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Abstract: Modification of dental monomer compositions with antimicrobial agents must not cause
deterioration of the structure, physicochemical, or mechanical properties of the resulting polymers. In
this study, 0.5, 1, and 2 wt.% quaternary ammonium polyethylenimine nanoparticles (QA-PEI-NPs)
were obtained and admixed with a Bis-GMA/TEGDMA (60:40) composition. Formulations were
then photocured and tested for their degree of conversion (DC), polymerization shrinkage (S), glass
transition temperature (Tg), water sorption (WS), solubility (SL), water contact angle (WCA), flexural
modulus (E), flexural strength (σ), hardness (HB), and impact resistance (an). We found that the DC,
S, Tg, WS, E, and HB were not negatively affected by the addition of QA-PEI-NPs. Changes in these
values rarely reached statistical significance. On the other hand, the SL increased upon increasing
the QA-PEI-NPs concentration, whereas σ and an decreased. These results were usually statistically
significant. The WCA values increased slightly, but they remained within the range corresponding to
hydrophilic surfaces. To conclude, the addition of 1 wt.% QA-PEI-NPs is suitable for applications in
dental materials, as it ensures sufficient physicochemical and mechanical properties.

Keywords: quaternary ammonium polyethylenimine derivatives; nanoparticles; dental composite;
mechanical properties

1. Introduction

The development of dental materials with antibacterial activity represents a challenge
in modern biomaterial science engineering [1,2]. Currently used commercial dental restora-
tive composites ensure satisfactory mechanical properties, biocompatibility, aesthetics, and
economics [3,4]. One of the biggest remaining problems is the marginal gap formation
between the restoration and the adjacent tooth tissue due to polymerization shrinkage [5–7].
The narrow gap width (clinically acceptable marginal gaps vary between 30 and 200 µm [8])
creates a favorable place for dental plaque accumulation [7,9]. Bacterial metabolic processes
lead to the emergence of secondary caries, inflammation reactions, and in extreme cases,
dental restoration failure [9–11].

The most frequent method for providing dental restorative composites with anti-
bacterial properties is a physical modification by admixing a bioactive compound [1].
Several low molecular weight inorganic and organic substances have been successfully
added to commercial dental restorative composites to achieve materials with antimicrobial
activity. Zinc oxide [9,12,13], titanium dioxide [14,15], calcium phosphate [16,17], gold, and
silver [18,19] are the most popular examples of the first group. The latter group is repre-
sented by antibiotics [20], chlorhexidine [9,21,22], furanone, ursolic acid, benzalkonium
chloride, triclosan, and methacryloyloxydodecyl pyridinium bromide [9]; however, toxic
responses of tissues adjacent to the reconstructions modified with these substances are
often reported [12–22].
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A need for less cytotoxic antibacterial agents has led to the development of dental
materials based on quaternary ammonium compounds (QACs). The first proposals of
QACs usage in dentistry included bioactive compositions for external applications onto
the surfaces of teeth, such as the protective tooth coating consisting of polyethylenimine
(PEI) quaternized with fatty acid [23], and cleaning composition comprising PEI and low
molecular weight quaternary ammonium biocide (alkyltrimethylammonium halide) [24].
The short-lasting antibacterial effect of these materials has disqualified them from common
usage. The long-lasting antibacterial effect can be achieved by the chemical modification
of dental dimethacrylate matrices with mono- and dimethacrylate monomers having the
quaternary ammonium group. They are covalently bonded to a composite matrix due to
copolymerization with dental dimethacrylates. This solution represents a dynamically de-
veloping research area; however, materials of satisfactory physicomechanical performance
have not been achieved so far [25]. Other studies are conducted on the physical modifica-
tion of dental composites by admixing particles functionalized with quaternary ammonium
groups. The initial idea comprised the application of a bioactive filler, achieved by grind-
ing of a methacrylate-silica composite whose matrix was modified by copolymerization
with methacryloyloxydodecylpyridinium bromide (MDPB). The antibacterial activity of
that material was weak due to the screening of quaternary ammonium groups [26]. To
overcome the disadvantages of the MDPB-based filler, crosslinked quaternary ammonium
polyethylenimine nanoparticles (QA-PEI-NPs) were synthesized [27]. Their polycationic
character resulted in a higher antibacterial activity compared with the MDPB-based filler,
allowing QA-PEI-NPs to be used in smaller amounts [1].

QA-PEI-NPs are obtained from linear polyethylenimine (PEI) in a three-stage process
that includes crosslinking, telomerization, and quaternization. In the first stage, linear
PEI is crosslinked with an alkyl dihalide, usually 1 to 20 mol.% 1,5-dibromopentane. This
reaction results in the formation of the insoluble nanoparticle core from which short PEI
chains protrude. They are terminated with primary amino end groups that are subjected to
telomerization. The two methods that may be used alternatively include N-alkylation and
reductive amination, but N-alkylation is primarily used when octyl bromide is used as the
N-alkylation agent. This step determines the hydrophobicity of the nanoparticles, which
is responsible for the interactions between QA-PEI-NPs and lipids constituting bacterial
membranes. Quaternization, also called N-methylation, is performed in the final stage. The
quaternary ammonium groups are created during the reaction of secondary and tertiary
amino groups with iodomethane. Their presence provides QA-PEI-NPs with antibacterial
activity (Figure 1) [1,27–29].
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The antimicrobial activity of QA-PEI-NPs has been widely examined [1]. It has been
demonstrated in many studies that QA-PEI-NPs exert antibacterial activity against many
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bacteria strains. The Gram-positive bacteria, such as Staphylococcus aureus [29–31] and
Streptococcus mutans [32] showed greater susceptibility to the antibacterial activity of QA-
PEI-NPs than the Gram-negative bacteria, such as Escherichia coli [33] and Pseudomonas
aeruginosa [29,31]. In those studies, the influence of the crosslink density, N-alkylation
agent, N-alkylation degree, and quaternization degree on the antibacterial activity of QA-
PEI-NPs was also demonstrated. It can be concluded that the highest efficiency could be
achieved using 1,5-dibromopentane as the crosslinker in a ratio of 0.04 mol/mol PEI [32], 1-
bromooctane N-alkylation agent in the ratio of 1 mol/mol PEI [29,30,32], and iodomethane
quaternization agent in the ratio of 3 mol/mol PEI [30].

In other studies, the antibacterial activity of commercially available dental compos-
ite restorative materials enriched with QA-PEI-NPs was investigated. Dimethacrylate
resin-based composites modified with 0.5 to 2 wt.% QA-PEI-NPs showed activity against
the following bacterial strains: S. mutans—the bacteria identified the most with tooth de-
cay [28,32,34,35], S. aureus [36], P. aeruginosa [36], E. coli [36], Staphylococcus epidermidis [36],
Enterococcus faecalis [35–38], Actinomyces viscosus [34,35], and Lactobacillus casei [35]. It
was found that 1 wt.% QA-PEI-NPs was sufficient to achieve a good antibacterial effect
against the Gram-positive bacteria S. mutans, S. aureus, A. viscosus, E. faecalis, and L. casei.
This concentration did not alter the cytotoxicity of the original material and did not exert
harmful effects on living tissues. The Gram-positive bacteria, S. epidermis as well as Gram-
negative bacteria, P. aeruginosa and E. coli, showed weaker responses to the presence of
QA-PEI-NPs, and their higher content (2 wt.%) was required to achieve complete bacterial
growth inhibition. The presence of 2 wt.% QA-PEI-NPs slightly increased the material’s
cytotoxicity [36,39,40].

Based on the above, QA-PEI-NPs have been shown as highly efficient antibacterial
agents for dental restorative materials based on dimethacrylate resins; however, there
is still not enough knowledge of the influence of how QA-PEI-NPs affect the structural,
physicochemical, and mechanical properties of this type of dental material matrix. It is
well known that the deterioration of any property can negatively affect the composite
performance and even reduce its lifetime [41]; therefore, this expertise is required for
the development of new dental restorative materials modified with QA-PEI-NPs toward
solutions aimed at achieving a set of optimum characteristics.

The degree of conversion (DC) of double bonds is a particularly important structural
property for the proper functioning of dental materials based on dimethacrylate resins. It
determines their mechanical and physicochemical properties, and its reduction weakens the
mechanical properties of a composite [41]. Shvero et al., by modifying the Filtek Supreme
XT composite (3M ESPE Dental) with 2 wt.% QA-PEI-NPs did not observe a significant
change in the DC, which increased from 51 to 53% after adding QA-PEI-NPs [35].

Beyth et al. studied the effect of incorporating 1 wt.% QA-PEI-NPs on the flexural prop-
erties of two commercial composites: Z250 (3M ESPE Dental) and Filtek Flow (3M ESPE
Dental) [28]. The addition of QA-PEI-NPs to both materials resulted in a statistically in-
significant reduction in the modulus. The flexural strength of the Z250 composite increased
insignificantly, whereas that of the Filtek Flow composite decreased by approximately 40%.

This article aims to provide the lacking knowledge about the structure-property
relationships of dental dimethacrylate polymer networks modified with QA-PEI-NPs. The
research was carried out on the composition of two commercial dimethacrylate dental
resins—60 wt.% bisphenol A glycerolate dimethacrylate (Bis-GMA) (Scheme 1) and 40 wt.%
triethylene glycol dimethacrylate (TEGDMA) (Scheme 1) enriched with 0.5, 1, and 2 wt.%
QA-PEI-NPs. The cured materials were tested for their degree of conversion (DC), density
(dp), and polymerization shrinkage (S), glass transition temperature (Tg), water sorption
(WS), and solubility (SL), water contact angle (WCA), flexural modulus (E), flexural strength
(σ), hardness (HB), and impact resistance (an).
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Scheme 1. The chemical structures of Bis-GMA and TEGDMA.

2. Materials and Methods
2.1. Materials

PEtOx (poly(2-ethyl-2-oxazoline), 50 kDa, Sigma Aldrich, St. Louis, MO, USA), HClaq
(hydrochloric acid 37 wt.% in H2O, Acros Organics, Geel, Belgium), NaOH (sodium hy-
droxide, Chempur, Piekary Śl., Poland), diethyl ether (Chempur, Piekary Śl., Poland),
1,5-dibromopentane (Acros Organics, Geel, Belgium), 1-bromooctane (Acros Organics,
Geel, Belgium), methyliodide (Acros Organics, Geel, Belgium), NaHCO3 (sodium bi-
carbonate, Chempur, Piekary Śl., Poland), anhydrous ethanol (Stanlab, Lublin, Poland),
hexane (Chempur, Piekary Śl., Poland), Bis-GMA (bisphenol A glycerolate dimethacrylate,
Sigma-Aldrich, St. Louis, MO, USA), TEGDMA (triethylene glycol dimethacrylate, Sigma-
Aldrich, St. Louis, MO, USA), CQ (camphorquinone, Sigma-Aldrich, St. Louis, MO, USA),
DMAEMA (dimethylaminoethyl methacrylate, Sigma-Aldrich, St. Louis, MO, USA) were
used as received.

2.2. Synthesis
2.2.1. Synthesis of Linear Polyethylenimine (PEI)

Linear polyethylenimine (PEI) was obtained via the acidic hydrolysis of poly(2-ethyl-
2-oxazoline) (PEtOx) (Scheme 2) [42].
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Scheme 2. The PEI formation via the acidic hydrolysis of PEtOx.

PEtOx (5.03 g) was dissolved in 20 mL distilled water and added to a round-bottom
flask equipped with a condenser, thermometer, and magnetic stirrer. Then, 15 mL of HClaq
(37 wt.% in H2O) was added to the flask, and the reaction mixture was refluxed for 6 h with
the use of the oil bath. After cooling to room temperature, unreacted HCl and newly-formed
propionic acid were removed from the reaction mixture under reduced pressure. The
powder residue was dissolved in distilled water, and the surplus acid was neutralized with
5 N NaOH solution to pH 9–10. The resulting white PEI precipitate was then recrystallized
from distilled water, dissolved in methanol, and purified by precipitating into ice-cooled
diethyl ether. After filtrating, pure PEI was dried under reduced pressure for 5 days.

2.2.2. Synthesis of QA-PEI-NPs

QA-PEI-NPs were synthesized via an N-alkylation method [30]. The solution of PEI (1.77 g,
0.04 mol) in 20 mL absolute ethanol was introduced into a round-bottom flask equipped with a
condenser, thermometer, and magnetic stirrer. Then, 1,5-dibromopentane (0.04 mol/mol PEI
unit) was added, and the reaction was refluxed for 24 h with the use of the oil bath. In the second
stage, the N-alkylation reaction was carried out. 1-bromooctane (1 mol/mol PEI unit) was
added into the same flask, and the mixture was refluxed for 24 h. The resulting hydrobromic
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acid was neutralized with NaHCO3 (1.25 mol/mol 1-bromooctane) by heating under reflux for
24 h. The quaternization reaction was carried out in the same flask. The reaction mixture was
refluxed for 48 h after adding iodomethane (3 mol/mol PEI unit). The resulting hydroiodic acid
was neutralized with NaHCO3 (1 mol/mol PEI unit), by heating under reflux for 24 h. The
QA-PEI-NPs were first purified by precipitation in distilled water. The filtered residue was then
washed several times with hexane and distilled water, centrifuged, and lyophilized to dryness.

2.3. Curing Procedure

The 60 wt.% Bis-GMA and 40 wt.% TEGDMA composition was prepared and 0.4 wt.%
CQ was added as a photoinitiator. The composition was divided into four parts. Three
were admixed with 0.5, 1, and 2 wt.% QA-PEI-NPs. One composition was left unmodified
for comparison purposes. Mixing was performed in a dark room, initially with a spat-
ula, and then, resins enriched with QA-PEI-NPs were homogenized with an ultrasonic
stirrer. A reducing agent—1 wt.% DMAEMA was admixed to each composition before
its polymerization. All compositions were subjected to photocuring with a UV–VIS lamp,
having 127 mm in diameter, and emitting UV–VIS radiation in the range from 280 to
780 nm with the exitance of 2400 mW/cm2 (Ultra Vitalux 300, Osram, Munich, Germany)
for 1 h, from a distance of 15 cm. Polymerizations were carried out in square-shaped glass
molds measuring 90 mm × 90 mm × 4 mm (length × width × thickness), Petri dishes
measuring 40 mm × 4 mm (diameter × thickness), and disc-like Teflon molds measuring
15 mm × 1.5 mm (diameter × thickness). The oxygen inhibition was reduced by covering
the polymerizing system with a PET film.

2.4. Instrumental Analysis

2.4.1. Proton Nuclear Magnetic Resonance Spectroscopy (1H NMR)

The 1H NMR spectra were collected with a 300 MHz NMR spectrometer (UNITY/INOVA,
Varian, Palo Alto, CA, USA). PEtOx, PEI, and QA-PEI-NPs were analyzed in CDCl3, CD3OH,
and DMSO solutions, respectively. TMS was used as an internal reference each time.

2.4.2. Infrared Spectroscopy (FTIR)

A Spectrum Two (Perkin-Elmer, Waltham, MA, USA) Fourier-transform infrared
spectrometer (ATR-FTIR) was used in this study. The attenuated total reflectance sampling
method was used to confirm the chemical structure of PEtOx, PEI, and QA-PEI-NPs. The
same apparatus was used to characterize the monomer and polymer compositions enriched
with QA-PEI-NPs. Uncured samples were analyzed as thin layers closed between two KBr
pellets. The cured samples were powdered and sieved to a grain size less than 25 µm. They
were analyzed as KBr pellets, one week after curing.

The FTIR spectra were used for the DC determination, using the following equation:

DC(%) =

1 −

(
AC=C
AAr

)
polymer(

AC=C
AAr

)
monomer

× 100 (1)

where AC=C is the absorbance of the band at 1637 cm−1, corresponding to the C=C stretch-
ing vibrations in the methacrylate group, AAr is the absorbance of the band at 1608 cm−1,
corresponding to the carbon-carbon stretching vibrations in the benzene ring.

2.4.3. Dynamic Light Scattering (DLS)

The QA-PEI-NPs sizes were measured at 25 ◦C by a dynamic light scattering in-
strument (DLS, Zetasizer Nano-S90, Malvern Technologies, Malvern, UK). Before mea-
surements, QA-PEI-NPs were dispersed in distilled water and placed in a poly(methyl
methacrylate) cuvette.
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2.4.4. Density and Polymerization Shrinkage

The liquid compositions were tested for density (dm) with a pyknometer according
to ISO 1675 [43]. The cured materials were tested for density (dp) utilizing an analytical
balance equipped with a density determination kit operating on Archimedes’ principle.
The 0.01 mg analytical balance (XP Balance, Mettler Toledo, Greifensee, Switzerland) was
used for measuring sample mass.

The polymerization shrinkage (S) was calculated with the following equation:

S(%) =

(
1 − dm

dp

)
× 100 (2)

where dm is the monomer density, and dp is the polymer density.

2.4.5. Differential Scanning Calorimetry (DSC)

The glass transition temperature (Tg) was determined utilizing differential scanning
calorimeter DSC 822e (Mettler Toledo, Greifensee, Switzerland), following the procedure
described in the standard ISO 11357-2:2020 [44]. Samples of cured materials weighed about
2.5 mg. Experiments were carried out in the air, at the temperature range from −40 to
200 ◦C, with a heating rate of 10 K/min.

2.4.6. Water Sorption and Solubility

The water sorption (WS) and solubility (SL) were determined following the procedure
described in the standard ISO 4049 [45], utilizing a 0.01 mg analytical balance (XP Balance,
Mettler Toledo, Greifensee, Switzerland). Disc-like specimens of cured materials measuring
15 mm × 1.5 mm (diameter × thickness) were dried at 100 ◦C to constant mass (m0).
The specimens were then introduced into glass containers with distilled water and kept
for 7 days at room temperature. Just after removing from water, the specimens were
thoroughly dried with absorbing paper and weighed (m1).

The WS was calculated with the following equation:

WS
( µg

mm3

)
=

m1 − m0

V
(3)

where m1 is the mass of the swollen specimen, m0 is the initial mass of the dried specimen,
and V is the initial volume of the dried specimen.

The SL was determined by drying those specimens to a constant mass (m2), and
calculating its value with the following equation:

SL
( µg

mm3

)
=

m0 − m2

V
(4)

where m2 is the mass of the dried specimen after water storage.

2.4.7. Water Contact Angle

The cured materials were tested for the water contact angle (WCA) utilizing a go-
niometer (OCA 15EC, Data Physics, Filderstadt, Germany). Deionized water (4 µL) was
dropped onto the tested surface via the sessile drop method.

2.4.8. Mechanical Properties
Flexural Properties

The flexural modulus (E) and flexural strength (σ) were tested using a universal
testing machine Zwick Z020 (Ulm, Germany), following the procedure described in the
standard ISO 178 [46]. Specimens of cured materials, measuring 80 mm × 10 mm × 4 mm
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(length × width × thickness) were cut out from the pre-formulated molds and sanded
clean. E and σ were calculated with the following equations:

E (MPa) =
P1l3

4bd3δ
(5)

and
σ(MPa) =

3Pl
2bd2 (6)

where P1 is the load at the selected point of the elastic region of the stress-strain plot, P
is the maximum load, l is the distance between supports, b is the sample width, d is the
sample thickness, and δ is the deflection of the sample at P1.

Hardness

The hardness (HB) was determined utilizing a VEB Werkstoffprűfmaschinen machine
(Leipzig, Germany), following the procedure described in the standard ISO 2039-1 [47]. The
disc-like specimens of cured materials, measuring 40 mm × 4 mm (diameter × thickness)
were sanded clean before testing.

HB was calculated with the equation:

HB(MPa) =
Fm

0.21
(h−hr)+0.21

πdhr
(7)

where Fm is the test load, d is the diameter of the ball intender (d = 5 mm), h is the immersion
depth, and hr is the reduced depth of immersion (hr = 0.25 mm).

Impact Strength

The impact strength (an) was determined utilizing the Charpy impact tester (Zwick RKP
450, Ulm, Germany), according to the standard ISO 179-1 [48]. Tests were performed on speci-
mens of cured materials measuring 80 mm × 10 mm × 4 mm (length × width × thickness),
which were cut out from the pre-formulated molds and sanded clean.

an was calculated with the equation:

an

(
kJ
m2

)
=

An

bh
(8)

where An is the force causing fracture of a specimen, b is the specimen width, and h is the
specimen thickness.

2.5. Statistical Analysis

A set of results achieved for five specimens was analyzed using the Statistica 13.1 soft-
ware (TIBCO Software Inc., Palo Alto, CA, USA). The one-way ANOVA with Tukey’s HSD
post hoc tests were performed (α = 0.05). The results were expressed as mean values, and
their associated standard deviations (SD).

3. Results

In this work, the composition of two common dental resins 60 wt.% Bis-GMA and
40 wt.% TEGDMA was modified by the physical admixing of QA-PEI-NPs. The latter
was synthesized according to procedures described in the literature. First, linear PEI was
obtained via the acidic hydrolysis of PEtOx [42]. The formation of PEI was confirmed
by 1H NMR and ATR-FTIR measurements. The 1H NMR spectrum of PEI revealed the
disappearance of signals from protons present in the -CH2CH3 PEtOx substituent, located
at 1.13, 2.31, and 2.42 ppm (Figure 2). It also indicates that PEtOx hydrolysis was complete.
Since the local chemical environment surrounding the hydrogen nuclei of –CH2CH2–
groups was changed, they gave a single peak located at 2.73 ppm. The ATR-FTIR spectrum
of PEtOx exhibited an absorption peak of the >C=O group in the amide group located at
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1646 cm−1, which disappeared as PEI was formed. A peak of the –NH– group located at
3357 cm−1 was observed instead (Figure 3).
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In the second stage, PEI was crosslinked with 1,5-dibromopentane (0.04 mol/mol
PEI unit), N-alkylated with 1-bromooctane (1 mol/mol PEI unit), and quaternized with
iodomethane (3 mol/mol PEI unit). The formation of QA-PEI-NPs was confirmed by 1H
NMR and ATR-FTIR measurements. The signals at 0.87, 1.20–1.50, and 1.72 ppm from
protons of the bromooctane substituent (–CH3 and –(CH2)6– groups) were present in the
1H NMR spectrum of QA-PEI-NPs (Figure 4), but they were not observed in the 1H NMR
spectrum of PEI (Figure 2). The signal coming from the -CH2- groups of PEI changed its
position and moved from 2.74 ppm to 3.32 ppm due to changes in the chemical environment
surrounding the hydrogen nuclei. It overlapped with the signals of the remaining –CH2–
group of the octyl chain and -CH3 groups neighboring the quaternary nitrogen (Figure 4).
The ATR-FTIR spectrum of QA-PEI-NPs exhibited characteristic absorption peaks of the
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amine group (3446 and 1620 cm−1), –CH3 and –CH2– groups (2954, 2925, 2852, and
1465 cm−1), and quaternary nitrogen (956 cm−1) (Figure 5).
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The dimensions of the QA-PEI-NPs were analyzed utilizing the DLS technique (Figure 6).
Three fractions of particles were detected with an average size of (i) 151 nm (±28 nm) that
constituted 18.9% of all particles, (ii) 732 nm (±222 nm) that constituted 73.9% of all particles,
and (iii) 5212 nm (±467 nm) that constituted 7.2% of all nanoparticles. The Z-average size was
509.1 nm.
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The obtained QA-PEI-NPs were introduced into the Bis-GMA/TEGDMA composition
in the amounts of 0.5, 1, and 2 wt.%. The modified compositions, as well as one free of
QA-PEI-NPs, were hardened by photocuring with a common dental initiating system.
Prepared materials were tested for selected physicochemical and mechanical properties.

In Table 1, the results of density and polymerization shrinkage are summarized. As
can be seen, the density of uncured compositions (dm) did not change after adding QA-PEI-
NPs (1.13 g/cm3). Curing increased the density (dp), which ranged from 1.22 to 1.24 g/cm3

and slightly increased upon increasing the concentration of QA-PEI-NPs; however, the
neat polymer and the material containing 0.5 wt.% QA-PEI-NPs had the same density. The
addition of 1 wt.% QA-PEI-NPs resulted in a statistically insignificant (p > 0.05) increase in
the dp. The addition of 2 wt.% QA-PEI-NPs caused a 2% increase in the dp compared with
the neat polymer. The latter difference was statistically significant (p ≤ 0.05).

Table 1. The monomer density (dm), polymer density (dp), and polymerization shrinkage (S) of studied materials. Statistically
significant differences (p ≤ 0.05) are marked with the lower case letters, whereas statistically insignificant differences
(p > 0.05) are marked with the upper case letters.

Sample Name
dm (g/cm3)
(p = 0.9999)

dp (g/cm3)
(p = 0.013)

S (%)
(p = 0.007)

Average SD Average SD Average SD

0% QA-PEI-NP 1.13 0.06 1.22 A,B,c 0.01 7.37 A,B,c 0.70
0.5% QA-PEI-NP 1.13 0.03 1.22 A,D,e 0.01 7.37 A,D,e 0.58
1% QA-PEI-NP 1.13 0.05 1.23 B,D,F 0.01 8.13 B,D,F 0.72
2% QA-PEI-NP 1.13 0.05 1.24 c,e,F 0.01 8.87 c,e,F 0.63

The results in Table 1 also indicate that there is a relationship between the amount of
QA-PEI-NPs and polymerization shrinkage (S). The S values ranged from 7.37 to 8.87%
and increased as the concentration of QA-PEI-NPs increased. Compared with the neat
polymer, this parameter first increased when the concentration of QA-PEI-NPs exceeded
0.5 wt.%. The addition of 1 and 2 wt.% of QA-PEI-NPs increased the S values, which were
respectively, statistically insignificant (p > 0.05) and statistically significant (p ≤ 0.05). The
latter increase was 20%.

The DC in cured materials was also determined using FTIR spectroscopy. Figure 7
shows the representative FTIR spectra of the composition containing 0.5 wt.% QA-PEI-NPs
in its liquid and cured forms. The results for the DC are summarized in Figure 8. The neat
polymer was characterized by a DC of 68.08%. Generally, the addition of QA-PEI-NPs
increased the DC values, which ranged from 70.44 to 70.77%; however, all the differences
in the DC values were not statistically significant (p > 0.05).
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In Figure 9, the Tg results are summarized. Generally, the Tg slightly increased due
to the introduction of QA-PEI-NPs into the neat polymer (Tg = 54.19 ◦C) and ranged
from 55.47 to 58.96 ◦C; however, the Tg decreased upon increasing the concentration of
QA-PEI-NPs. All the differences in the Tg values did not have statistical meaning (p > 0.05).
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In Figure 10 the results for water sorption (WS) are summarized. Its values slightly
increased after the introduction of QA-PEI-NPs into the neat polymer (WS = 31.5 µg/mm3)
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and ranged from 34.63 to 36.59 µg/mm3; however, WS decreased upon increasing the
concentration of QA-PEI-NPs. All the differences in the Tg values did not have statistical
meaning (p > 0.05).
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Figure 11 summarizes the water solubility (SL) results. Its values increased after
QA-PEI-NPs were introduced into the neat polymer (SL = 2.17 µg/mm3) and ranged from
2.54 to 10.48 µg/mm3. In addition, SL increased upon increasing the concentration of
QA-PEI-NPs. These increases were usually statistically significant (p ≤ 0.05). The only
statistically insignificant difference (p > 0.05) in the SL values was found for the neat
polymer and material containing 0.5 wt.% QA-PEI-NPs. This corresponded to 17% growth.
The SL values of materials containing 1 and 2 wt.% QA-PEI-NPs were respectively 87%
and 383% higher than the neat polymer.
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Figure 11. SL values of the materials. Statistically significant differences (p ≤ 0.05) are marked with
the lower case letters, whereas statistically insignificant differences (p > 0.05) are marked with the
upper case letters.

The results for the water contact angle (WCA) are summarized in Figures 12 and 13.
The values increased due to the introduction of QA-PEI-NPs into the neat polymer
(WCA = 81.08◦) and ranged from 84.26 to 89.01◦. They also increased upon increasing the
concentration of QA-PEI-NPs. These increases usually did not show statistical significance
(p > 0.05), except for the material containing 2 wt.% QA-PEI-NPs. The WCA of the latter
material was statistically significantly higher (p ≤ 0.05), compared the neat polymer with
as well as all the materials modified with 0.5 and 1 wt.% QA-PEI-NPs.
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Figure 12. The images of deionized water droplets on the studied surfaces obtained from the goniometry camera for the
(a) neat polymer, (b) material containing 0.5 wt.% QA-PEI-NPs, (c) material containing 1 wt.% QA-PEI-NPs, and (d) material
containing 2 wt.% QA-PEI-NPs.
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Figure 13. WCA values of the surfaces. Statistically significant differences (p ≤ 0.05) are marked with
the lower case letters, whereas statistically insignificant differences (p > 0.05) are marked with the
upper case letters.

In Figure 14, the results for the flexural modulus (E) are summarized. Its values
decreased due to the introduction of QA-PEI-NPs into the neat polymer (E = 3731 MPa)
and ranged from 3557 to 3712 MPa. They decreased upon increasing the QA-PEI-NPs
concentration, but these changes were not statistically significant (p > 0.05). Compared
with the neat polymer, the maximum reduction was only 5%, which was found for the
material containing 2 wt.% QA-PEI-NPs.

In Figure 15, the results for the flexural strength (σ) are summarized. Its values
decreased due to the introduction of QA-PEI-NPs into the neat polymer (σ = 85.18 MPa)
and ranged from 36.76 to 63.09 MPa. They decreased upon increasing the concentration of
QA-PEI-NPs, and all decreases were statistically significant (p ≤ 0.05). Compared with the
neat polymer, the σ values of materials containing 0.5, 1, and 2 wt.% QA-PEI-NPs were 26,
38, and 57% lower, respectively.
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In Figure 16, the hardness (HB) values are summarized, which slightly increased due to
the introduction of QA-PEI-NPs into the neat polymer (HB = 106.19 MPa) and ranged from
109.1 to 111.81 MPa; however, the HB decreased upon increasing the concentration of QA-
PEI-NPs. All the differences between HB values were statistically insignificant (p > 0.05).

Materials 2021, 14, x FOR PEER REVIEW 15 of 20 
 

 

 

Figure 16. HB values of the materials. All the results for HB were statistically insignificant (p > 

0.05). 

In Figure 17, the impact strength (an) values are summarized, which decreased due 

to the introduction of QA-PEI-NPs into the neat polymer (an = 7.73 J/cm2) and ranged from 

2.84 to 6.58 J/cm2. They decreased upon increasing the concentration of QA-PEI-NPs, and 

all these decreases were statistically significant (p ≤ 0.05). Compared with the neat poly-

mer, the an values of the materials containing 0.5, 1, and 2 wt.% QA-PEI-NPs were 15, 39, 

and 63% lower, respectively. 

 

Figure 17. an values of the materials. All the results for an were statistically significant (p ≤ 0.05) 

and they are marked with the lower case letters. 

4. Discussion 

The recent trends in dental restorative composites have shown huge interest in the 

development of materials possessing antibacterial activity. The physical admixing of bio-

active compounds is one of the simplest ways to achieve this goal. As many of the most 

popular biocides show toxic effects, the application of QA-PEI-NPs seems to be a promis-

ing alternative. QA-PEI-NPs have already shown high antibacterial activity against many 

bacteria strains, including those responsible for tooth decay. When added to dental restor-

ative composites, they successfully inhibit bacterial growth on their surfaces. Only 1 wt.% 

QA-PEI-NPs is sufficient to kill Gram-positive bacteria, whereas 2 wt.% is required to kill 

Gram-negative bacteria [1]. 

Figure 16. HB values of the materials. All the results for HB were statistically insignificant (p > 0.05).



Materials 2021, 14, 2037 15 of 20

In Figure 17, the impact strength (an) values are summarized, which decreased due
to the introduction of QA-PEI-NPs into the neat polymer (an = 7.73 J/cm2) and ranged
from 2.84 to 6.58 J/cm2. They decreased upon increasing the concentration of QA-PEI-NPs,
and all these decreases were statistically significant (p ≤ 0.05). Compared with the neat
polymer, the an values of the materials containing 0.5, 1, and 2 wt.% QA-PEI-NPs were 15,
39, and 63% lower, respectively.
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4. Discussion

The recent trends in dental restorative composites have shown huge interest in the
development of materials possessing antibacterial activity. The physical admixing of
bioactive compounds is one of the simplest ways to achieve this goal. As many of the
most popular biocides show toxic effects, the application of QA-PEI-NPs seems to be a
promising alternative. QA-PEI-NPs have already shown high antibacterial activity against
many bacteria strains, including those responsible for tooth decay. When added to dental
restorative composites, they successfully inhibit bacterial growth on their surfaces. Only
1 wt.% QA-PEI-NPs is sufficient to kill Gram-positive bacteria, whereas 2 wt.% is required
to kill Gram-negative bacteria [1].

On the other hand, each physical modification of a material based on a polymer
network can negatively affect its molecular structure, which can deteriorate the material’s
physicochemical and mechanical properties; therefore, in this study, we investigated how
the physical modification of the Bis-GMA/TEGDMA polymer network with QA-PEI-NPs
affected its structural, physicochemical, and mechanical properties. The composition of
Bis-GMA 60 wt.% and TEGDMA 40 wt.% was chosen as the most representative example
of a dental composite restorative material matrix [41].

In this study, QA-PEI-NPs were synthesized starting from PEtOx hydrolysis, which
resulted in the formation of linear PEI (Figures 2 and 3), which was then subjected to
crosslinking, N-alkylation, and quaternization. The latter reactions led to the formation of
QA-PEI-NPs (Figures 4 and 5). The DLS measurements revealed that achieved QA-PEI-NPs
were 151 nm in average size. Bigger particles, with average diameters of 732 nm, and
5212 nm (Figure 6) can be recognized as agglomerates of QA-PEI-NPs [37]. This result is in
agreement with the patent requirements, which states that QA-PEI-NPs should be from
10 to 10,000 nm in size. Preferred are particles less than 1000 nm in size, and most preferred
are particles of up to 150 nm in size [27]. It is worth noting, that only 7.2% of all particle
agglomerates were of about 5200 nm average size.

The photocured materials were tested for the degree of conversion. The FTIR analysis
did not reveal any significant impact of the QA-PEI-NPs presence on the DC. If one looks
at the DC results in more detail, a slight increase in its values can be observed. It might be
attributed to the increase in loop and cycle formation [41]. However, it can be concluded
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that their influence on the DC can be neglected, when QA-PEI-NPs are added into the
Bis-GMA/TEGDMA matrix at a maximum of 2 wt.%.

The DC is closely related to the polymerization shrinkage (S), which is an inherent
effect of the polymerization process. During the curing reaction, the monomer molecules
transform into repeating units, the van der Waals forces are converted into covalent bonds,
and the polymerizing system undergoes volumetric contraction. As a result, the marginal
gap formation takes place. It creates favorable conditions for biofilm development, resulting
in the development of secondary caries and periodontal diseases [49]. In this study, the
polymerization shrinkage was determined by measuring the density before and after
curing. The density of uncured compositions (dm) did not alter with the addition of QA-
PEI-NPs. In the case of cured materials, the addition of 0.5 wt.% QA-PEI-NPs also did not
influence the density (dp). An increase in the concentration of QA-PEI-NPs resulted in a
maximum 2% increase in this parameter (Table 1). As expected, the same relationship was
observed for S. However, the scale of changes was greater. The neat polymer and material
containing 0.5 wt.% QA-PEI-NPs were characterized by the same S value. An increase
in the concentration of QA-PEI-NPs resulted in 10 and 20% increases in this parameter,
respectively for samples containing 1 and 2 wt.% QA-PEI-NPs (Table 1).

The Tg of studied materials was determined as a crucial physicochemical factor of
the polymer network constituting the dental composite matrix. A dental material must
be able to withstand mechanical stress created by biting forces. It is only possible when
the Tg exceeds the temperature in the mouth environment. The results showed that the
modification of the Bis-GMA/TEGDMA composition with QA-PEI-NPs did not cause
statistically meaningful changes in the Tg values. Since all tested materials had a Tg greater
than 55 ◦C, it can be assumed that they would be in the glassy state once they were applied
as a matrix in a dental composite.

Water sorption (WS) is another crucial physicochemical property of dental materials
because it is responsible for their dimensional stability. Excess water swelling causes the
dental material to expand, which, in extreme cases, can cause teeth fracture; therefore, the
WS value of a dental material should be investigated, and its value should not exceed
40 µg/mm3 [45]. As can be seen from Figure 10, the WS values usually did not change
significantly due to the addition of QA-PEI-NPs. The largest increase of 16% was observed
with the addition of 0.5 wt.% QA-PEI-NPs; however, the highest WS value (36.59 µg/mm3)
falls within the scope of the standard ISO 4049.

A dental material’s behavior in water is also usually characterized by its water solubil-
ity (SL). The maximum allowable soluble fraction is 7.5 µg/mm3 [45]. As can be seen from
Figure 11, the SL value increased upon increasing the concentration of QA-PEI-NPs. The
introduction of 0.5 wt.% QA-PEI-NPs negligibly increased the SL. Further increases in SL
were significant and corresponded to 87 and 383% for materials containing, respectively 1
and 2 wt.% QA-PEI-NPs. The SL values of the materials containing 0.5 and 1 wt.% QA-PEI-
NPs (2.54 and 4.05 µg/mm3, respectively) were lower than the limit defined in the standard
ISO 4049. From this perspective, it can be concluded that the introduction of 0.5 and 1 wt.%
QA-PEI-NPs into the Bis-GMA/TEGDMA matrix did not disqualify it from potential dental
applications. The modification with 2 wt.% QA-PEI-NPs requires serious consideration
because the SL value of this material was 40% higher than that specified in the standard
ISO 4049. The results from the DC analysis suggest that such a significant increase in the
SL values may be caused by the QA-PEI-NPs leaching. The general approach to the rela-
tionship between the DC and SL assumes that the lower the DC, the higher the SL [37]. As
shown in Figure 8, the DC was not significantly influenced by the presence of QA-PEI-NPs;
therefore, the evidence suggests that QA-PEI-NPs were not firmly anchored within the
Bis-GMA/TEGDMA matrix. The interactions between QA-PEI-NPs and water molecules
were probably stronger than those between QA-PEI-NPs and the Bis-GMA/TEGDMA
polymer network. It also indicates that, in those interactions, the hydrophilicity of QA-PEI-
NPs, resulting from the presence of the quaternary ammonium groups, dominated their
hydrophobicity, resulting from the presence of the N-octyl substituents.
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On the other hand, the water contact angle (WCA) results showed that the hydrophilic-
ity of the tested surfaces decreased upon increasing the concentration of QA-PEI-NPs
(Figure 13). These changes were usually insignificant, except for the material containing
2 wt.% QA-PEI-NPs, whose WCA increased by about 10% compared with that of the neat
polymer; however, the WCA values of all tested surfaces were less than 90◦, which classifies
them as hydrophilic [50].

The Bis-GMA/TEGDMA materials enriched with QA-PEI-NPs were also tested for se-
lected mechanical properties. They showed different responses to various mechanical factors.

The flexural modulus (E) of the studied materials changed insignificantly due to the
addition of QA-PEI-NPs (Figure 14). Its values slightly decreased as the concentration of
QA-PEI-NPs increased, but the maximum difference was only about 5% compared with
the neat polymer. It might be attributed to the subtilities of the molecular structure of
the Bis-GMA/TEGDMA polymer network. For example, an increase in the loop number
could cause a decrease in E values (loops do not decrease the DC, but increase a network
elasticity [41]).

Conversely, the flexural strength (σ) decreased significantly upon increasing the con-
centration of QA-PEI-NPs (Figure 15). Compared with the neat polymer, the σ decreased
by 26, 37, and 57% for materials containing 0.5, 1, and 2 wt.% QA-PEI-NPs, respectively. A
similar result was observed by Beyth et al. in a study on a commercial flowable composite
composed of 53 wt.% Bis-GMA/TEGDMA matrix and 47 wt.% zirconia/silica filler [28].
They found that the addition of 1 wt.% QA-PEI-NPs decreased the flexural strength by
about 40%. Interestingly, the flexural strength of another commercial material, composed
of 40 wt.% Bis-GMA/UDMA/Bis-EMA matrix and 60 wt.% zirconia/silica filler, insignif-
icantly increased. This leads to the conclusion that the influence of the modification of
dental dimethacrylates with QA-PEI-NPs cannot be generalized to all kinds of materials,
and it probably depends on their chemical composition. TEGDMA is a known factor caus-
ing mechanical strength deterioration. Due to the lack of hydrogen donors to hydrogen
bonds its molecule cannot form strong physical crosslinks. On the contrary, UDMA can
participate in strong hydrogen bonding and therefore increases mechanical strength. It
explains why the Bis-GMA/UDMA/Bis-EMA/QA-PEI-NP composite was less sensitive to
flexural stress than that comprising Bis-GMA/TEGDMA/QA-PEI-NP [28]. It also explains
the result of our study, and allows us to assume that the introduction of QA-PEI-NPs into
materials containing lower amounts of TEGDMA or those without TEGDMA will have
a less significant impact on the flexural strength [41]. A certain improvement in flexural
strength might be also achieved by the application of silanized fillers. They generally
increase the flexural strength, in contrast to unsilanized fillers, which reduce it [51].

The hardness (HB) of the studied materials was not negatively affected by the addi-
tion of QA-PEI-NPs (Figure 16). The HB slightly increased (Figure 16). This result is in
agreement with the literature data, which indicates that the hardness of dimethacrylate
polymers is less sensitive to the DC and physical crosslinking [41].

Finally, the impact resistance (an) of the studied materials was examined. This is a
rarely investigated and problematic property because its values are usually lower than
expected [52]. The an of studied materials decreased significantly upon increasing the
concentration of QA-PEI-NPs (Figure 17). Compared with the neat polymer, the an value
decreased by 15, 39, and 63% for materials containing 0.5, 1, and 2 wt.% QA-PEI-NPs,
respectively. This behavior may be explained by the combination of several factors, includ-
ing a low degree of physical crosslinking, incomplete conversion, formation of microgel
agglomerates, weak intermolecular interactions between the Bis-GMA/TEGDMA matrix
and QA-PEI-NPs [41,52,53], and even a presence of air bubbles trapped in a material [54].
Research is continuing in this area.

5. Conclusions

This article can be recognized as an initial study on the physicochemical and mechani-
cal properties of dental polymers modified with QA-PEI-NPs. It provided a new portion of
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information about properties of the most basic dental composition, Bis-GMA/TEGDMA,
modified with QA-PEI-NPs. The results of this study showed that the addition of QA-
PEI-NPs into the Bis-GMA/TEGDMA composition up to a maximum of 2 wt.% did not
negatively affect many of its properties, including the degree of conversion, polymer-
ization shrinkage, glass transition temperature, water sorption, flexural modulus, and
hardness. On the other hand, QA-PEI-NPs increased the water solubility, whereas the
bending strength and impact resistance decreased. Therefore, it is worth extending the
research on other dimethacrylate systems, comprising UDMA and/or Bis-EMA, as well as
a filler, to achieve the optimum physicomechanical performance.
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