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The correction for low-pass sequencing is performed using the publicly available dadi Python package, which can be ac-6

cessed at https://bitbucket.org/gutenkunstlab/dadi. Additionally, the codebase for creating and analyzing both simulated7

and empirical datasets, ensuring reproducibility, is readily accessible on GitHub at https://github.com/emanuelmfonseca/8

low-coverage-sfs and https://github.com/lntran26/low-coverage-sfs/tree/main/empirical_analysis. Furthermore, we9

provide illustrative examples to assist users in implementing our methodology.10

Abstract11

Low-pass genome sequencing is cost-effective and enables analysis of large cohorts. However, it introduces12

biases by reducing heterozygous genotypes and low-frequency alleles, impacting subsequent analyses such13

as demographic history inference. We developed a probabilistic model of low-pass biases from the Genome14

Analysis Toolkit (GATK) multi-sample calling pipeline, and we implemented it in the population genomic15

inference software dadi. We evaluated the model using simulated low-pass datasets and found that it allevi-16

ated low-pass biases in inferred demographic parameters. We further validated the model by downsampling17

1000 Genomes Project data, demonstrating its effectiveness on real data. Our model is widely applicable18

and substantially improves model-based inferences from low-pass population genomic data.19
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Introduction22

Enabled by reduced sequencing costs, population genetics has experienced a revolution, from focusing on a23

limited number of loci to now encompassing entire genomes (Maddison et al. 1992; Reid et al. 2016; Marchi24

et al. 2022). Yet researchers must still trade off a) the extent of the genome to be sequenced, b) the depth25

of coverage for each sample, and c) the number of sequenced samples (Lou et al. 2021; Martin et al. 2021;26

Duckett et al. 2023). One way to address this trade off is to sequence one reference sample at high coverage27

depth while sequencing others at lower depth (Lou et al. 2021). Low-pass sequencing, in which the genome28

is sequenced at a lower depth of coverage, avoids many of the financial, methodological, and computational29

challenges of high-pass sequencing (Li et al. 2011). Furthermore, limited availability of DNA can also make30

high depth impractical, especially for ancient samples and museum or herbarium specimens (Mota et al.31

2023).32

Despite its advantages, low-pass sequencing may lead to an incomplete and biased representation of33

genetic diversity within a population (e.g., Vieira et al. 2013; Fox et al. 2019). Low-frequency genomic34

variants may not be detected (Fumagalli 2013), and genotypes may be less accurate (Nielsen et al. 2011).35

Low-pass sequencing increases the likelihood of miscalling heterozygous loci as homozygous (Duitama et al.36

2011; Gorjanc et al. 2015), due to a lack of sufficient reads on homologous chromosomes to distinguish between37

different alleles at a given locus. These issues can then bias downstream analyses. It is thus important for38

analysis methods to accommodate low-pass sequencing (see Carstens et al. 2022 for a discussion of related39

issues).40

The allele frequency spectrum (AFS) is a powerful summary of population genomic data (Sawyer &41

Hartl 1992; Wakeley 2009). Briefly, the AFS is matrix which records the number alleles observed at given42
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frequencies in a sample of individuals from one or more populations. The AFS is often the basis for inferring43

demographic history (Gutenkunst et al. 2009) or distributions of fitness effects (Kim et al. 2017). In low-pass44

sequencing, the loss of alleles and the excess of homozygosity can bias the estimation of the AFS (Fumagalli45

2013) and thus those inferences.46

To address the challenges of low-pass data, several tools have emerged (Bryc et al. 2013; Blischak et al.47

2018; Meisner & Albrechtsen 2018), with one of the most widely adopted being ANGSD (Korneliussen48

et al. 2014). ANGSD offers a diverse range of analyes tailored for low-pass sequencing data. To infer an49

AFS, ANGSD uses sample allele frequency likelihoods, which can be computed either directly from raw50

data or, more frequently, from genotype likelihoods (Nielsen et al. 2012). These likelihoods quantify the51

probability of observing the complete set of read data for multiple individuals at specific genomic sites,52

given particular sample allele frequencies (Nielsen et al. 2012; Korneliussen et al. 2014), enabling ANGSD53

to estimate allele frequencies. While ANGSD has proven its utility, limitations exist. For example, many54

analyses rely on distinguishing different types of variant sites (such a synonymous versus nonsymonyous)55

which the developers of ANGSD recommend against. Moreover, in some cases unbiased estimation of the56

AFS may be difficult or impossible.57

Rather than attempting to estimate an unbiased AFS from low-pass data, we developed a proba-58

bilistic model of low-pass AFS biases and incorporated it into the population genomic inference soft-59

ware dadi (Gutenkunst et al. 2009). Our model is based on the multi-sample genotype calling pipeline60

of the Genome Analysis Toolkit (GATK), the most widely used tool for calling variants from read data61

(McKenna et al. 2010; Auwera & O’Connor 2020). We assessed the accuracy of our model using sim-62

ulated low-depth data as well as subsampled data from the 1000 Genomes Project (Fairley et al. 2020,63

https://www.internationalgenome.org/). We found that our model accurately captures low-depth biases in64

the AFS and enables accurate inference of demographic history from low-pass data.65

Model for Low-pass Biases66

When biases arises from low-pass sequencing, the AFS may be affected by both the loss of low-frequency67

variants and the misidentification of heterozygous individuals as homozygous. These two effects result in68

a deficit of variant sites and misleading shifts in allele frequencies, respectively. Moreover, the data must69

often be subsampled to generate an AFS for analysis, because not all individuals will be called at all sites.70

We account for these distortions by sequentially modeling the probabilities of a variable site being called, of71

that site having enough called individuals for subsampling, and of having its allele frequency misestimated.72

The specific choices in our model are motivated by the default GATK multi-sample calling algorithm, in73

which information from all samples is used to identify whether a site is variant. In particular, we assume74

that a site will only be called as variant if at least two alternate allele reads are observed. Once a site is75

identified as variant, an individual will be called as missing if zero reads are observed, homozygous if all76

reads correspond to a single allele, and heterozygous if at least one reference and one alternate read are77

observed. For simplicity, we first describe the case of sequencing nseq individuals from a single population.78

Consider a site in which the true alternate allele count within our sample of nseq individuals is f . Those79

f alternate alleles can be distributed among the 2nseq sampled alleles in many ways. To quantify those ways,80

we define the partition function Pnseq(f), which is an array of integer partitions with n entries that sum81

to the allele frequency f such that all entries in the partition are 0, 1, or 2 (corresponding to the possible82

genotype values). For example, the partitions defined by P4(3) are [2, 1, 0, 0] and [1, 1, 1, 0]. Each possible83

partition within Pnseq(f) can occur in n!
n0!n1!n2!

2n1 ways, where n0, n1, and n2 denote the number of partition84

entries equal to 0, 1, or 2. (The factor of 2n1 accounts for the two possible haplotypes the alternate allele85

could lie on in each heterozygote.) The corresponding probability of each partition within Pnseq(f) is then86

the number of ways it can occur divided by the total over all partitions within Pnseq(f).87

Let D denote the distribution of read depth d within the population sample, which we assume to be shared88

among all individuals. For an individual homozygous for the alternate allele, the probability of observing a89

alternate reads is simply Phom
a (a) = D(a). For a heterozygous individual, the probability of zero alternate90
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reads is91

Phet
a (0) =

∑
d

D(d)

(
1

2

)d

. (1)

Here we sum over the distribution of depths, and at each depth each read has a 1/2 chance of containing the92

reference allele, so the probability of all reads being reference is (1/2)d. Similarly, the probability of exactly93

one alternate read is94

Phet
a (1) =

∑
d

d D(d)

(
1

2

)(
1

2

)d−1

. (2)

Note that for depth d, there are d possible configurations with one alternate read and d− 1 reference reads.95

For a given partition within Pnseq(f) that has true genotype counts n0, n1, and n2, there are multiple96

ways of failing to identify the variant site. The probability of zero reads supporting the alternate allele is97

P part
a (0) = Phet

a (0)n1 Phom
a (0)n2 . (3)

The probability of exactly one read supporting the alternate allele is98

P part
a (1) = n1P

het
a (1)Phet

a (0)n1−1 Phom
a (0)n2 + Phet

a (0)n1 n2P
hom
a (1)Phom

a (0)n2−1. (4)

Here the two terms account for the probability that the alternate read occurs in one of the heterozygotes or99

homozygotes, respectively. The overall probability of not calling a variant site for a given partition is thus100

P part
a (0)+P part

a (1). And the overall probability of not calling a variant site with a given true allele frequency101

f is the sum of these probabilities over partitions Pnseq(f), weighted by the partition probabilities. For any102

given coverage distribution, the probability of calling a variant site increases rapidly with allele frequency f103

(Fig. S1).104

When analyzing low-pass data, generating an AFS for the full sample size nseq may result in the loss105

of many sites where not all individuals were called. Consequently, it is common to subsample the data to106

some lower sample size nsub; only sites with calls for at least nsub individuals can then be analyzed. The107

probability a site can be analyzed is independent of the allele frequency and is108

nseq∑
c=nsub

nseq!

c!(nseq − c)!
D(0)nseq−c (1 − D(0))c. (5)

Here we sum the probability that exactly c individuals have at least one read at this site over all potential109

values of the number of covered individuals nsub ≤ c ≤ nseq. From this point onward, we consider partitions110

Pnsub(f) over the subsampled individuals.111

Once a site as called as variant, low-pass sequencing can bias the estimation of the allele frequency at112

that site, if one or more heterozygotes are miscalled because all their reads are reference or alternate. For113

each heterozygous individual, this occurs with total probability114

Phet
mis = 2

∑
d

D(d)

(
1

2

)d

= 2Phet
a (0). (6)

For a partition with n1 true heterozygotes, the number of miscalled heterozygotes Nhet
mis is binomially dis-115

tributed with mean n1P
het
mis. Each miscalled heterozygote has equal chance of being called as homozygous116

reference or alternate, so the number of miscalls to homozygous reference Nhet
→ref is binomially distributed117

with mean Nhet
mis/2, and the number of miscalls to homozygous alternate is Nhet

→alt = Nhet
mis−Nhet

→ref . The net118

change in estimated alternative allele frequency is then Nhet
→alt −Nhet

→ref .119

The biases caused by low-pass sequencing do not depend on the underlying AFS; for each true allele120

frequency a given fraction will always, on average, be miscalled as any given other allele frequency. The121

correction above can be thus be calculated once for a given data set then applied to all model AFS generated,122

for example, during demographic parameter optimization. For efficiency, we calculate and cache an nseq by123
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nnub transition matrix that can be multiplied by any given model AFS for nseq individuals to apply the low124

coverage correction. When analyzing multiple populations, we calculate and apply transitions matrices for125

each population, because variant calling is independent among populations once a variant has been identified.126

Variant identification is, however, not independent among populations, which we address using simulated127

calling described next.128

When calculating the probability of miscalling a heterozygote (Eq. 6), the correct distribution of depth129

is not simply D(d); rather it is the distribution conditional on the site being identified as variant. The lower130

the true allele frequency, the more these distributions will differ. The conditional distribution is complex to131

calculate, particularly when multiple populations are involved. Instead, for true allele frequencies for which132

the probability of not identifying is above a user-defined threshold (by default 10−2), we simulate the calling133

process rather than using our analytic results. For multiple populations, we calculate this threshold assuming134

that a variant must be identified independently in all populations, which gives a lower bound on the true135

probability of not identifying. To simulate calling, for a given true allele frequency (or combination in the136

multi-population case) we simulate reads (default 1000) using the coverage distribution D(d) and simulate137

variant identification and genotype calling for each potential partition of genotypes across the populations,138

proportional to its probability. For each combination of input true allele frequencies simulated, we estimate139

and store probability of each potential output allele frequency. These distortions are then applied in place140

of the transition matrices from the analytic model.141

For inbred populations, there is an excess of homozygotes compared to the Hardy-Weinberg expectation,142

which reduces biases associated with low-pass sequencing. In this case, we follow Blischak et al. (2020)143

and within each genotype partition calculate the probability of reference homozygotes, heterozygotes, and144

alternate homozygotes using results from Balding & Nichols (1995, 1997), given the inbreeding coeffficient F .145

The partition probability is then multinomial given these probabilities. In these calculations, we approximate146

the population allele frequency by the true sample allele frequency. Because calculation of the low-pass147

correction is expensive compared to typical normal model AFS calculation, we pre-calculate and cache148

transition matrices and calling simulations. But inbreeding is often an inferred model parameter, to be149

optimized during analysis. In this case, users can specify an assumed inbreeding parameter for the low-pass150

model, optimize the inbreeding parameter in their demographic model, update the inbreeding coefficient151

assumed in the low-pass model, and iterate until convergence.152

Results153

Low-pass sequencing biases the AFS154

We used simulated data to assess the biases introduced by low-pass sequencing with GATK multi-sample155

calling, along with our model of those biases. For a simulated population undergoing growth (Fig. S2A),156

low-pass sequencing reduces the number of observed low-frequency alleles (Fig. 1). Our model accurately157

captures these biases (Fig. 1). In contrast with our model, ANGSD attempts to reconstruct the true AFS158

from low-pass data. In our simulations, ANGSD reconstructed the mean shape of the AFS well, but it159

introduced dramatic fluctuations into the reconstructed AFS at low depth (Fig. 2).160

When a pair of populations undergoing a split and isolation (Fig. S2B) is analyzed through a joint AFS,161

similar low coverage biases occur (Fig. S3). Again, our model corrects those biases well (Fig. S3). Similar162

to the single-population case, ANGSD also introduces large fluctuations in the joint AFS S4).163

Low-pass biases are expected to be smaller in inbred populations, due to the reduction of heterozygosity.164

In a simulated population recovering from a bottleneck with inbreeding (Fig. S2C), biases are still observed,165

which our model corrects (Fig. S5). Again, ANGSD introduced large fluctuations in low-pass AFS, beyond166

those expected from inbreeding (Fig. S6).167

Demographic history inference from low-pass AFS168

To assess effects on inference, we first fit demographic models to single-population data simulated under169

the same growth model as our prior simulations (Fig. S2A). When not modeling low-pass biases, the final170
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Figure 1: The low-pass AFS is biased, which our model captures. Simulated sequence data from an exponen-
tial growth demographic model for 20 individuals were called by GATK and subsampled to 16 individuals
(to accommodate missing data at low depth). The GATK-called AFS (green) is biased compared to the true
AFS (orange), and our dadi model for low-pass sequencing (purple) fits those biases well. Coverage was (A)
3×, (B) 5×, (C) 10×, and (D) 30×.
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Figure 2: ANGSD corrects for low-pass bias of the AFS, but introduces fluctuations. For the same simulations
as Fig. 1, ANGSD (blue) was used to reconstruct the true AFS (red). Coverage was (A) 3×, (B) 5×, (C)
10×, and (D) 30×.
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Figure 3: Our low-pass model and ANGSD enable accurate demographic parameter inference. A&B: From
data simulated under a single-population growth model, the final population size and time of growth onset
(T ) were accurately inferred using our low-pass model and a GATK-called AFS or using normal dadi and
an ANGSD-called AFS. But they were biased if low depth was not accounted for when fitting a GATK-
called AFS. (Dashed horizontal lines are simulated true values.) C: The likelihoods using the GATK AFS
were similar whether or not low-pass biases were modeled. D: The fluctuations introduced into the AFS by
ANGSD caused low likelihoods at low depth. E-H: For a two-population split with isolation model, similar
results were found, although inferences from our low-pass model were slightly biased at 3× coverage.

population size was underestimated (Fig. 3A), consistent with a deficit of low-frequency alleles. The timing171

of growth onset was also inaccurately inferred, underestimated at 3× depth and overestimated at 5× depth172

(Fig. 3B). When the same data were fit with our low-pass model, both model parameters were accurately173

recovered (Fig. 3A&B) even at the lowest depth. Fits to the AFS reconstructed by ANGSD also yielded174

accurate model parameters (Fig. 3A&B).175

The logarithm of the likelihood is commonly used to assess the quality of model fit. ANGSD reconstructs176

the AFS for the full sequenced sample size, while we subsample in our approach to deal with missing geno-177

types, so the likelihoods are not directly comparable. The likelihoods of models fit to the subsampled GATK178

data were similar whether or not low-pass biases were modeled (Fig. 3C), suggesting that the likelihood itself179

cannot be used to detect unmodeled low-pass bias. When fitting AFS estimated by ANGSD, likelihoods180

were much lower at low coverage than high coverage (Fig. 3D), likely driven by the fluctuations ANGSD181

introduced into the estimated AFS (Fig. 2).182

For two-population data simulated under an isolation model (Fig. S2B), similar results were found. Fitting183

the observed low-pass AFS with our model enabled accurate parameter inference (although there was some184

bias at 3× coverage) as did fitting the AFS estimated by ANGS (Fig. 3D). As in the single-population case,185

likelihoods were substantially lower when fitting the ANGSD-estimated AFS, consistent with introduced186

fluctuations in the AFS (Fig. S4).187

For one-population data simulated under a growth model with inbreeding (Fig. S2C), failing to correct188

for low-pass biases at low inbreeding (F = 0.1 or F = 0.5) led to similar biases as with no inbreeding, which189

our low-pass model corrected (Fig. S7). For high inbreeding (F = 0.9), the impact of low-pass sequencing190
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Figure 4: Allele frequency spectra from 20 YRI samples versus subsampled sequencing depth. A: Spectra
generated using the GATK pipeline and subsampled to 32 haplotypes to accomodate missing genotypes. B:
Spectra generated using ANGSD genotype likelihood optimization with BAM files input.

on accuracy was smaller, because inbreeding reduces heterozygosity (Fig. S7).191

When applying our low-pass bias correction, the user must specify a value for inbreeding, while they may192

separately estimate it during demographic parameter optimization. We tested the impact of misspecifying193

inbreeding in the low-bias correction using data simulated with moderate inbreeding of F = 0.5. Large194

inbreeding values were inferred if inbreeding was initially underestimated in the low-coverage model, and195

small values were inferred if inbreeding was initially overestimated (Fig. S8C). A substantial difference196

between the inbreeding coefficient used for correction and the inferred value thus suggests that the assumed197

inbreeding coefficient was not optimal. Users can thus iterate and update the value assumed in the low-pass198

correction to converge to a best inference of inbreeding.199

Analysis of human data200

To empirically validate our approach and compare with ANGSD, we used chromosome 20 sequencing data201

from the 1000 Genomes Project, focusing on two sets of samples: Yoruba from Ibadan, Nigeria (YRI) and202

Utah residents of Northern and Western European ancestry (CEU). We inferred a single-population two-203

epoch demographic model (Fig. S9A) from the YRI samples, and a two-population isolation-with-migration204

model (Fig. S9B) from the combined YRI and CEU samples. To mimic low-pass sequencing, we subsampled205

the original high-depth data (which averaged 30× per site per individual) to create data with low to medium206

depth.207

As with simulated data, the observed AFS from low-pass subsampled data was biased compared to208

high-pass data (Fig. 4A). Using the GATK pipeline, low-pass data yielded few low- and high-frequency209

derived alleles. In contrast to the simulated data, on these real data ANGSD failed to recover the correct210

number of low-frequency alleles at 3× and 5× depth, while still introducing large fluctuations at intermediate211

frequencies (Fig. 4B).212

If low-pass biases were corrected for, we expected the inferred demographic parameters from subsampled213

low-pass data to match those from the original high-pass data. For the two-epoch model fit to YRI data, we214

found that with a GATK-called AFS and no low-pass model (Table 1), the inferred population sizes were215

biased downward and the times were inaccurate, similar to the growth model fit to simulated data. With216

the low-pass model, inferred values for low depth were similar to those for high depth, with some deviation217

at 3× (Table 1). Results from fitting ANGSD-estimated spectra were similar to not modeling low depth,218
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suggesting that ANGSD is ineffective for these data (Table 1). As with simulated data, the likelihoods for219

ANGSD at low depth were also low.220

For the isolation-with-migration model fit to YRI and CEU data, the results were broadly similar (Ta-221

ble S1.) For population sizes and the divergence time, inferences were more stable from GATK genotyping222

and our low-pass model than from ANGSD-estimated AFS. By contrast, the inferred migration rate was223

similar across analyses.224

Table 1: One-population YRI model analysis results. Inferred demographic parameters in dadi using em-
pirical GATK and ANGSD AFS. We analyzed GATK empirical spectra without (dadi) and with low-pass
correction (low-pass).

depth
parameter AFS model 30× 10× 5× 3 ×

GATK dadi 1.82 1.76 1.54 0.05
νY RI GATK low-pass 1.83 1.77 1.70 1.54

ANGSD dadi 1.81 1.80 1.67 0.08
GATK dadi 0.43 0.51 0.88 0.001

T GATK low-pass 0.42 0.49 0.51 0.43
ANGSD dadi 0.55 0.68 0.96 0.001
GATK dadi 5.15 5.08 4.81 5.99

θ (×104) GATK low-pass 5.16 5.10 5.10 5.20
ANGSD dadi 5.52 5.32 5.03 6.78
GATK dadi -297 -253 -533 -1312

log-likelihood GATK low-pass -302 -259 -283 -339
ANGSD dadi -475 -486 -1120 -5905

Discussion225

We assessed the biases introduced by low-pass sequencing using GATK multi-sample genotype calling and226

developed a model to mitigate these biases. In a simulated population undergoing growth, we found that227

low-pass sequencing reduced the presence of low-frequency alleles (Fig. 1). Our model accounted for these228

biases, contrasting with ANGSD, which created fluctuations in the AFS at low depth (Fig. 2). In scenar-229

ios involving two populations, we observed similar biases, which our model effectively corrected, whereas230

ANGSD introduced additional noise (Fig. S3 and S4). For demographic inference, using our model enabled231

accurate parameter estimates even at low-pass depths, while neglecting low-depth biases resulted in substan-232

tial inaccuracies (Fig. 3). ANGSD also yielded accurate estimates, but worse likelihoods. Empirical testing233

using human data from the 1000 Genomes Project showcased the accuracy of our correction method in234

improving demographic inference from low-pass data, outperforming both uncorrected analysis and ANGSD235

results (Fig. 4 and Tables 1 and S1).236

While ANGSD is recognized for its effectiveness in managing low-pass sequencing, our results showed237

its difficulties in modeling medium-frequency alleles. This is reflected in lower likelihood scores, particu-238

larly when comparing low-pass datasets to high-pass ones (Fig. 3). Despite their utility in incorporating239

uncertainty related to low-pass sequencing (Nielsen et al. 2011; Fumagalli 2013; Korneliussen et al. 2014),240

genotype likelihoods might not always accurately capture the entire range of allele frequencies. Despite241

the AFS fluctuations, ANGSD yielded reliable parameter estimates for simulated data. But ANGSD was242

unable to accurately estimate the demographic parameters of real datasets, as demonstrated in the analysis243

of the 1000 Genomes Project data (Tables 1 and S1). This underscores the need for rigorous and critical244

assessments of results by evaluating the likelihood of the model and conducting uncertainty analysis.245

Variant discovery using GATK involves two main approaches: multi-sample (classic joint-calling) and246

single-sample calling (Nielsen et al. 2011). We modeled multi-sample calling, which has higher statistical247
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power compared to single-sample calling (Nielsen et al. 2011; Poplin et al. 2018). But multi-sample calling248

can become computationally burdensome with larger sample sizes, leading to the development of incremental249

single-calling as a scalable alternative (McKenna et al. 2010; Auwera & O’Connor 2020). When our model250

was applied to incremental single-calling AFS from subsampled 1000 Genomes Project data, parameter251

inference was poor (Table S2). Therefore, our model should only be used with multi-sample calling, and a252

slightly different model may need to be developed for incremental single-calling.253

We present a GATK multi-sample calling model designed to compensate for AFS biases introduced by254

low-pass sequencing. Although tailored for GATK, our model’s design allows for its extension to different255

pipelines with modifications to address the unique aspects of each calling algorithm. For example, our model256

currently assumes that a site is called when at least two reads supporting the alternative allele are found257

(Eq. 3 and 4), but this could be modified for other pipelines with different calling criteria. Our approach258

can thus be generalized to other calling pipelines, including those using short reads, long reads, and hybrid259

approaches (e.g. Bankevich et al. 2012; Poplin et al. 2018). Note that our mathematical model assumes a260

shared read depth distribution among all individuals, and some studies may vary depth among individuals.261

Simulations suggest, however, that our model remain accurate with uneven depths (Fig. S10).262

Our approach can also be integrated into other AFS-based inference tools such as moments (Portik et al.263

2017; Leaché et al. 2019), fastsimcoal2 (Excoffier et al. 2013, 2021), GADMA (Noskova et al. 2020), and264

delimitR (Smith & Carstens 2020), because our approach modifies the model AFS, independent of how it265

is computed. Our approach may also be useful in Approximate Bayesian Computation (Beaumont 2010;266

Csilléry et al. 2012) and machine learning workflows (Pudlo et al. 2016; Smith & Carstens 2020), facilitating267

simulation of low-pass datasets. Note, however, that we model bias in the mean shape of the AFS under268

low-pass sequencing, not its full variance (Fig. S11). Furthermore, AFS-based analyses are used not only269

for demographic studies but also to examine natural selection, including inferring the distribution of fitness270

effects of new mutations (Eyre-Walker & Keightley 2007; Huang et al. 2021). Our approach can thus facilitate271

population genomics research across tools, approaches, and problem domains.272

In conclusion, we have developed a robust correction for low-pass sequencing biases, significantly enhanc-273

ing the accuracy of demographic parameter estimation at various coverage depths. As the genetic research274

community continues to address challenges associated with low-pass data (Bryc et al. 2013; Korneliussen275

et al. 2014; Blischak et al. 2018; Meisner & Albrechtsen 2018), especially when constrained by economics or276

sample availability, our methodology provides enables more reliable genetic analysis.277

Material and Methods278

Simulating AFS under low-pass sequencing279

We used msprime (Kelleher et al. 2016; Baumdicker et al. 2022) to generate SNP datasets via coalescent280

simulations. We simulated two demographic models. The demographic models were visualized using demes-281

draw (Gower et al. 2022). The first model, singe-population exponential growth (Fig. S2A), involved two282

parameters: the relative population size ν1 = 10 and time of past growth T = 0.1 (in units of two times the283

effect population size generations). The second model, two-population isolation (Fig. S2B), involved three284

parameters: equal relative sizes of populations 1 and 2, ν1 = ν2 = 1, and divergence time in the past T285

= 0.1. For each model, we conducted 25 independent simulations. For the exponential growth model, we286

sampled 20 diploid individuals, whereas for the isolation model, we sampled 10 individuals per population.287

Both demographic scenarios used an ancestral effective population size Ne of 10,000, a sequence length of288

107 bp, a mutation rate of µ = 10−7 per site per generation, and recombination rate of r = 10−7 per site289

per generation.290

For simulations incorporating inbreeding, we used SLiM 4 (Messer 2013; Haller & Messer 2023). Datasets291

were generated under a bottleneck and growth model (Fig. S2C), with a population bottleneck of νB = 0.25,292

followed by a population expansion to νF = 1.0. The time of the past bottleneck was set at T = 0.2, and293

the level of inbreeding was varied with F ∈ {0.1, 0.5, 0.9}. Inbreeding was introduced using the selfing rate,294

set to s = 2F
1+F . Twenty-five independent simulations were conducted, with 20 individuals sampled for each295
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replicate. Simulation parameters were Ne = 1000, L = 2 × 106 bp, µ = 5 × 10−6, and r = 2.5 × 10−6, with296

a burn-in of 10,000 generations.297

To create low-pass datasets, we used synthetic diploid genomes. For each simulation replicate, we gener-298

ated a random reference genome spanning 10 Mb with a GC content of 40%, resembling the human genome.299

Mutations were incorporated by altering single nucleotides at the positions observed in the SNP matrix300

generated during each simulation, assuming that all sites were biallelic. Diploid individual genomes were301

generated by randomly selecting two chromosomes from the population pool.302

Using the synthetic individual genomes as templates, we simulated 126 bp paired-end short reads for each303

individual with InSilicoSeq v2.0.1. (Gourlé et al. 2019). We calculated the number of reads per scenario as304

LC/R, where L is the genome length, C the coverage depth, and R the read length. Reads for each diploid305

chromosome were simulated with equal probability. Depth of coverage per individual was sampled from a306

normal distribution with means of 3, 5, 10, and 30 and corresponding standard deviations of 0.3, 0.5, 1,307

and 3 to explore coverage variability, which increased with coverage levels. These standard deviations were308

selected based on preliminary simulations that suggested they offer a realistic variance for each coverage309

level.310

For each individual we aligned simulated reads to the reference genome using BWA v0.7.17 (Li et al. 2009).311

We then processed the aligned reads with SAMTools v1.10 (Li 2013) to perform sorting, indexing, and pileup312

generation. To generate GATK spectra, we used the GATK multi-sample approach via HaplotypeCaller313

v4.2 (McKenna et al. 2010; Auwera & O’Connor 2020). To minimize false positives, the identified variants314

underwent filtering based on GATK’s Best Practices guidelines, with thresholds tailored to expected error315

rates and variant quality. These thresholds included depth-normalized variant confidence (QD < 2.0),316

mapping quality (MQ < 40), strand bias estimate (FS > 60.0), and strand bias (SOR > 10.0). The filtered317

SNP VCF files were subsequently used in demographic inference analyses to estimate population parameters318

based on the AFS of these variants. To generate ANGSD spectra, we used the BAM files containing319

information about each individual with reads aligned to the reference genome. Subsequently, realAFS was320

used to estimate a maximum-likelihood AFS through the Expectation-Maximization algorithm. ANGSD321

v0.94 analysis was executed with the following settings: doSaf = 1, minMapQ = 1, minQ = 20, and GL = 2.322

Empirical subsampling of Human data323

We used high-quality whole-genome sequencing data (30×) from the 1000 Genomes Project (1kGP), sourced324

from The International Genome Sample Resource data portal (https://www.internationalgenome.org/325

Fairley et al. 2020). The data comprised CRAM files aligned to the GRCh38 human reference genome.326

We focused on two sets of samples for our analysis: 10 randomly selected individuals from the Yoruba from327

Ibadan, Nigeria (YRI) samples and 10 from the Utah residents with Northern and Western European ancestry328

(CEU) samples. The specific individuals included for the YRI were NA18486, NA18499, NA18510, NA18853,329

NA18858, NA18867, NA18878, NA18909, NA18917, NA18924, and for the CEU NA07037, NA11829, NA11892,330

NA11918, NA11932, NA11994, NA12004, NA12144, NA12249, NA12273. Additionally, for a single-population331

demographic model, 20 YRI individuals were analyzed, which includes the initial 10 plus an additional 10332

samples: NA19092, NA19116, NA19117, NA19121, NA19138, NA19159, NA19171, NA19184, NA19204, and333

NA19223.334

Initially, we converted the CRAM files to BAM format and indexed them using Picard tools (https:335

//broadinstitute.github.io/picard/). We then isolated reads from chromosome 20 at the original 30×336

coverage, which we subsequently subsampled to 10×, 5×, and 3× coverage using samtools v.1.10 (Li 2013)337

to emulate varying sequencing depths. Next, using GATK version 4.2.5 HaplotypeCaller (McKenna et al.338

2010; Auwera & O’Connor 2020), we called SNPs and indels from these varying coverage depths for each339

population. We employed multi-sample SNP calling, merging BAM files with identical coverage prior to340

processing with HaplotypeCaller. This approach yielded a raw output VCF file.341

We also carried out a single-sample calling procedure. For this, individual BAM files were used directly342

as inputs for the GATK HaplotypeCaller with the -ERC GVCF flag to enable GVCF mode. Following this,343

we used GATK GenomicsDBImport to compile the individual variant calls into a cohesive data structure.344

This setup allowed us to conduct joint genotyping using GATK GenotypeGVCFs, ultimately producing a345
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multi-sample VCF.346

Following SNP calling, we employed GATK SelectVariants to filter out indels for both approaches, re-347

taining only SNPs. Quality filtering of SNPs was conducted using GATK VariantFiltration, applying criteria348

such as depth-normalized variant confidence (QD < 2.0), mapping quality (MQ < 40), strand bias estimate349

(FS > 60.0), and overall strand bias (SOR > 10.0). After quality filtering, the VCF files were annotated350

with ancestral allele information using the vcftools fill-aa module, based on data from the Ensembl351

Release 110 Database (Danecek et al. 2011).352

Finally, we used ANGSD to generate an AFS by using BAM files as input. The sample allele frequencies353

were first estimated using ANGSD’s -doSaf flag, using GATK genotype likelihoods. These likelihoods354

were then used to calculate the AFS via the Expectation-Maximization algorithm using ANGSD’s realAFS355

program. In this way, we maintained the original sample sizes from the BAM files, resulting in AFS for 40356

chromosomes in the single-population analysis and 20 chromosomes per population in the two-population357

analysis.358

Demographic inference using dadi359

We used dadi (Gutenkunst et al. 2009) to fit demographic models to simulated and empirical datasets. For360

the GATK spectra, we used the VCF files as input and subsampled individuals to accommodate missing data.361

For the ANGSD spectra, we used them as input directly. Within dadi, we used three demographic models for362

the simulated datasets: (i) an exponential growth model: dadi.Demographics1D.growth; (ii) a divergence363

model with migration fixed to zero: dadi.Demographics2D.split mig; (iii) an bottleneck then exponential364

growth model modified to incorporate inbreeding: dadi.Demographics1D.bottlegrowth. For the human365

datasets, we used two models: (i) a divergence with migration model: dadi.Demographics2D.split mig366

and (ii) an instantaneous growth model: dadi.Demographics1D.two epoch. The extrapolation grid points367

were set using the formula [max(ns) + 120,max(ns) + 130,max(ns) + 140], where ns is the sample size of368

the AFS. Our low-coverage correction is also implemented in dadi-cli (Huang et al. 2023).369
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The correction for low-pass sequencing is performed using the publicly available dadi Python package, which can be ac-

cessed at https://bitbucket.org/gutenkunstlab/dadi. Additionally, the codebase for creating and analyzing both simulated

and empirical datasets, ensuring reproducibility, is readily accessible on GitHub at https://github.com/emanuelmfonseca/

low-coverage-sfs and https://github.com/lntran26/low-coverage-sfs/tree/main/empirical_analysis. Furthermore, we

provide illustrative examples to assist users in implementing our methodology.

Table S1: Two-population model analysis results. Inferred demographic parameters in dadi using empirical
GATK and ANGSD AFS. We analyzed GATK empirical spectra without (dadi) and with low-pass correction
(low-pass).

depth
parameter AFS model 30× 10× 5× 3 ×

GATK dadi 1.79 1.63 1.18 0.61
νY RI GATK low-pass 1.82 1.62 1.67 1.69

ANGSD dadi 1.69 1.58 1.26 0.87
GATK dadi 0.38 0.37 0.31 0.17

νCEU GATK low-pass 0.38 0.38 0.36 0.34
ANGSD dadi 0.39 0.38 0.33 0.22
GATK dadi 0.21 0.22 0.18 0.06

T GATK low-pass 0.21 0.23 0.20 0.16
ANGSD dadi 0.21 0.22 0.20 0.07
GATK dadi 1.80 2.00 2.24 1.68

m GATK low-pass 1.80 2.00 1.89 1.66
ANGSD dadi 1.99 2.12 2.44 1.91
GATK dadi 5.42 5.44 5.56 5.65

θ (×104) GATK low-pass 5.43 5.42 5.45 5.40
ANGSD dadi 6.04 6.01 6.03 6.25
GATK dadi -2588 -2378 -2329 -2663

log-likelihood GATK low-pass -2590 -2479 -2224 -1850
ANGSD dadi -5518 -5595 -7074 -11029
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Table S2: One-population model analysis results with single-sample calling using empirical GATK AFS. We
analyzed GATK empirical single-sample call spectra without (dadi) and with low-pass correction (low-pass).

depth
parameter model 30× 10× 5× 3 ×

dadi 1.85 1.87 1.82 1.56
νY RI low-pass 1.86 1.93 2.73 3.60

dadi 0.43 0.45 0.51 0.48
T low-pass 0.42 0.40 0.24 0.24

dadi 5.13 5.05 4.62 4.31
θ (×103) low-pass 5.14 5.10 4.96 4.49

dadi -284 -280 -457 -1755
log-likelihood low-pass -291 -317 -597 -1005
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Figure S1: Probability of calling a variant site versus true allele frequency and coverage depth.
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Figure S2: Representation of the demographic models used in the simulations: (A) single-population ex-
ponential growth model with parameters ν1 = 10 and T = 0.1, (B) two-population isolation model with
ν1 = ν2 = 1 and T = 0.1, (C) single-population exponential growth model with inbreeding with parameters
ν1 = 4, T = 0.4, and F ∈ {0.1, 0.5, 0.9}. ν, T , F represent relative population size, time in the past, and
inbreeding coefficient, respectively. This plot was created with Demes (Gower et al. 2022)
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Figure S3: The observed 2D AFS is biased by low coverage. Deviation between the observed low-coverage
AFS (first column) and the expected AFS (calculated by dadi) for the isolation demographic scenario is
visualized through the residual plot (second column). Dark red residuals indicate that the observed low-
coverage AFS is deficient in low-frequency alleles compared to the expectation. By contrast, the residuals
between the observed AFS and the low-coverage model are much smaller. At 30× coverage (D) the residuals
become small and random, indicating agreement between all three spectra. Coverage depths compared are
(A) 3×, (B) 5×, (C) 10×, and (D) 30×.
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Figure S4: ANGSD creates fluctuations in the joint AFS. The joint AFS output by ANGSD exhibits sporadic
very large residuals when compared with the true simulated AFS, similar to the oscillations seen in the single
population AFS (Fig. 2). Coverage depths compared are (A) 3×, (B) 5×, (C) 10×, and (D) 30×.
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Figure S5: The observed AFS is impacted by low-pass sequencing (3×, 5×, 10×, and 30×) and inbreeding
(F ∈ {0.1, 0.5, 0.9}). This figure presents a comparison of the observed AFS from low-pass variant calling
with simulations in both the standard dadi and dadi-low-pass frameworks, using the true parameter values
for a single-population model.
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Figure S6: ANGSD corrects for the low-pass bias of the AFS, but it introduces fluctuations in inbreeding
models. For the same simulations as Fig. S5, ANGSD (blue) was used to reconstruct the simulated AFS
(red). Coverages were 3×, 5×, 10×, and 30×) and inbreeding 0.1, 0.5, and 0.9.
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Figure S7: Graph showcasing the accuracy of parameter and likelihood estimations across various sequenc-
ing depths (3 ×, 5 ×, 10 ×, and 30 ×) and inbreeding (F ∈ {0.1, 0.5, 0.9}) for a population bottleneck
and growth model. The inbreeding parameters were kept fixed for both the low-pass calculation and the
optimization process. Parameters were obtained through different methods, including dadi, both with and
without corrections for low coverage, as well as ANGSD. Details of the graph include: (A), (F), (K) the
estimated size after population bottleneck; (B), (G), (L) the estimated size after population expansion; (C),
(H), (M) the time of population expansion; (D), (I), (N) log-likelihood calculations from dadi, highlighting
the distinction between corrected and uncorrected model for low coverage; and (E), (J), (O) log-likelihood
calculations from ANGSD. The black line present in the plots for (A), (B), (E), (F), (I), (J) and indicates
the true value of the parameter, providing a standard for evaluating the accuracy of different approaches.
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Figure S8: Graph showcasing the accuracy of parameter and likelihood estimations across various sequencing
depths (3 ×, 5 ×, 10 ×, and 30 ×) and inbreeding (F ∈ {0.1, 0.5, 0.9}) for a population expansion model
under a true inbreeding value of 0.5. The inbreeding parameters used for the low-pass calculation were
0.1, 0.5, and 0.9. Parameters were obtained using dadi-low-pass. Details of the graph include: (A) the
estimated size after population bottleneck; (B) the estimated size after population expansion; (C) the time
of population expansion; (D) inferred inbreeding coefficient; (E) log-likelihood calculations from dadi-low-
pass. The black line present in the plots for (A), (B), (C), and (D) indicates the true value of the parameter,
providing a standard for evaluating the accuracy of different approaches.
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Figure S9: Representation of the demographic models used to analyse 1000 genomes datasets: (A) single-
population two-epoch growth model with parameters, (B) two-population isolation with migration model.
This plot was created with Demes (Gower et al. 2022)
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Figure S10: Unbalanced depth of coverage does not bias the dadi-low-pass model. Simulations were per-
formed using 20 individuals, with half simulated under low-coverage conditions (A: 3× or B: 5×) and the
other half under high-depth coverage (30 ×).
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Figure S11: The simulated AFS under the low-pass model shows less variance compared to that observed in
the simulated datasets. We generated 25 AFS for each condition.
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