Fig. S7). We compared these peaks to those ob-
tained by the original SPP and found that our method (gcapc) re-
sulted in substantial improvement in consistency (Fig. 6A). If, as
done by ENCODE, we filter peaks using an IDR (Li et al. 2011) of
0.02, our algorithm reports improved results of 31,051, 33,769,

and 30,250 peaks (Supplemental Fig. S3B) called for the three lab-
oratories and now only 16.9% of regions reported by only one lab-
oratory. More importantly, the differences are no longer due to
differences in GC content (Fig. 2B). Note that the ENCODE pipe-
line is more complicated than running a peak caller and IDR
(https://www.encodeproject.org/chip-seq/transcription_factor/).
If we simply run SPP followed by IDR, the improvements of our al-
gorithm are even larger, since this approach produced 29.5% of re-
gions reported by only one laboratory (Supplemental Fig. S3C).

Figure 4. Visualization of the fitted generalized linear mixture model. (A) We defined bins using estimated binding size (W in Fig. 3A) and randomly se-
lected 5% of all genome-wide bins. We computed counts for these bins in the first replicate of the CTCF HUVEC cell line for laboratory UW. We fitted our
model to these bins. The colors represent the probability of being background (blue) or signal (red). The GC-content bias smooth functions are plottedwith
dashed curves. (B) As in A but for the second replicate for laboratory UW. (C ) As in A but for laboratory UTA. (D) As in C but for the second replicate for
laboratory UTA. (E) As in A but for laboratory Broad. (F ) As in E but for the second replicate for laboratory Broad.
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Because IDR analysis is sensitive to the quality of replicates (Li et al.
2011), to provide a more systematic comparison we generated a
CAT plot (Irizarry et al. 2005), including the comparison of each
sample (Fig. 6A).

Finally, to further assess the improvement provided by our
approach, we performed CTCF binding site enrichment analysis.
Specifically, we used the human CTCF motif from the JASPAR
2016 database (Mathelier et al. 2016) to define a position weight
matrix (PWM) score sequence of the same size as the motif
(Wasserman and Sandelin 2004). A background probability of
30% for A and T and 20% for C andGwere used for the PWM score
calculation. Then, we assigned a PWM score to each reported peak
by selecting themaximumPWMwithin the region associatedwith
the peak. Following Sandelin et al. (2004) and Wasserman and
Sandelin (2004), we defined peaks with a maximum PWM score
lower than 72% of all possible PWM scores for this CTCF motif
as a false positive. gcapc had substantially less false positives
than SPP (Fig. 6B). For example, if we examine the top 100 peaks
across all six replicates, SPP results in a total of 54 false positives,
while gcapc has none. The improvements were consistent across
several cut-off choices ranging from 67% to 92% (Supplemental
Fig. S8).

To demonstrate that the improvements offered by gcapc gen-
eralize to other transcription factors, we applied our approach to
the ChIP-seq data of three other transcription factors, YY1,
EP300, and GATA2 (see Methods and Supplemental Table S1).
Our method reduced the inconsistencies between laboratories
compared to SPP (Supplemental Fig. S9). We note that the im-
provements for the GATA2 data set are less substantial. This
appears to be the case because the GC-content bias is less pro-
nounced in this data set. Note that using our R package, one can
visualize the data (Fig. 4) to determine the severity of the GC-con-
tent effect. If the fitted curves look flat for all your data sets, a GC-
bias method might not be necessary.

Finally, to demonstrate that our approach can be incorporat-
ed into other peak callers, we adapted the MACS2 (Zhang et al.

2008) and hotspot (John et al. 2011) algorithms (see Methods).
Note that the MACS2 method estimates a local background level
from the data that could, in principle, correct for sequence bias.
However, because this background level estimation procedure
does not appear to be local enough to capture the GC effects, as
a result we see similar inconsistencies in MACS2 as in SPP
(Supplemental Fig. S10). The GC-bias correction added by our ap-
proach showed marked improvements for these two peak calling
algorithms as well (Supplemental Fig. S11).

Discussion

We have demonstrated how GC-content bias induces substantial
variability into ChIP-seq data and that this variability is large
enough to result in different peaks being reported by different lab-
oratories when studying the same cell lines. We described how
published GC-content adjustment methods are not directly appli-
cable to ChIP-seq data due to confounding between the GC con-
tent of regions and their biological relevance. We described
gcapc (http://bioconductor.org/packages/gcapc/), a method that
adjusts for GC-content bias in ChIP-seq data using amixedmodel,
which permits independent adjustments of the signal and back-
ground signals and thus circumvents the confounding challenge
and can be incorporated into most current peak callers. Our
methodpermits theGC-content bias correction for any predefined
bin. We demonstrated the practical advantage of our approach by
removing batch effects from binding quantifications in ENCODE
data and by adapting the widely used SPP algorithm and showing
substantial improvements in peak calling consistency across
laboratories.

Note that, although we tested our approach on several tran-
scription factors, all are examples of what are referred to as punc-
tate data sets: characterized by peaks that are short and marked.
We do not yet recommend our method for broad peak data sets
such as histone modifications. Extending our GC-bias adjusting
method to these data sets is the subject of future work.
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Figure 6. Improvements of peak calling consistency and transcription factor binding site enrichment with GC-content adjustment. For the CTCF HUVEC
cell line, we create lists of candidate peaks and rank them based on enrichment score. (A) Correspondence at the top (CAT) plots. For each list size, we
compute the proportion of peaks in common reported by two different laboratories. We do this for each pairwise comparison and plot this percentage
against the list size. Peak width is scaled to the same median size between gcapc and SPP for each sample. (B) For each list size, we compute PWM scores
for each peak and define with lower than 72% as false positives. We do this for each replicate and plot the false-positive rate against the list size and plot the
number of false positives for each list size ranging from 1 to 30,000.

GC-content bias correction in ChIP-seq data

Genome Research 1935
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.220673.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.220673.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.220673.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.220673.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.220673.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.220673.117/-/DC1
http://bioconductor.org/packages/gcapc/
http://bioconductor.org/packages/gcapc/
http://bioconductor.org/packages/gcapc/
http://bioconductor.org/packages/gcapc/


Methods

Data acquisition and preprocessing

We chose data for the transcription factors CTCF, POLR2A, YY1,
EP300, and GATA2 provided by ENCODE as example data sets
because they include a wide range of cell types or experiments per-
formed by two to three different laboratories using the same proto-
col. The five production centers (laboratories) which conducted
experiments on selected transcription factors were located at the
Broad Institute (Broad), HudsonAlpha Institute for Biotechnology
(HAIB), Stanford University or University of Southern California
(SYDH), University of Texas at Austin (UTA), and University of
Washington (UW). For CTCF, we focused on the GM12878,
HeLa-S3, HepG2, HUVEC, K562, and NHEK cell lines because
each of these was processed in replicates by each of three laborato-
ries: Broad, UTA, and UW. Similarly, we focused on GM12878,
HeLa-S3, HepG2, and HUVEC cell line samples for POLR2A by
HAIB, SYDH, andUTA. For the other three factors, we only selected
one cell line in two laboratories for analysis (Supplemental Table
S1). Raw sequencing reads were downloaded from the ENCODE
data portal (https://www.encodeproject.org/) or UCSC ENCODE
portal (https://genome.ucsc.edu/ENCODE/) using accession IDs
or links documented in Supplemental Table S1.

The raw readswere aligned to human genome build hg19with
aligner BWA (Li and Durbin 2009). We note that since our analysis
is based onbin counts, with bins of size 100–250 bp, given the char-
acteristics of the differences between hg19 and GRCh38, realigning
the reads to GRCh38 will not affect our conclusions. Reads from
Chromosome Y were ignored to avoid sex effects. Mapped reads
with a mapping score less than 30 were removed. Secondary align-
ments were also removed. Duplicate reads were thinned down to
one read. For the purposes of quantifying binding in predefined re-
gions, we only considered the start position at the 5′ end.

Estimating GC-content bias with the mixed generalized

linear model

Figures 1 and 4 clearly demonstrate the presence of two clusters.
We assume the cluster characterized by low counts is related to
nonspecific binding and refer to it as the background. We assume
that the cluster characterized by higher counts is related to the spe-
cific binding signals that constitute the peaks. The counts in both
clusters show a strong nonlinear dependence on GC content and
motivate the following mixed model. We assume that for any giv-
en position i, Zi = 1 if binding occurs at that position, and 0 other-
wise. We denote with π the probability that any given Zi = 1. We
then assume that, conditioned on the state Zi, the counts Yi follow
anegative binomial distributionwith log(E[Yi|Zi = a,Xi = xi] ) = μa +
fa (xi), with μa the mean count level for the positions, xi the effec-
tive GC content for position i, and fa is a smooth function that we
represent with a cubic spline. Note that a is indexing the two pos-
sible states, background or specific signal, which implies that the
GC-content effect is modeled differently for each state.

Because we start with millions of bins, to improve computa-
tional efficiency we selected a random subset of bins representing
5% of the genome and estimated the parameters π, μ0, μ1, and the
parameters used to represent the splines f0 and f1 using an expec-
tation–maximization (EM) algorithm on this subset. We repeated
this procedure with five independent subsets and updated the
estimates to be the average across the five resulting sets of param-
eters. Using 15% and 25% resulted in practically identical esti-
mates (Supplemental Fig. S12). The GC-content effect for
binding quantification is simply

e(1−Ẑi)f̂0(xi)+ Ẑi f̂1(xi),

with Ẑi = Pr(Zi = 1) the estimate obtained with the EM algorithm.
To correct for the GC-content bias, we simply divide the counts by
this quantity: Yi/e(1−Ẑi)f̂0(xi)+ Ẑi f̂1(xi).

To extend SPP, we use the correction ef̂0(xi,1,+) and ef̂0(xi,1,−) for
the Yi,+ and Yi,−, respectively, where xi,1,+ and xi,1,− are the effective
GC content in the positive and negative strand bins, described
above, respectively. Similarly, we used the correction ef̂0(xi,0,+) and
ef̂0(xi,0,−) for the Bi,+ and Bi,−, respectively. Note that here, we use f0
for both signal and background components, because this sum-
mary is intended as a test statistic for which we define a null distri-
bution assuming there is no signal. The term f1 is therefore only
used when fitting the model and to correct region binding quanti-
fication already determined to be potential peaks.

Expectation–maximization (EM) algorithm for fitting

the mixture model

The log-likelihood for the expectation step is as follows:

LL(m, u, f , p) = log
∏
i

nb1(Yi|f1,m1, u1, xi) × p
[ ]Zi

× nb0(Yi|f0,m0, u0, xi) × (1− p)[ ]1−Zi ,

where nba represents the probability density function of a negative
binomial distribution with log mean μa + fa (xi) and shape parame-
ter θa. p is the probability of a bin belonging to a signal mixture
component. The other parameters are defined above.

In themaximization step, the parameters are estimated as fol-
lows:

Ẑi = p× nb1(Yi|f1,m1, u1, xi)
p× nb1(Yi|f1,m1, u1, xi) + (1− p) × nb0(Yi|f0,m0, u0, xi)

,

p̂ = c +∑n
i=1 Ẑi

2× c + n
,

c is a constant 2, n is total bin number, μ, θ, f are estimated using the
glm.nb function in the R package MASS, with μ1, θ1, f1 based on
bins with Ẑi ≥ 0.5, and μ0, θ0, f0 based on bins with Ẑi , 0.5.

Analysis of regions reported by ENCODE

For the analysis involving the binding regions reported by
ENCODE (https://www.encodeproject.org/data/annotations/v2/),
we did not need to run a peak calling algorithm since regions
were already provided. We used data from all the regions reported
by ENOCDE as potential peaks. To perform a GC-content bias cor-
rection of binding quantification, we assumed a binding width of
150 bp and used flanking regions of width 250 bp.We fit themod-
el described above and we can correct as described. PCA analysis
was based on binding regions reported for GM12878, HeLa-S3,
HepG2, HUVEC, K562, and NHEK cell lines for CTCF and
GM12878, HeLa-S3, HepG2, andHUVEC for POLR2A. As an exam-
ple, the across-laboratory variability was computed in the HUVEC
cell line for CTCF.

Quantifying uncertainty

We implement a method similar to SPP. Specifically, we compute
the enrichment score Si for each region i. Then, for each of these
regions, we permuted the start sites of all the reads falling within
the region and recomputed the enrichment scores, denoted
here with S∗i . We used the S∗i to form a null distribution and assign
a P-value to each candidate peak (Supplemental Fig. S7). The user
should treat the P-values obtained from this procedure, as well
as SPP, with caution as they are based on several assumptions
that are hard to test empirically. Furthermore, these uncertainty
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estimates do not account for the selection process. Permutation
approaches such as those implemented by the bumphunter
approach (Aryee et al. 2014) are the subject of future research.
Regardless, we find this quantification useful for prioritizing
peaks.

Other improvements on the SPP algorithm

Apart from the GC-content correction, we adapted the SPP algo-
rithm in three other ways, which we describe in detail here.

The SPP algorithmcomputes the enrichment score Si for every
location i on the genome. To do this, SPP defines a window sizeW
that is used to compute the read counts as described in the Results
section (Fig. 3A). This window size is supposed to define the region
that includes fragments resulting with a protein binding at loca-
tion i. To define W, SPP uses the cross-correlation function be-
tween the fragment start sights from positive and negative
strands. SPP uses an ad hoc procedure picking W to be a number
between the lag that maximizes the cross-correlation function
and a defined maximum window size that defaults to 500 bp.
Instead, we make the assumption that the window size W should
maximize the correlation of read counts between positive-strand
windows and corresponding negative-strand windows. Using
this criteria, the estimated window sizes in CTCF data sets are al-
ways much smaller than those estimated by SPP. In addition, we
define another parameter l (Fig. 3A) to represent the real protein-
bindingwidth for effectiveGC-content estimation. This parameter
is estimated using the lag that maximizes the cross-correlation
function.

The second difference is related to computational efficiency.
While SPP computes Si and the uncertainty estimate for every
location on the genome, in our software we perform a filter that
removes regions with small counts in all four relevant bins (Yi,+,
Yi,−, Bi,+, Bi,−). This reduces the number of regions for which the
uncertainty quantification is computed.

Finally, to report the center of the binding site, SPP searches
for local maxima of enrichment scores Si. However, distributions
of enrichment scores are not always symmetric around these local
maxima, and we find that neighboring peak regions sometimes
represent the same binding site. To avoid reporting two maxima
associated with the same binding site as two separate peaks, we
merged any two neighboring peaks that are within the estimated
binding width from each other. Uncertainty is quantified only
for merged peaks.

Adapting other peak callers

First, optimal bin size and the parameter estimates needed to
describe the GC-content effects are obtained using the same strat-
egy described above. Then, the peak caller—MACS2 or hotspot, for
example—is used to identify peaks. Then, each candidate region is
extended by half the bin size at both ends to ensure every position
in the reported peaks receives an effective GC content. For these
regions, we then move a sliding window of the size of a bin, in
steps of 1 bp and compute read counts and effective GC content
in each. Now, for each bin we have a count and an effective GC
content, so using the estimated GC-content bias model, we can
perform a correction for each of these bins using the same ap-
proach as described above for SPP. The maximum corrected bind-
ing score with each region is reported as a summary binding
quantification for that peak. Permutation is performed as
described before. It is noted that a flexible set of peak regions is re-
quired to use this functionality to ensure the accuracy of permuta-
tion analysis.

Software availability

The method described in this manuscript is available as an
R/Bioconductor package (http://bioconductor.org/packages/
gcapc/). The source code for the main results is documented
here (https://github.com/tengmx/gcapc_manuscript). Both the R
package and source code are also available in the Supplemental
Material.
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