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As T cells develop, they migrate throughout the thymus where they undergo essential
bi-directional signaling with stromal cells in distinct thymic microenvironments. Immature
thymocyte progenitors are located in the thymic cortex. Following T cell receptor expres-
sion and positive selection, thymocytes undergo a dramatic transition: they become
rapidly motile and relocate to the thymic medulla. Antigen-presenting cells (APCs) within
the cortex and medulla display peptides derived from a wide array of self-proteins,
which promote thymocyte self-tolerance. If a thymocyte is auto-reactive against such
antigens, it undergoes either negative selection, via apoptosis, or differentiation into the
regulatory T cell lineage. This induction of central tolerance is critical for prevention of
autoimmunity. Chemokines and adhesion molecules play an essential role in tolerance
induction, as they promote migration of developing thymocytes through the different
thymic microenvironments and enhance interactions with APCs displaying self-antigens.
Herein, we review the contribution of chemokines and other regulators of thymocyte
localization and motility to T cell development, with a focus on their contribution to the
induction of central tolerance.
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Introduction: Coordination of T Cell Development with
Intrathymic Localization

Thymocytesmigrate through distinct thymicmicroenvironments at discrete stages of differentiation
in order to receive essential signals from surrounding stromal cells that govern further differentiation
and selection (1, 2) (Figure 1). Early thymocyte progenitors (ETP) localize to the cortical side of the
cortico-medullary junction (CMJ). As they commit to the T-lineage, thymocytes migrate into the
mid-cortex, where they rearrange T cell receptor (TCR) β chain genes (3). Cells that successfully
express TCRβ pass the β-selection checkpoint, and undergo proliferation and differentiation near
the sub-capsule. Subsequent double positive (DP) thymocytes are localized throughout the cortex,
where they rearrange TCRα chain genes. DP cells that receive weak TCR signals in the cortex
undergo positive selection, promoting survival and differentiation of self-MHC-restricted single
positive (SP) cells. SP thymocytesmigrate into themedulla, where auto-reactive cells receiving strong
TCR signals are culled from the repertoire or diverted into the regulatory T cell (Treg) lineage.
We will review migratory and adhesion cues governing localization and cellular interactions of
differentiating thymocytes and stromal cell subsets, with an emphasis on signals that promote central
tolerance. Recent advances and open questions will be highlighted.
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FIGURE 1 | Thymocyte migration through distinct thymic
microenvironments occurs in an ordered fashion, enabling
appropriate interactions with stromal cells. Thymocyte progenitors enter
the thymus through vessels at the cortico-medullary junction (CMJ). ETPs
(CD3−CD4−CD8−c-Kit+CD44+CD25−) integrate cTEC-derived signals in
the cortex near the CMJ, which promote survival and T-lineage-commitment.
DN2 (CD3−CD4−CD8−c-Kit+CD44+CD25+) thymocytes migrate into the
mid-cortex, as they rearrange TCRβ chain genes. Subsequent DN3
(CD3−CD4−CD8−c-Kit−CD44−CD25+) thymocytes that pass the
β-selection checkpoint proliferate at the sub-capsule, and differentiate
through a DN4 (CD3−CD4−CD8−c-Kit−CD44−CD25−) stage to become
DP (CD4+CD8+) thymocytes. DP cells, which rearrange TCRα chain genes,
are localized throughout the cortex, with a bias toward the medulla.
Interactions with cTECs induce positive selection of DP cells expressing TCRs
with low avidity for self-peptide:MHCs. Auto-reactive DP thymocytes can be
negatively selected in the cortex. Positively selected DP cells begin to migrate
rapidly and enter the thymic medulla, guided by chemokine gradients, as they
differentiate into SP thymocytes. SP cells rapidly scan mTECs and DCs
during their 4–5-day residence time in the medulla to encounter a wide array
of self-peptides, which induce auto-reactive cells to undergo apoptosis or
diversion into the Treg lineage. Mature SP thymocytes egress from the thymus
through blood vessels in the CMJ.

Migration and Stromal Interactions During
Early Stages of Thymocyte Differentiation

Common lymphoid progenitors or their immediate progeny enter
the thymus through vasculature at the CMJ (4), and subse-
quently give rise to developing T cells (5–7). Transmigration
through the endothelium is initiated by selectin-mediated rolling
(P-selectin), followed by firm adhesion via integrins (α4β1 and
αLβ2) in concert with chemokine receptor signaling (CCR9,
CCR7) (8–12). Within the thymus, cortical thymic epithelial cells
(cTECs) provide IL7, SCF, and DLL4, which are indispensable
for survival, differentiation, and T-lineage-commitment of thy-
mocyte progenitors (13–15). ETP and double negative 2 (DN2)
cells express CXCR4, which promotes chemotaxis toward cTEC-
derived CXCL12 (16–20). Cortical thymocytes also express inte-
grin α4β1, which binds VCAM-1 on cTECs. CXCR4 deficiency
or impaired VCAM-1 adhesion inhibits thymocyte differentia-
tion and migration from the CMJ to the mid-cortex (20–23).
It remains to be determined how CCR7 promotes both thymic
entry of progenitors into the cortex, and medullary accumulation
of SP thymocytes (see below). As ETP do not express CCR7,

rapid downregulation of CCR7 following thymic entrymay enable
cortical progenitor localization.

Migration and Stromal Interactions of
Thymocytes Undergoing βββ-Selection

DN3 cells completing TCRβ rearrangements localize to the
outer capsule (4). In addition to pre-TCR signals, activation of
CXCR4 (24), NOTCH-1 (13, 25), and IL7R via cTEC ligands
(1, 26) are required for differentiation and expansion at the β-
selection checkpoint. The consequences of or signals governing
sub-capsular localization of proliferating post-β selection cells
remain to be elucidated (3). CCR9 is first expressed at the DN3
stage, and DN3 through DP thymocytes migrate toward CCL25,
expressed by cTECs (17, 18, 27). Deficiency or overexpression
of CCR9 prevents DN3 accumulation at the sub-capsule (12, 28,
29). However, a role for CCR9 in sub-capsular localization is
hard to reconcile with the distribution of CCL25 throughout the
cortex (30) or the CCR9-responsiveness of DP cells, which are
also present throughout the cortex (17, 18). Moreover, we have
shown that pre-positive selectionDP thymocytes, which areCCR9
responsive, accumulate near themedulla, not the sub-capsule (31).
Thus, signals governing DN3 accumulation at the sub-capsule
remain to be identified.

Migratory Cues Governing Localization and
Stromal Interactions of DP Thymocytes

We speculate that plexinD1 may promote rapid motility and peri-
medullary accumulation of pre-positive selection DP cells (31).
Sema3e, a soluble plexinD1 ligand produced in the medulla,
inhibits CCR9-mediated chemotaxis, releases integrin α4β1 catch
bonds, and is required for medullary localization of post-
positive selection thymocytes (32–34). However, pre-positive
selection DP cells also express plexinD1; thus, DP cells that reach
the peri-medullary cortex, perhaps through random migration
(35), would encounter Sema3e, potentially diminishing CCR9-
mediated migration back into the cortex, and relaxing adhesion
to VCAM-1 on cTECs, thus increasing motility. Recent stud-
ies demonstrate that GIT2, which modulates actin reorganiza-
tion during cellular migration, also promotes rapid migration of
cortical thymocytes (36). GIT2 and plexinD1 may coordinately
enhance the ability of DP cells to efficiently scan cTECs for
positively selecting ligands, which is consistent with the impaired
positive selection inGit2−/− mice (36). Future studiesmay resolve
the roles of plexinD1 and GIT2 in localization, migration, and
positive selection of pre-positive selection DP thymocytes.

Migratory Cues and APCs Governing
Cortical Negative Selection

Although the medulla is a critical environment for negative
selection, there is mounting evidence that the cortex promotes
deletion of a significant number of auto-reactive thymocytes.
Thymocytes undergoing negative selection were recently
quantified using Bim−/−; Nur77GFP mice (37), in which
apoptotic cells survive due to deficiency in the Bcl2 family
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member Bim, and GFP levels reflect TCR signal strength,
enabling quantification of cells that should have been deleted due
to strong TCR signaling. In the absence of Bim, GFP+ DP and
GFP+ SP cellularity was increased, demonstrating that negative
selection occurs in both compartments. Interestingly, the increase
in GFP+ DP cells was up to threefold higher than GFP+ SPs (37),
suggesting that over 90% of positively selected DP thymocytes
are fated for cortical deletion (38). Another study analyzed Helios
levels in Bim−/− mice to estimate that 55% of TCR-signaled
thymocytes are deleted at the DP stage (39). Together, these
studies indicate that the majority of negative selection occurs in
DP cells, raising the question of which cortical antigen-presenting
cells (APCs) promote central tolerance.

Cortical thymic epithelial cells are uniquely responsible for
inducing positive selection (40); however, their role in nega-
tive selection remains ambiguous. Early studies established that
thymic grafts transplanted into allogeneic athymic hosts were
tolerated by host-derived T cells (41–45). Developing T cells
are likely tolerized to graft-derived peptide:MHCs expressed
by medullary TECs (mTECs) or DCs, which does not clarify
whether cTECs induce negative selection. To address this, trans-
genic mice were developed in which MHC-I (46) or MHC-
II (47) was expressed exclusively on cTECs. cTECs in these
mice induced positive selection of CD8SP or CD4SP thymo-
cytes, respectively, but could not tolerize polyclonal thymocytes.
In light of the essential contribution of mTECs to negative
selection against diverse self-antigens (see below), these find-
ings do not resolve whether cTECs induce deletion of some
auto-reactive clones. Expression of model antigens uniquely in
cTECs resulted in deletion of TCR transgenic thymocytes, indi-
cating that cTECs can mediate negative selection (48). How-
ever, when a TCR transgene was more faithfully expressed at
the later DP stage in the HYCD4 model, cTECs expressing the
cognate antigen induced TCR activation, but not apoptosis of
auto-reactive DP cells (49). Thus, cTECs can clearly activate
auto-reactive TCRs, but their ability to mediate deletion remains
uncertain.

DCs have emerged as likely mediators of cortical negative
selection. DCs express high levels of costimulatory and MHC
molecules, enabling strong TCR activation (50). Strikingly, in
a model of cortical negative selection, thymocytes undergoing
apoptosis were localized adjacent to cortical DCs, and negative
selection was impaired whenDCs were conditionally ablated (49).
Themigratory cues that promote thymocyte:DC interactions dur-
ing cortical negative selection have yet to be elucidated. Cortical
DCs accumulate near vasculature, where CCR7 ligands are pre-
sented (30, 51, 52). ThymicDCs undergoCCR7-mediated chemo-
taxis (53), suggesting CCR7may position DCs near cortical blood
vessels. CCR7 was also postulated to induce cortical thymocytes
to associate with DCs under positively selecting conditions (52).
However, CCR7 is not up-regulated until the SP stage (54), when
thymocytes home to the medulla, and CCR7 was dispensable for
cortical deletion in the HYcd4 model (49). Thus, CCR7 signal-
ing may position cortical DCs near vasculature, but is unlikely
to promote thymocyte:DC interactions during cortical negative
selection. CCR2 also contributes to cortical DC positioning, as
it recruits migratory DCs to perivascular spaces in the cortex

to induce deletion against blood-borne antigens (55, 56). CCX-
CKR1 (CCRL1) regulates bioavailability of CCL19, CCL21, and
CCL25, but its expression by cTECs and impact on tolerance are
currently controversial (57, 58). Further investigation is needed to
elucidate the contributions of APCs andmigratory cues governing
cortical negative selection.

Migration of Post-Positive Selection
Thymocytes into the Medulla

The migration of post-positive selection thymocytes into the
medulla is critical for the induction of central tolerance. If the
medulla does not develop, or thymocytes cannot accumulate
therein, negative selection is impaired, and autoimmunity arises
(59–64). Only positively selected thymocytes gain access to the
medulla (31); recent evidence suggests CXCR4 is responsible for
cortical retention of DP cells (65). Following positive selection,
thymocytes migrate much more rapidly (12–16µm/min post-
selection versus 6–8µm/min pre-selection) and undergo chemo-
taxis toward the medulla (31, 66, 67). It is commonly assumed
that thymocytes enter the medulla at the SP stage. However,
plexinD1 deficiency results in relocalization of CD69+ cells from
the medulla into the cortex, suggesting post-positive selection
CD69+ DP cells may enter the medulla (32, 33). Furthermore, the
kinetics of medullary entry after positive selection, compared to
the timing of differentiation from the DP to SP stage indicates that
CD69+ DP cells enter the medulla (68). Thus, positive selection
likely induces rapid thymocyte medullary entry; further studies
are required to determine if and how CD69+ DP cells overcome
cortical retention to enter the medulla.

The chemokine receptor CCR7 is critical for thymocyte local-
ization in the medulla (31, 51). CCR7 is expressed by SP thy-
mocytes (51, 54, 69, 70), while the ligands CCL19 and CCL21
are expressed by mTECs (71). In mice deficient for CCR7 or
its ligands, medullary accumulation of SP cells is diminished,
negative selection is impaired, and autoimmunity ensues (59,
60). Although CCR7 is required for SP chemotaxis toward the
medulla and accumulation therein, Ccr7−/− SP cells enter and
migrate within the medulla (31). In contrast, SP medullary entry
is abrogated by pertussis toxin (31, 69), which blocks signaling
through Gαi-associated G protein coupled receptors (GPCRs),
including chemokine receptors. Thus, other GPCRs must con-
tribute to thymocyte medullary localization. We speculate that
CCR4 may contribute to medullary entry. CD69+DP and
CD69+CD4SP thymocytes express CCR4 (54, 69) and undergo
chemotaxis toward the ligands CCL17 and CCL22 (17), which
are expressed in the medulla (18, 72). CCR4 is up-regulated
early after positive selection, while CCR7 is expressed on more
mature SP cells (54), suggesting differential roles in guiding thy-
mocytes into the medulla. CCR4 may be responsible for ini-
tial medullary entry of post-positive selection cells, while CCR7
may promote retention of maturing SPs (Figure 2). Future stud-
ies are required to address the relative contributions of CCR4
and other GPCRs to medullary entry and central tolerance,
though a recent study did not identify a role for CCR4 in these
processes (54).
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FIGURE 2 | Signals that impact motility and localization of positively
selected thymocytes. After positive selection, thymocytes up-regulate
CD69 and the chemokine receptor CCR4. CCR4 ligands are expressed by
medullary DCs, thus creating a chemotactic gradient that may promote
medullary entry of post-positive selection thymocytes. PlexinD1 is expressed
on DP and immature SP thymocytes, and may also promote medullary entry
by inhibiting responses to cortical chemokines and releasing thymocytes from
tight interactions with cTECs. As SP cells mature, they up-regulate CCR7,
promoting chemotaxis toward the gradient of CCR7 ligands produced by
mTEClo (CD80loMHC-IIlo) and mTEChi (CD80+MHC-IIhi) cells. CCR7 signaling
is critical for maintaining SP thymocytes within the medulla. In the absence of
CCR7, SP cells do not undergo efficient negative selection against TRAs.
Expression of CCR7 and CCR4 on SP thymocytes may also promote
chemokinesis, or rapid motility of SP thymocytes, as well as efficient
interactions with the two main subsets of medullary APCs, mTEChi cells and
DCs, respectively. Thus, chemokine-guided migration likely impacts multiple
aspects of SP motility and cellular interactions that are required to ensure SP
thymocytes efficiently scan numerous medullary APCs to encounter the full
array of self-antigens that induce central tolerance.

APCs Governing Medullary Negative
Selection and Treg Generation

Once SP thymocytes migrate into the medulla, they encounter
heterogeneous APCs that enforce self-tolerance (Figure 2).
Medullary APCs display peptides derived from a wide array of
tissue-restricted antigens (TRAs), proteins otherwise expressed
by peripheral tissues. mTEChi cells express high levels of CD80
and MHC-II, as well as the transcriptional regulator AIRE, which
inducesmTECdifferentiation and expression of diverse TRAs that
were previously epigenetically silenced (73–81). AIRE-dependent
expression of such TRAs is essential for the induction of central
tolerance in mice and humans (82–87). Medullary DCs also con-
tribute to negative selection; they can be divided into intrathymi-
cally derived Sirpα− conventional DC (cDC), migratory Sirpα+

cDC, and plasmacytoid DCs (pDC) (88, 89). Other APCs, such as

B cells, may also contribute to negative selection (90–92), but are
not discussed here.

Several experimental models indicate that mTECs can directly
present peptide:MHCs to mediate negative selection and Treg
induction. Negative selection against model self-antigens was
intact following ablation of DCs or MHC-II expression on
hematopoietic cells, demonstrating that mTECs can be sufficient
to mediate negative selection (93, 94). Furthermore, miRNA-
mediated reduction of MHC-II expression in mTECs resulted in
diminished negative selection of TCR transgenic thymocytes to
a model TRA, demonstrating that direct antigen presentation by
mTECs is required for deletion in some cases (95). Direct pre-
sentation of TRAs by mTECs can also induce Treg differentiation
(96). While endogenous proteins in mTECs will naturally access
the MHC-I processing and presentation pathway, presentation on
MHC-II is facilitated by macroautophagy, which is required for
central tolerance (97). Thus, mTECs have an intrinsic capacity
to present diverse self-antigens to mediate central tolerance of
CD4SP and CD8SP cells.

DCs are also critical for thymic central tolerance. DC ablation
in a CD11c-DTA model resulted in impaired negative selection
and fatal autoimmunity (98). MHC-II ablation on hematopoietic
cells impaired both Treg induction and negative selection against
serum-borne and soluble TRAs (99–101). Sirpα+ cDC and pDC
can acquire peripheral antigens and traffic them to the thymus
to induce negative selection (102, 103). Also, in some models of
mTEC-expressed TRAs, DCs isolated from the thymus stimulate
TRA-specific T cells specific more efficiently than mTECs them-
selves, indicating that antigens are transferred efficiently from
mTECs to DCs tomediate deletion (104). Transfer of model TRAs
from mTECs to DCs can be AIRE-dependent and required for
negative selection (99, 104). The mechanisms of antigen transfer
between mTECs and DCs remain to be elucidated. mTECs may
secrete or release antigen in vesicles; DCs may acquire antigen
by endocytosis of apoptotic mTECs (105); or peptide:MHC com-
plexes may be acquired by DCs from mTEC cell membranes
(104, 106). Thus, the heterogeneous thymic DC compartment
promotes central tolerance against peripheral, blood-borne, and
mTEC-derived self-antigens.

While both mTECs and DCs induce tolerance to some anti-
gens, their relative contributions to central tolerance of poly-
clonal thymocytes have been difficult to ascertain. Using TCR
repertoire analysis of Treg and naïve T cells, Perry et al. recently
compared the impact of restricting antigen presentation to DCs
versusmTECs (107).mTECs andDCsmediated negative selection
of non-overlapping TCRs, and DCs deleted about threefold more
TCRs. These findings are in keeping with studies showing that
both subsets are important for negative selection. Furthermore,
bothmTECs andDCs inducedTreg differentiation. AIREwas crit-
ical for negative selection and Treg induction of lower frequency
TCRs, and the Sirpα− subset of cDC was required for AIRE-
dependent Treg generation (107). Importantly, this study com-
pared the effects of diminished MHC-II expression on mTECs
with ablated MHC-II expression on DCs, and may thus under-
estimate the relative contribution of mTECs to central tolerance.
Nonetheless, it is clear that complete central tolerance will require
efficient thymocyte interactions with both mTECs and DCs.
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Migratory Cues Promoting Medullary
Central Tolerance

Given that DCs acquire TRAs from mTECs, it is likely DCs
must localize near mTECs to mediate efficient central tolerance.
Consistent with this, XCR1, which is expressed on Sirpα−cDC,
was required for localization of cDC to the center of the
medulla (53). In Xcl1−/− mice, Treg cellularity was dimin-
ished, the TCR repertoire was altered, and autoimmune man-
ifestations occurred, indicating that medullary localization of
Sirpα−cDC is required for central tolerance (53). This sug-
gests a model in which XCR1 promotes direct apposition of
Sirpα−DCs with mTECs for TRA acquisition. Sirpα+ cDC and
pDC, which carry peripheral antigens into the medulla, migrate
into the thymus through vasculature in a P-selectin, VLA4, and
GPCR-dependent manner (103). CCR9 is required for thymic
entry of pDC, but the corresponding GPCR for Sirpα+ cDC
has not been identified (102). Although thymic DCs express
CCR7 and migrate toward CCR7 ligands, Ccr7−/− DCs local-
ize properly within the medulla (53). Thus, signals required for
medullary localization of Sirpα+ DCs and pDCs remain to be
identified.

SP thymocytes were recently estimated to have a medullary
residence time of ~4–5 days (108), shorter than the previous
estimate of ~12 days (109), and each AIRE-dependent TRA
is expressed on only 1–3% of AIRE+mTEChi cells (74, 110).
Thus, thymocytes must rapidly scan multiple mTECs and DCs
to encounter the full spectrum of medullary self-antigens that
promote central tolerance. Chemokines can promote lympho-
cyte chemokinesis (111), and CCR7 has been shown to pro-
mote rapid motility of SP thymocytes (31). Fast SP migra-
tion is also dependent on MST1, which promotes integrin-
mediated binding of SP thymocytes to ICAM1 in the con-
text of CCL21 (112). It remains to be determined whether
other chemokine signals are required for rapid motility of SP
thymocytes.

It remains to be established whether interactions between thy-
mocytes and medullary APCs are driven by chemotaxis toward
APCs or random encounters due to fast SP motility. Several
studies suggest chemokines may facilitate T cell:APC interac-
tions in secondary lymphoid organs. Using microspheres releas-
ing CCL19 and CCL21, a recent study demonstrated that when
sources of CCR7 ligands were interspersed, T cells hopped
between microspheres, potentially facilitating antigen sampling
(113). Both CCR4 and CCR7 have been implicated in promot-
ing T cell:APC interactions that drive naïve T cell activation

(114, 115). Thus, CCR4 and CCR7 may also promote cellular
interactions between SP cells and DCs and mTECs, respectively.
Indeed, Mst1 was required for efficient interactions between SP
cells undergoing negative selection and Aire+mTECs expressing
a model TRA (112), suggesting that CCR7 may enhance adhe-
sion between SP cells and mTECs via intergrin:ICAM1 inter-
actions. Furthermore, CCR7 deficiency was recently shown to
result in increased Treg cellularity (54), which may also reflect
the contribution of CCR7 to avid APC interactions. Although the
basis for the decision to undergo apoptosis versus Treg specifi-
cation is not resolved, current models favor an avidity model in
which the highest avidity TCR signals promote negative selec-
tion, while a range of slightly lower avidity signals promote
Treg induction as well as negative selection (116, 117). Thus, if
CCR7 promotes T cell:APC interactions, CCR7 deficiency might
result in lower avidity interactions that favor Treg induction. The
fact that CCR7 ligands are expressed by mTECs, while CCR4
ligands are expressed by DCs also raises the possibility that
CCR7 and CCR4 promote interactions with mTECs and DCs,
respectively (Figure 2). Further investigation will be required
to elucidate the contribution of chemokines or other adhesion
molecules to interactions with medullary APCs driving central
tolerance.

Areas for Future Investigation

Chemokine receptors and integrins promote migration and adhe-
sion required for thymocyte:stromal interactions that drive T cell
differentiation and selection. However, multiple localization and
migration cues remain to be elucidated. We have not identified
signals driving localization of DN3 thymocytes to the sub-capsule,
accumulation of pre-selection DP cells near the medulla, or thy-
mocyte:APC interactions during cortical negative selection. The
identities of GPCRs other than CCR7 that promote medullary
entry and APC interactions remain to be determined. We are just
beginning to appreciate that localization of stromal cells is critical
for thymocyte differentiation, and future studies will likely iden-
tify factors driving proper stromal organization. Thus, many open
questions remain regarding the localization and adhesion cues
that promote differentiation of a fully functional and self-tolerant
T cell compartment.
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