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Phosphorylation induced cochaperone unfolding
promotes kinase recruitment and client class-
specific Hsp90 phosphorylation
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During the Hsp90-mediated chaperoning of protein kinases, the core components of the

machinery, Hsp90 and the cochaperone Cdc37, recycle between different phosphorylation

states that regulate progression of the chaperone cycle. We show that Cdc37 phosphor-

ylation at Y298 results in partial unfolding of the C-terminal domain and the population of

folding intermediates. Unfolding facilitates Hsp90 phosphorylation at Y197 by unmasking a

phosphopeptide sequence, which serves as a docking site to recruit non-receptor tyrosine

kinases to the chaperone complex via their SH2 domains. In turn, Hsp90 phosphorylation at

Y197 specifically regulates its interaction with Cdc37 and thus affects the chaperoning of only

protein kinase clients. In summary, we find that by providing client class specificity, Hsp90

cochaperones such as Cdc37 do not merely assist in client recruitment but also shape the

post-translational modification landscape of Hsp90 in a client class-specific manner.
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Heat shock protein 90 (Hsp90) is the core component of a
machinery involved in the conformational maturation of
a large set of proteins of near-native conformation. It acts

upon substrates in the context of a multistep chaperone cycle,
which is subject to multiple layers of regulation1,2. At the level of
the chaperone, the nature of the nucleotide-liganded state con-
trols the population shift between conformations that differ in
their local or global molecular architecture3–6, as well as in the
residence time in each conformation7. At the level of the
machinery, a large cohort of cochaperones tunes the Hsp90
chaperone cycle8. Recruiting cochaperones, such as p60Hop (Sti1)
and Cdc37 (p50), act on both the client and the chaperone to
stabilize the open Hsp90 conformation, slow down its ATPase
activity, and promote efficient client transfer to Hsp909–13. In
contrast to Hop, Cdc37 does not function strictly as an adaptor
protein. Its selective unfoldase activity on the client over non-
client kinases allows for substrate sorting and efficient transfer to
Hsp90 by imposing an open kinase conformation14 competent
for stable chaperone association15,16.

As another layer of regulation in eukaryotes, Hsp90 undergoes
a plethora of post-translational modifications (PTMs) that
include phosphorylation, acetylation, S-nitrosylation, oxidation,
SUMOylation, methylation, and ubiquitination17–19. Hsp90
PTMs occur as molecular events that assist in the timely pro-
gression through the chaperone cycle20 or as a response to stimuli
such as DNA damage21,22 and nitric oxide levels23. They have
diverse functional consequences that range from altered interac-
tion profiles with clients24, cochaperones20,25, nucleotides, or
small-molecule inhibitors25, to translocation26,27, secretion28, and
conformational changes29–31. Cochaperones are also subject to
PTMs, adding yet another layer of regulation. Phosphorylation of
cochaperones modulates their interaction with upstream folding
machineries, clients, and Hsp9016,20,32–34.

During the kinase chaperone cycle, both Hsp90 and the kinase-
specific cochaperone Cdc37 undergo multiple phosphorylation
events. The cycle begins with Cdc37 phosphorylated at S13 by
CK2, a constitutive modification required for kinase matura-
tion35,36. Subsequently, a series of tyrosine phosphorylations on
Cdc37 and Hsp90 allow for the disassembly of the substrate-
recruitment complex and progression of the cycle20. Phosphor-
ylation of Cdc37 at Y4 and Y298 by the non-receptor tyrosine
kinase (nRTK) Yes compromises its ability to form complexes
with a set of client kinases20. Hsp90 phosphorylation at Y197 by
Yes or alternative nRTKs results in Cdc37 dissociation and pro-
motes Y313 phosphorylation, which assists in engaging Aha1 into
the chaperone complex. The cycle ends with the phosphorylation
of Y627, which favors the release of clients and cochaperones20.
Dephosphorylation is equally important for kinase maturation
and the cochaperone phosphatase PP5 was found to act on
pS1334,37. Finally, Cdc37 phosphorylation at S339 by Ulk1
compromises its ability to associate with protein kinases38, while
an isoform-specific phosphorylation on Hsp90β by CK2 (S365)
compromises its ability to interact with Cdc3739.

At a molecular level, the mechanism by which multiple
phosphorylation events impact the Hsp90 chaperone cycle
remains unexplored. We show that the kinase-specific cocha-
perone Cdc37 promotes tyrosine phosphorylation of Hsp90 in a
client class-specific manner. Our data reveal a mechanism by
which specific Hsp90 modification patterns may occur through
cochaperone-mediated recruitment of the corresponding mod-
ifying enzymes.

Results
Y298 hydrogen bonding regulates the conformation of C-
Cdc37. To elucidate the functional role of Y298 phosphorylation

in kinase processing, we first investigated the impact of the Y298
hydrogen-bond network on the conformational properties of the
C-terminal domain of Cdc37 (C-Cdc37), by introducing the
Y298F mutation. In the NMR structure of C-Cdc3740, the –OH
group of Y298 lies within hydrogen bond distance to the car-
boxylate group of D310 and the carbonyl group of Q306 (Fig. 1a).
We noted that in higher eukaryotes, where phosphorylation
regulates activity20, Y298 and D310 show a very strong evolu-
tionary covariation, which implies a significant functional cou-
pling between these positions (Supplementary Fig. 1a, b).
Comparison of the 15N-HSQC spectrum of C-Cdc37Y298F to that
of C-Cdc37 reveals that most signals from the folded core of the
domain (a.a. 288–343) exhibit significant chemical shift pertur-
bation (CSP), while signals from the flexible C-terminal tail
remain unaffected (Fig. 1b, c). The most prominent CSPs are
observed for residues in helix α2, which encompasses both D310
and Q306, as well as for residues from helix α3, which packs
against helix α2. Notably, irrespective of the magnitude of CSP, all
signals appear to shift toward the center of the spectrum, indi-
cating that, as compared to the wild-type domain, there is a
relatively small but measurable population shift to an unfolded
conformation. This is reflected on both the thermal stability of C-
Cdc37Y298F, where a 5 °C drop in the Tm is observed, and on the
intrinsic tryptophan fluorescence, where a 7-nm redshift of the
wavelength of maximum emission is observed, indicating a
greater exposure (Supplementary Fig. 1c, d). Nevertheless, ana-
lysis of the backbone secondary chemical shifts for Cdc37Y298F

shows shortening of helices α1 and α2 by only one and two
residues, respectively (Fig. 1d), which is in agreement with the
marginal difference in the CD spectrum of the two proteins
(Supplementary Fig. 1e).

To further characterize the impact of the Y298 hydrogen bond
network on the conformational properties of C-Cdc37, we studied
the backbone dynamics of C-Cdc37Y298F by measuring 15N
relaxation rates (Supplementary Fig. 1f), and adopted the reduced
spectral density approach for the analysis41 (Fig. 1e). The low-
frequency spectral density, J(0), is sensitive to both slow (μs–ms)
and fast (ps–ns) timescale internal motions. Enhanced μs–ms
internal motion is manifested as J(0) values higher than one
standard deviation from the mean, while enhanced ps–ns internal
motion as J(0) values lower than one standard deviation from the
mean. As compared to C-Cdc37, the folded region of C-
Cdc37Y298F exhibits higher J(0) values, which is reflected by an
increase of the mean value from ~2.2 to ~4.0 ns/rad (Fig. 1e).
Residues for which significantly large J(0) values are observed and
thus experience enhanced μs–ms internal motions are E296 and
E299 from helix α1, E303, L305, C308, and F309 from helix α2,
K312, V314, and A329 from loop1, and helices α3 and α4,
respectively, as well as residues S339 and W342, at the end of the
structured region. Importantly, a similar trend is observed for
wild-type C-Cdc37, for which the same set of residues is
characterized by large J(0) values, albeit of significantly smaller
values as compared to C-Cdc37Y298F. Hence, although disruption
of Y298 hydrogen bond network causes only minimal perturba-
tion in the secondary structure of the folded core, it partially
destabilizes its tertiary structure and enhances the μs–ms
dynamics at the interface of helices α1 and α2.

Y298 phosphorylation results in partial unfolding of C-Cdc37.
We next sought to investigate the effect of phosphoryl group
addition to the side chain of Y298 on the conformational prop-
erties of C-Cdc37, by introducing the phosphomimetic mutation
Y298E. In contrast to the 15N-HSQC spectrum of C-Cdc37Y298F,
which shows only small changes in signal dispersion and line-
widths as compared to C-Cdc37, the fingerprint spectrum of C-
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Cdc37Y298E exhibits poor signal dispersion suggesting that the
introduction of a negative charge on the side chain of Y298 has a
global effect on the folded region of C-Cdc37 and brings a sig-
nificant loss of the native structure (Fig. 2a). This observation is
further supported by a 13-nm redshift in the wavelength of
maximum tryptophan emission, to a position between the
emission maxima of C-Cdc37Y298F and that of C-Cdc37 acquired
in the presence of 9 M urea (Supplementary Fig. 1d). Still, as
evident by the far-UV CD spectra, C-Cdc37Y298E retains some
secondary structure (Supplementary Fig. 1e), while its 15N-HSQC
spectrum displays very broad linewidths. Hence, loss of the native
structure by the phosphomimetic mutation does not result in
domain disorder but rather in the transition of C-Cdc37 to a

conformationally heterogeneous, partially unfolded state. This
effect is not an artefact caused by domain truncation. Compar-
ison of the 13C-HMQC or 15N-HSQC spectra of full-length
Cdc37 carrying the phosphomimetic mutation (Cdc37Y298E) to
that of the wild-type protein and of C-Cdc37Y298E (Fig. 2b and
Supplementary Fig. 2a) reveals a global loss of dispersion for the
signals of the C domain similar to that observed for the isolated
C-Cdc37Y298E. The new signals that appear in the “unfolded”
region of the spectrum of full-length Cdc37Y298E show very good
chemical shift correspondence to those of isolated C-Cdc37Y298E,
supporting a shift to the same partially unfolded state. In addi-
tion, partial unfolding is not affected by the presence of Hsp90.
Although Cdc37Y298E forms a stable complex with Hsp90 as
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Fig. 1 Conformational properties of C-Cdc37Y298F. a The hydrogen-bond network of Y298 involving Q306 and D310 is shown as black dashed lines on the
solution structure of C-Cdc37. C-Cdc37 is colored with a gray-to-red gradient, according to the observed chemical shift perturbation between the wild-type
and Y298F C-Cdc37. b Overlay of the 15N-HSQC of Y298F (orange) and wild-type C-Cdc37 (black) with the tryptophan indole region omitted. c
Magnitude of CSP between wild-type and C-Cdc37Y298F. Prolines are shown as green bars and unassigned residues as blue bars. CSPs higher than the
mean or one standard deviation above the mean are marked with solid and dashed lines, respectively. d Chemical shift-derived secondary structure for
wild-type (black), Y298F (orange), and Y298E (green) C-Cdc37. e Reduced spectral density functions J(0) (top), J(ωN) (middle), and J(0.87ωH) (bottom)
of Y298F (orange) and wild-type Cdc37 (black). Solid and dashed lines mark the mean and the mean± one standard deviation of the spectral density
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reported by the large chemical shift change of I159, which lies at
the vicinity of the Cdc37-Hsp90 interface, the C-domain signals
of I321 and I337 remain unperturbed at the unfolded region
(Fig. 2b).

In order to assess whether partial unfolding due to the
phosphomimetic mutation is genuine and recapitulates the effect
caused by the addition of a phospholyl group at position Y298, we
first monitored the Yes-mediated phosphorylation of Cdc37 by
NMR. Although the reaction was ~40% complete, the new signals
that appear in the 13C-HMQC spectrum of Cdc37 overlay well
with the CH3

δ signals of I321 and I337 of Cdc37Y298E, suggesting
that the tyrosine-to-glutamate substitution behaves as a faithful
phosphomimetic in shifting the conformation of the C domain to
a partially unfolded state (Fig. 2b). We also compared the
molecular dynamics simulations of wild-type, Y298E, and pY298
C-Cdc37, performed at two temperatures (Fig. 2c and Supple-
mentary Fig. 2b). At 300K, C-Cdc37 remained folded in both
simulations, and native contacts between helices α1 and α2 were
maintained. On the other hand, for pY298, near the end of the
simulations, helix α1 rotated toward the solvent, resulting in loss
of native contacts with helix α2, while in one of the Y298E

simulations, α1 unfolded and native contacts with α2 were lost. At
310 K, helix α1 unfolded and contacts between residue 298 and
helix α2 were lost, for both pY298 and Y298E C-Cdc37, while for
C-Cdc37, unfolding of helix α1 was only observed in the extended
simulation, but without loss of native contacts and with several
short refolding events. In summary, the disruption of the
hydrogen-bonding network of Y298 and the addition of a
negatively charged group have a synergistic effect on the
conformational properties of C-Cdc37, resulting in loss of native
secondary and tertiary structure.

C-Cdc37pY298 populates native-like folding intermediates. To
understand the nature of the unfolding transition triggered by the
phosphorylation of Y298, we examined the unfolding of C-Cdc37
under equilibrium conditions. The 15N-HSQC spectra of C-
Cdc37 acquired in the presence of increasing concentrations of
urea show that, for most residues of the structured core,
unfolding occurs on the intermediate fast-exchange regime
(Supplementary Fig. 3a). From those resonances that are unam-
biguously traced at both low- and high-urea concentrations, it is
evident that the observed shift toward the unfolded state does not
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follow a linear, but either an angular or a curved trajectory
(Fig. 3a). Therefore, the unfolding transition cannot be described
based on a simple two-state model where the native state (N) is in
equilibrium with the unfolded state (U), but intermediate species
must be considered. Observing the indole resonance of W342,
which is well resolved and the only resonance that shifts on a
slow-exchange fashion without any apparent line broadening,
reveals that during the course of the titration at least two folding
intermediate states, I1 and I2, become highly populated between
0.5 M and 5.5M urea (Fig. 3b). I1 appears at the beginning of the
unfolding transition (0.5 M urea) and reaches a maximum frac-
tional population of ~0.2, followed by I2 (1.5 M urea), which
reaches a maximum fractional population of ~0.7. Notably,
during the early stage of unfolding (~2.0 M urea), the sum of
fractional populations is significantly lower than 1.0, indicating
that a fraction of C-Cdc37 (~0.4) populates alternate conforma-
tional states that are invisible under the current experimental
conditions, presumably because they interconvert on a milli-
second timescale. Comparison of the C-Cdc37 spectra acquired
during the unfolding transition to that of C-Cdc37Y298F and C-
Cdc37Y298E provides further insights as to how the composition
of the conformational ensemble sampled by C-Cdc37 is altered in
response to the properties of the side chain at position 298
(Supplementary Fig. 3b and 3c). Most resonances in the 15N-
HSQC spectrum of C-Cdc37Y298F overlay well with resonances of
C-Cdc37’s spectrum acquired in the presence of 1.5 M urea.
Hence, disruption of Y298 hydrogen-bonding network results in
a population shift within the conformational ensemble to a state
where I1 becomes populated. On the other hand, most resonances
of C-Cdc37Y298E overlay well with resonances of C-Cdc37’s
spectrum acquired in the presence of 4.5 M urea, suggesting that
the introduction of a negative charge at position 298 produces a
partially unfolded state, where folding intermediate I2 is sig-
nificantly populated. Backbone assignment of C-Cdc37Y298E

reveals that in the phosphorylated state, only helices α3 and α4 are
fully formed, helix α2 shows a low propensity of formation at very
low confidence, and the sequence covered by helix α1 adopts a
coil conformation (Fig. 1d and Supplementary Fig. 3d). This is
further supported by the presence of dNN(i,i + 1) NOEs for
residues from helices α3 and α4, which are characteristic of α-
helical structure, and the absence of NOEs for residues forming
helices α1 and α2 in the native state (Fig. 3c). In addition, for a set
of eight residues (E298, E299, S300, E303, E304, I321, L341, and
V343), it was possible to unambiguously assign two signals, both
of which exhibit an irregular lineshape, indicating a higher degree
of heterogeneity than what is reported by the W342ε signal
(Fig. 2a). This set of residues is not clustered, but it is distributed
throughout the sequence and structure of the native state, as
expected based on the global changes observed in the spectrum.
To obtain further insights into the structural properties of the
partially unfolded state, we acquired the methyl-NOESY of C-
Cdc37Y298E. The observed CH3-CH3 NOE pattern includes a
small number of medium- and long-range NOEs from helices α3,
α4, and residues comprising helix α2, indicating that the phos-
phomimetic mutant samples a conformational ensemble that is
stabilized by native-like contacts between helices α2–α4 (Fig. 3d).

Thus, phosphorylation of Cdc37 by Yes results in partial
unfolding of C-Cdc37 and shift to a heterogeneous conforma-
tional ensemble which comprises at least two equilibrium-folding
intermediates of near-native conformation.

Coupled Cdc37Y298 and Hsp90Y197 tyrosine phosphorylation.
Next, we investigated the molecular mechanism by which partial
unfolding of C-Cdc37 regulates the Hsp90 chaperone cycle of
protein kinases. Y298 phosphorylation has been implicated in the

a

0.0

0.5

1.5

3.0

9.0

N

N I1

N I1

I2

I1

I2

U

U

[Urea] (M)

M316

V311CG2

V311CG1

L305CD1
L341CD1

L317

L341CD2

M333

I321

A329

V314CG2

L305CD2

L305CD1

M324

I321

A329
A329’

c d

b

8.4 8.2 8.0

119

118

117

I321N

I3
21

U

K330N

K33
0
U

I321Y298E

K330Y298E

1H (ppm)

15
N

 (
pp

m
)

H332

E299

0.0
0.5
1.0

7.5
8.0
8.5

1.5

9.0

[Urea] (M)

0.1

0.3

0.5

0.7

0.9

1.1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U

I2

I1

N

F
ra

ct
io

n

[Urea] (M)
0 2 4 6 8

helix α1
E296

helix α2
L305

helix α3
L317

helix α4
Y331

V295

V297

Q306 M316

Q318

K330

H332

Q318

K330

Fig. 3 Phosphorylated C-Cdc37 populates folding intermediates. a The
beginning (0.0–1.5M urea) and end (7.5–9.0M urea) of the equilibrium
unfolding of C-Cdc37 monitored by 15N-HSQC. Arrows track the shift of
signals from the native to the unfolded state. For I321 and K330 for which
the signals of both the native and unfolded states are visible in this
expansion, the superscripts N and U on the assignment denote native and
unfolded states, respectively. For E299 and H332, the signals of the
unfolded state fall outside the present spectral window, but show a
“curved” change in chemical shift with increasing urea concentration. The
spectrum of C-Cdc37Y298E is shown in red for comparison highlighting the
position of I321 and K330 signals. b The indole H–N region of wild-type C-
Cdc37, highlighting the signals that correspond to W342 at different points
of the equilibrium unfolding (left). Fractional populations of the four visible
species populated by C-Cdc37 during the equilibrium unfolding as a
function of urea concentration (right). c Selected strips from the amide
region of the 15N-NOESY-HSQC recorded for the wild-type C-Cdc37 (pink)
and C-Cdc37Y298E (green). Representative residues from all helices α1–α4
are included. d Selected strips from the HMQC–NOESY–HMQC spectrum
of C-Cdc37Y298E, highlighting unambiguous (black) and tentative (red)
NOEs

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02711-w ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:265 |DOI: 10.1038/s41467-017-02711-w |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


dissociation of ErbB2, Cdk4, Raf-1, and v-Src from Cdc37,
without affecting the interaction of Cdc37 with Hsp9020. Since C-
Cdc37 is directly involved in the formation of binary Cdc37-
kinase complexes14,42, we used purified proteins to monitor the
formation of binary and ternary complexes of Cdc37 Y298 var-
iants with bRaf and Hsp90. We found that the phosphomimetic
mutant Y298E forms stable binary complexes with both bRaf and
Hsp90, and ternary complexes with bRaf and Hsp90 that are
indistinguishable from those formed by the wild-type protein14,43

(Fig. 4a and Supplementary Fig. 4a, b). Despite the higher Kd

value observed for the interaction between Cdc37Y298E and bRaf
as compared to wild- type Cdc37, this observation is distinct from
previously reported findings using co-immunoprecipitation from
cell lysates20. Therefore, we also tested complex formation with
the single phosphomimetic mutant Y4E (Cdc37Y4E) or the
double-phosphomimetic mutant Y4E/Y298E (Cdc37EE). Phos-
phorylation of Y4, which is located at the N-terminal tail of
Cdc37, was previously shown to have a more limited impact,
affecting the association of Cdc37 only with ErbB2 and v-Src. As
for Cdc37Y298E, both Cdc37Y4E and Cdc37EE formed stable bin-
ary complexes with bRaf and Hsp90, and ternary complexes with
bRaf and Hsp90 (Fig. 4a and Supplementary Fig. 4a, b). Next, we
tested complex formation in an in vivo setting, where Flag-tagged
bRaf was immunoprecipitated from transiently transfected HEK-
293 cells and the associated HA-tagged Cdc37 variants were
visualized by western blotting. Similarly to the in vitro experi-
ments, both phosphomimetic Cdc37Y298E and the non-
phosphomimetic mutant Cdc37Y298F were identified in bRaf
complexes to the same extent as was wild-type Cdc37 (Fig. 4b and
Supplementary Fig. 5).

In addition to Cdc37 phosphorylation at positions Y4 and
Y298, Yes and other nRTKs phosphorylate Hsp90 at positions
Y197 and Y192 of the α and β isoforms, respectively. This
modification correlates with disassembly of Cdc37 from the
substrate-recruitment complex and promotes progression of the
chaperone cycle20. In agreement with previous data20,
Hsp90Y192E did not form stable binary complexes with Cdc37
and/or ternary complexes with Cdc37 and bRaf (Fig. 4a and
Supplementary Fig. 4a, b). Therefore, Cdc37 phosphorylation at
Y298 does not have a generalized impact on the formation of
binary or ternary complexes with Hsp90 and the client kinase, but
instead, it is the phosphorylation of Hsp90 at Y192/Y197 which
acts as the molecular switch that triggers disassembly of the
substrate-recruitment complex and cochaperone dissociation.
Importantly, modification of this residue has minimal impact
on the association of Hsp90 with other cochaperones, including
that of Hsp70, Aha1, p23, Hop, Fkbp59, Sugt1, and CHIP or with
non-kinase clients, including the androgen and glucocorticoid
receptors (Fig. 4c, d and Supplementary Figs. 4c, d and 5).

Since both Cdc37Y298 and Hsp90Y197 phosphorylation are
mediated by Yes, we investigated whether the functional
consequence of Cdc37Y298 phosphorylation and C-Cdc37 partial
unfolding is to regulate Hsp90Y197 phosphorylation. Purified
variants of Cdc37 and Hsp90 were utilized to assemble binary and
ternary complexes formed with the client bRaf, and their tyrosine
phosphorylation levels in the presence of added Yes were
quantified using mass spectrometry (Fig. 5 and Supplementary
Fig. 6). The highest level of Yes-mediated Cdc37Y298 phosphor-
ylation was detected in the free state or when in a binary complex
with bRaf, while reduced phosphorylation was observed for both
a ternary complex between Cdc37, Hsp90, and bRaf, and for a
binary complex of Cdc37 with Hsp90 (Supplementary Fig. 6a).
However, the total cellular pool of Cdc37 remains in a
hypophosphorylated state, as phosphorylation at either Y4 or
Y298 is only detected after treatment with the potent phospho-
tyrosine phosphatase inhibitor bpv(phen)20. Therefore, the

significant difference in the phosphorylation levels between the
free and complexed states of Cdc37 observed in the current
in vitro setting is suppressed in the cell, presumably due to the
action of protein phosphatases. On the other hand, Hsp90Y197

phosphorylation was markedly more efficient in the context of a
ternary complex with Cdc37 and bRaf, compared to either the
free state or in a binary complex with Cdc37 (Fig. 5). Importantly,
such dependence on a ternary complex for optimal phosphoryla-
tion was not observed for other Hsp90 tyrosines that were
detectably phosphorylated in the presence of Yes. Similarly,
Cdc37Y298 mutation did not have a marked impact on Yes-
mediated phosphorylation of these additional sites (Fig. 5).
However, when the non-phosphorylatable Y4F/Y298F double
mutant (Cdc37FF) or the single non-phosphorylatable mutant
Y298F (Cdc37F) were utilized to reconstitute ternary complexes,
Hsp90Y197 phosphorylation dropped by one order of magnitude
(Fig. 5). Intriguingly, in ternary complexes of the double-
phosphomimetic mutant Cdc37EE, Hsp90Y197 phosphorylation
was also compromised and still lower relative to ternary
complexes of the wild-type protein (Fig. 5). These results suggest
that Yes-mediated Cdc37Y298 phosphorylation uniquely pro-
motes Hsp90Y197 phosphorylation and that the Hsp90Y197-
dependent assembly and disassembly of the recruitment complex
are characterized by a coupled phosphorylation mechanism.
Therefore, coupled Hsp90Y197 phosphorylation does not merely
depend on the partial unfolding of C-Cdc37, but specifically
requires that the amino acid at position 298 of Cdc37 is a
phosphorytable tyrosine.

C-Cdc37 unfolding unmasks a high-affinity SH2-binding
motif. The dependence on Cdc37 in uniquely facilitating
Hsp90Y197 phosphorylation on a phosphotyrosine indicates that
coupling of the two phosphorylation events is characterized by
high specificity for pY298. The vast majority of nRTKs contain N-
terminal SH2 and SH3 modular domains, among which the
former mediates protein–protein recognition through a specific
interaction with short polypeptide stretches that contain a
phosphotyrosine. Thus, we tested the hypothesis that promotion
of Hsp90Y197 phosphorylation by Cdc37 phosphorylated at Y298
occurs through an SH2-mediated recruitment of Yes to Hsp90.
Scanning of the primary sequence of Cdc37 for conserved motifs
using highly stringent parameters44,45 identified the heptapeptide
296EVYESLP302, which encompasses phosphotyrosine Y298, as
an SH2 interaction motif, while using low-stringency parameters
the tetrapeptide 359PGDP362 is identified as a potential SH3
interaction motif. When a phosphotyrosine-modified decapeptide
of Cdc37 (denoted as pYESL) was tested for binding to the SH2
domain of Yes (YesSH2), it was indeed found to exhibit high
affinity (Kd = 0.41± 0.11 μM) (Fig. 6a). The interaction is driven
by thermodynamically favorable contributions of both the
enthalpic and the entropic terms, which is similar to the ther-
modynamic signature of binding for the interaction of phos-
phopeptides to Src SH2 domain (SrcSH2)46 (Fig. 6a). Several
structural studies of SH2 domains in complex with phospho-
peptides have revealed a conserved mode of recognition, where
the phosphotyrosine and the three residues immediately down-
stream are recognized by distinct binding pockets. Although to
date the mode of YesSH2-phosphopeptide interaction has not
been studied at a structural level, we used NMR to examine
whether the YesSH2-pYESL interaction maps on a surface com-
mon to other SH2-phosphopeptide complexes. Titration of
pYESL to 15N-labeled YesSH2, results in CSP of a large number of
signals in an intermediate-slow exchange fashion, consistent with
the affinity measured by ITC (Fig. 6b, c and Supplementary
Fig. 7a). Mapping the CSP on the structure of YesSH2 shows that
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the most prominent changes are observed for residues in the
vicinity of the putative pTyr and pTyr + 3 binding pockets,
showing excellent correspondence with the residues involved in
phosphopeptide recognition of other SH2 domains (Fig. 6d and
Supplementary Fig. 7b). Furthermore, the addition of C-
Cdc37Y298E in which helix α1 is unfolded or wild-type C-Cdc37
in which helix a1 is fully formed cause only minimal perturbation
in the 15N-HSQC of YesSH2 (Supplementary Fig. 7c). Therefore,

Cdc37 phosphorylated at position Y298 is recognized by YesSH2

through a typical SH2-phoshopeptide interaction.
A potential mechanism by which Yes recruitment through the

SH2-Cdc37pY298 recognition affects Hsp90 phosphorylation is by
increasing the local concentration of the modifying enzyme at a
particular location on Hsp90. To test this hypothesis, we assessed
the total Hsp90 phosphorylation in the context of ternary
complexes and in presence or absence of an excess of SH2Yes or
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pYESL, using the Pro-Q Diamond stain to detect phosphotyr-
osines (Fig. 6e). Although addition of pYESL had a moderate
impact on the overall levels of Hsp90 phosphorylation (7% drop),
addition of SH2Yes resulted in a substantial 25% drop, consistent
with the concept that an excess of the isolated SH2 domain is able
to compete with full-length Yes for binding to Cdc37pY298 and
exclude it from the chaperone complex, even though Yes-
mediated phosphorylation of other Hsp90 tyrosine residues
appear to be independent of Cdc37.

Phosphorylation of Hsp90 at position Y197, as well as at
positions Y313 and Y627 is not carried out solely by Yes, since
Yes knockdown fails to completely abolish phosphorylation of
these residues20. This indicates that other nRTKs can substitute
for Yes in recognizing Cdc37pY298 and may be recruited to the
Hsp90 complex through a SH2-phoshopeptide interaction. Thus,
we examined the extent to which pYESL can be recognized by the
SH2 domains of nRTKs of the Src kinase family other than Yes,
including those of Src, Hck, and Lyn. All domains show similar
thermodynamic signatures of binding, with the SrcSH2 and
HckSH2 having Kd values comparable to those of YesSH2, while as
expected based on the Kd, addition of pYESL into 15N-labeled
SrcSH2 results in large CSPs to its 15N-HSQC (Fig. 6a and
Supplementary Fig. 7d). On the other hand, the interaction with
LynSH2 is significantly weaker, indicating that not all SH2
domains can effectively recognize pYESL and thus substitute for
Yes. Finally, we tested whether the 359PGDP362 motif of C-Cdc37
is recognized by the SH3 domain of Yes (SH3Yes) and therefore
whether it provides additional specificity determinants and
stability to the Cdc37-Yes complex. Addition of excess Cdc37
to 15N-labeled SH3Yes only marginally affects its 15N-HSQC
spectrum, with very small chemical shift changes and broadening
for a small number of signals, indicating a weak, transient
interaction, which is expected considering the lack of flanking
proline or positively charged residues. Nevertheless, perturbed
residues map at the canonical SH3-binding site and include R105
and T106 of the conserved RT loop of SH3 domains
(Supplementary Fig. 7e).

In summary, the functional role of tyrosine phosphorylation-
induced partial unfolding of C-Cdc37 is to unmask a high-
affinity SH2-binding motif that serves to increase the local
concentration of nRTKs at Hsp90 and thus to potentiate Hsp90
tyrosine phosphorylation at specific sites.

Discussion
Phosphorylation of Hsp90 and its composite machinery exerts
key regulatory roles during client maturation. Here, we show that
during the kinase chaperone cycle, Cdc37 phosphorylated at Y298
acts as a platform for docking of non-receptor tyrosine kinases
through their regulatory domains to drive the coupled Hsp90
phosphorylation at Y197 and specifically regulate kinase cha-
peroning (Fig. 7).

Site-specific phosphorylation of Hsp90 has a differential impact
on the maturation of different classes of clients, including protein
kinases and transcription factors25,27,47. Our study suggests that
the cochaperone-mediated recruitment of modifying enzymes
provides a mechanism to generate highly specific Hsp90 mod-
ification patterns (Fig. 5) that are tailored to fine-tune the cha-
perone cycle in a client class-specific manner. We show that
Hsp90 phosphorylation at Y197 does not compromise association
of the Cdc37-independent nuclear hormone receptor clients
glucocorticoid receptor (GR) and androgen receptor (AR) with
the chaperone (Fig. 4d), while a clear reduction in Cdk4 inter-
action with the phosphomimetic mutant Hsp90-Y197E is evident
(Fig. 4c). Further, Hsp90Y197E fails to associate with Cdc37
(Fig. 4a and Supplementary Fig. 4b), which during the early stages

of the chaperone cycle interacts exclusively with the N-terminal
domain of Hsp9011,15,16,48, without losing its ability to associate
with a number of cochaperones (Fig. 4c and Supplementary
Fig. 4c, d) that interact either with the C-terminal domain or with
the middle and N-terminal domains of Hsp90.

Phosphorylation of the Hsp90-Cdc37 chaperone pair has been
largely explored; however, there is only limited high-resolution
information available to account for the functional outcome of
the observed modifications14,16. The addition of a phosphoryl
group may alter protein function through versatile mechanisms
that include allosteric changes49, direct positive or negative
modulation of protein–protein and protein–DNA interactions50,
availability of cofactor-binding sites51, autoinhibition52, disorder-
to-order53, and order-to-disorder54 transitions. Our NMR data
suggest that C-Cdc37 acquires a partially unfolded state when
phosphorylated at Y298 (Fig. 2 and Supplementary Fig. 2). This is
a synergistic effect caused by the disruption of the hydrogen bond
network of Y298 side chain and the addition of the phosphoryl
group (Figs. 1, 2). The folding-unfolding transition of a small
protein domain of the size of C-Cdc37 occurs typically in a two-
state manner, where only the native and unfolded states are
populated. However, folding of C-Cdc37 through a highly
populated folding intermediate (Fig. 3 and Supplementary Fig. 3)
provides the cochaperone with two unique functional advantages.
First, helices α3 and α4 that form a hydrophobic patch previously
shown to participate in binding bRaf14, are fully formed (Figs. 1,3
and Supplementary Fig. 3d), allowing Cdc37 to interact with
clients and Hsp90 in the context of binary and/or ternary com-
plexes (Fig. 4 and Supplementary Fig. 4). Second, helix α1, which
contains Y298, is unfolded in the phosphorylated state (Figs. 2,3).
This phosphorylation-stabilized extended conformation unmasks
a high-affinity SH2-binding phosphopeptide, which exhibits
broad specificity over SH2 domains of nRTKs (Fig. 6). These
include the SH2 domain of the Cdc37- modifying enzyme Yes, as
well as the SH2 domains of other nRTKs of the Src family that are
capable of phosphorylating Hsp90Y19720.

A common concern in using phosphomimetic mutants, par-
ticularly for tyrosine and less for serine and threonine phos-
phorylation, is whether these serve as bona fide mimics of the
authentic phosphorylated state. Our results suggest that for
Cdc37, Y298 phosphorylation facilitates two distinct molecular
events and functional outcomes. First, partial unfolding of C-
Cdc37, which results in the formation of an exposed phospho-
peptide sequence, and second, recognition of the resulting
phosphopeptide by SH2 domains of nRTKs, which potentiates
Hsp90Y197 phosphorylation. We show that the partially unfolded
state acquired by Cdc37Y298E is the same as the one populated
after Yes-mediated phosphorylation (Fig. 2b). Therefore, the
phosphomimetic mutant is a faithful mimic in initiating the
native conformational change produced by the phosphorylation
event. However, the “two-pronged plug into two-holed socket”
mode of SH2-phosphopeptide interactions imposes specific geo-
metric and chemical restraints for the binding pockets and par-
ticularly for the pY-binding pocket, which is optimized for
interacting with the phosphoryl group55,56. Evidently, the corre-
sponding phosphomimetic sequence in C-Cdc37Y298E fails to
form a stable complex with SH2Yes (Supplementary Fig. 7c).
Therefore, in this case, the Y298E phosphomimetic mutant is not
a faithful mimic in recruiting non-receptor tyrosine kinases to the
chaperone complex via SH2-mediated interactions, consistent
with our data showing reduced Hsp90Y197 phosphorylation levels
for complexes reconstituted with the non-phosphorylatable
mutants as compared to wild-type Cdc37-reconstituted com-
plexes (Fig. 5).

The binding of the Cdc37-derived phosphopeptide to SH2
domains is not the only non-kinase domain interaction identified
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here, as C-Cdc37 interacts transiently also with the SH3 reg-
ulatory domain of Yes (Supplementary Fig. 7e). Although weak, it
is expected that this interaction brings a significant stabilizing
contribution when coupled to the C-Cdc37pY298-SH2 interaction
in the context of a bipartite mode of binding. Thus, since Cdc37
provides kinase specificity to the Hsp90 machinery, Cdc37pY298

may act as a platform for specific recruitment of modifying
nRTKs into the kinase chaperone cycle of Hsp90.

The identification of multiple phosphorylation sites on both
Hsp90 and its cochaperones suggests that the chaperone cycle
may be regulated at the level of the machinery via a combinatorial
phosphorylation pattern in a sequential and client class-specific
manner. Support for this hypothesis comes from previous
observations, where the same nRTK (Yes) was able to phos-
phorylate both Hsp90 and Cdc37, and from the current data
showing a strong Cdc37pY298-SH2Yes interaction (Fig. 6). The
phosphomimetic mutant Y192E of Hsp90β or Y197E of Hsp90α
prevents complex formation with Cdc37 and triggers the dis-
assembly of the recruiting ternary complex irrespective of the
phosphorylation state of Cdc37 (Fig. 4 and Supplementary Fig. 4)20.
Therefore, phosphorylation at this position of Hsp90 must be
tightly regulated and occur only after the client kinase has been
loaded on the chaperone. In this respect, the ability of Y197 to
become phosphorylated in the context of ternary complexes,
shows a very strong correlation with the ability of Cdc37 to
become phosphorylated at position Y298, since in the presence of
a non-phosphorylatable Cdc37Y298 variant, Y197 (hsp90α)
phosphorylation is greatly suppressed (Fig. 5). Mechanistically,
the presence of a phosphotyrosine at position 298 and not the
resulting C-Cdc37 domain unfolding is critical to promote
phosphorylation of Hsp90 at Y197 (Fig. 5) and correlates with a
higher effective concentration of Yes at the chaperone complex
(Fig. 6e). In cis phosphorylation via SH2-mediated kinase
recruitment, where an nRTK utilizes a phosphotyrosine on its
own substrate as a docking site to further phosphorylate it on
other accessible tyrosines is an efficient mechanism for substrate

hyperphosphorylation through processive or non-processive
mechanisms57. In the context of a macromolecular complex
such as the ternary Hsp90-Cdc37-kinase complex, coupled
phosphorylation occurs in trans, with the modifying kinase
docked on Cdc37 while phosphorylating Hsp90. As not all Hsp90
tyrosine phosphorylation events are affected equally by Cdc37
phosphorylation (Fig. 5 and Supplementary Fig. 6), in trans-
mediated coupled phosphorylation imprinted by Cdc37Y298

phosphorylation creates a unique phosphorylation pattern on
Hsp90, where Y197 becomes phosphorylated at high levels, and is
tailored for the progression of the kinase chaperone cycle. This
highly regulated mechanism of Hsp90 phosphorylation is unique
to tyrosine modification, as SH2 domains are only found in
nRTKs. Therefore, it remains unknown how other phosphoryla-
tion events identified to impact the kinase chaperone cycle, such
as the modification of S365 (Hsp90β) by CK239, are regulated.
Suppression of phosphorylation events by the action of phos-
phatases, combined with the sequential masking and unmasking
of the modification sites during different steps of the chaperone
cycle could provide alternative regulatory mechanisms.

Methods
Sample preparations and isotope labeling. Full-length human Cdc37 (Cdc37)
and C-Cdc37 (a.a. 288–378) were cloned in a pDB.His.MBP vector and the cata-
lytic domain of bRaf was cloned in a pDB.His.GST vector14,40. The plasmid
encoding for residues 86–543 of human HOP was obtained from DNASU
(#HsCD00530871). The SH2 domains of Yes, Src, Hck, and Lyn cloned in a pGEX
vector that encodes for an N-terminal, GST tag, and a PreScission cleavage site
were a gift from Bruce Mayer (Addgene plasmid # 46532, 46510, 46445, and
46452). The DNA encoding for the SH3 domain of Yes (amino acids 91–152) was
synthesized for an E. coli-optimized codon usage (GeneArt) and cloned into a pDB.
His.GST vector to produce a fusion protein with an N-terminal, His6-GST pur-
ification tag, and a TEV cleavage site, using the set of primers listed in Supple-
mentary Table 1. The DNA encoding for full-length Hsp90αα1 and full-length
Hsp90αβ1 cloned in a pET28 plasmid encoding for a His tag was a gift from the
laboratories of Chad Dickey (USF Health) and Ernst Schonbrunn (Moffitt Cancer
Center). Cdc37 and Hsp90 point mutants were generated using the QuikChange II
XL Site-Directed Mutagenesis Kit (Agilent) and the set of primers listed in Sup-
plementary Table 1.

a b c

def

pY298

pY298
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pY298
pY197pY197

Cdc37

nRTK

Fig. 7 Targeted-Hsp90 phosphorylation via a cochaperone-recruited kinase. a, b Client kinases require Cdc37 to form stable complexes with Hsp90 in the
beginning of the chaperone cycle. c, d Partial unfolding of C-Cdc37 upon Y298Cdc37 phosphorylation creates a high-affinity SH2-interacting motif, which
recruits nRTKs to the Hsp90 complex. e, f nRTKs phosphorylate Hsp90 at Y197, resulting in dissociation of Cdc37 and progression of the Hsp90 cycle.
Cochaperone-mediated recruitment of modifying enzymes may be a generalized mechanism to create unique Hsp90 phosphorylation patterns in a client
class-specific manner or alternatively to modify clients (Hsp90, Cdc37, and client kinase are shown in blue, black outline, and green, respectively). The
helical C-Cdc37 is shown in rainbow from blue to red. The kinase, SH2, and SH3 domains of the modifying nRTK are shown in yellow, red, and gray,
respectively
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Hsp90, Hop, Aha1, SH2, and SH3 constructs were transformed into BL21(DE3)
(NEB). For the expression of Hsp90, Hop, and Aha1 constructs, cells were
incubated at 37 °C until OD600 ~0.6 and then chilled for 10 min in a water/ice bath.
Protein overexpression was induced by the addition of IPTG at a final
concentration of 0.5 mM for 20 h at 18 oC. For the expression of the SH2 and SH3
constructs, cells were incubated at 37 °C until OD600 ~0.6 and overexpression was
induced by the addition of IPTG at a final concentration of 0.5 mM, for 5 h at 20
oC. Protein labeling was performed using the same expression scheme. 13C/15N
uniformly labeled proteins were produced in minimal media supplemented with
15NH4Cl and U-13C6 glucose. Methyl-group site-specific labeling of Val, Leu, Ileδ,
Met, and Ala residues was performed in a perdeuterated background with the
addition of 50 mg/L α-ketobutyric acid, 100 mg/L α-ketoisovaleric acid, 125 mg/L
Met-[2H/13CH3], and 50 mg/L Ala-[2H/13CH3] to the media 40 min before
induction58,59.

Cdc37 constructs, bRaf, Hop, and Aha1 were purified by two steps of Ni2+

-affinity and size-exclusion chromatography14,40. Cdc37 was further purified over
an anion exchange column. Cells overexpressing Hsp90 were resuspended in 20
mM Tris, pH = 8.0, 500 mM NaCl, 10 mM imidazole, 3 mM DTT, 1 mM PMSF,
protease inhibitor cocktail, and 0.1 mg/ml lysozyme. Cells were disrupted by
sonication and the lysate was clarified by centrifugation before loading to a Ni2
+-affinity column. After extensive washing with lysis buffer, the Hsp90 was eluted
in the same buffer containing 400 mM imidazole and loaded to a Superdex 200 26/
600 in 50 mM Tris, pH = 8.0, 1 M NaCl, 0.5 mM EDTA, and 3 mM DTT. Finally, it
was further purified through a 10-ml HiTrap Q Sepharose FF run with a 50 mM–1
M NaCl gradient in 25 mM Tris, pH = 7.5, 4 mM EDTA, and 3 mM DTT. Cells
overexpressing the SH2 constructs were resuspended in 20 mM Tris, pH = 8.0, 150
mM NaCl, 0.5 mM EDTA and 5mM b-mercaptoethanol, 1 mM PMSF, and 0.1
mg/ml lysozyme and lysed by sonication. The lysate was loaded on a GST fast-flow
column and after extensive washing with lysis buffer, proteins were eluted with 40
mM glutathione. The fusion protein was cleaved with PreScission protease
overnight at 4 °C and the GST tag was removed by running a second GST column.
Finally, proteins were purified through a Superdex 75 column in 20 mM Tris, pH =
7.5, 100 mM NaCl, 0.5 mM EDTA, and 2 mM DTT. Cells overexpressing the SH3
construct of Yes were resuspended in 50 mM KPi, pH = 6.5, 150 mM NaCl, and 2
mM DTT and lysed by sonication. The same buffer was used throughout all
purification steps. After centrifugation, the lysate was loaded on a GST column and
the protein was eluted by 40 mM glutathione. The fusion protein was cleaved using
TEV protease at 4 °C (overnight) and the SH3 domain was separated through a Ni2
+ sepharose column (in the presence of 20 mM imidazole) and subsequently further
purified through a Superdex 75.

The phosphotyrosine-modified decapeptide EVpYESLPEEL corresponding to
the residues 296–305 of Cdc37 was synthesized by GL Biochem.

NMR spectroscopy. All NMR spectra were acquired with Varian direct drive 600-
and 800-MHz spectrometers equipped with a cryoprobe, processed using
NMRpipe, and analyzed using Sparky (T. D. Goddard and D. G. Kneller, SPARKY
3, University of California, San Francisco, CS, USA). The methyl-group and
backbone chemical shift assignment for wild-type C-Cdc37 was described pre-
viously14,40. Sequential 1H, 13C, and 15N backbone chemical shift assignment for
C-Cdc37Y298F, C-Cdc37Y298E, and C-Cdc37 in the presence of 9 M urea, YesSH2,
and YesSH3 was obtained by standard 3D triple-resonance experiments, acquired at
30 °C for C-Cdc37 and YesSH3 constructs, and at 25 °C for YesSH2. The backbone
assignment of YesSH3 at 30 °C was transferred to 5 °C by acquiring a set of five
spectra at intermediate temperatures. The backbone assignment of C-Cdc37Y298E

was further facilitated by the use of selective amino acid labeling with 15N-Ala,
-Gln, and -His, as well as tracing signals during the urea-unfolding transition of
wild-type C-Cdc37. Methyl-group assignment of Cdc37Y298E was obtained by
tracing signals during the unfolding transition of wild-type C-Cdc37 together with
a set of four valine mutants for M1, M316, M324, M337, and A329. The 3D
HMQC–NOESY–HMQC spectrum of C-Cdc37Y298E was acquired with a mixing
time of 0.4 s at 30 oC. The urea-unfolding transition of wild-type C-Cdc37 was
performed by titrating two samples of equal concentration (0.4 mM) prepared in
the absence or presence of 9 M urea into each other to obtain a series of urea
concentrations in 0.5 M steps.

Protein dynamics for wild-type C-Cdc37 were described previously40. For C-
Cdc37Y298F, ps–ns timescale motions were characterized by measuring {1H}–15N
heteronuclear NOEs60, at 800MHz, in the presence or absence of a 3 s
presaturation period prior to the 15N excitation pulse and using recycle delays of 2
and 5 s, respectively, at 30 oC. The data with and without NOE were acquired in a
fid-interleaved fashion. R1 and R2

15N relaxation rates were measured at 800MHz,
using standard pulse sequences61 with a recycle delay of 3 s, at 30 oC. The delay
periods in the series for R1 and R2 were set to 20 ( × 2), 50, 100 ( × 2), 200, 300, 400,
600, 800, 1000, 1200, 1500, and 2000 ms and to 10 (×2), 30, 50 ( × 2), 70 ( × 2), 90,
110, 130, 210, and 330 ms, respectively. Relaxation rate constants were determined
by fitting Sparky-extracted peak heights to mono-exponential functions using
relax62. Errors were determined by recording duplicate experiments for selected
delay periods, noted by (×2) above. N–H vector motions were analyzed by the
reduced spectral density-mapping approach and using scripts in relax.

The YesSH2-phosphopeptide titration was performed at 25 °C by the addition of
1.2-molar equivalents of phosphopeptide at a concentration of 250 μM. Addition of
higher excess of phosphopeptide did not cause any further changes in the 15N-
HSQC spectrum of YesSH2. The YesSH3 titration was performed at 5 oC, by the
addition of 6.0 molar equivalents of unlabeled full-length Cdc37 to 15N-labeled
YesSH3, at 1.2 mM and 200 μM. Chemical shift perturbations are reported as
H–NH-combined chemical shift changes, Δδ, determined according to equation
(1):

Δδ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δδ2H þ ΔδN
5

� �2
s

ð1Þ

NMR spectra were acquired in 20 mM Tris, pH = 7.5, 100 mM NaCl, 0.5 mM
EDTA, and 2 mM DTT prepared in either H2O or D2O (with Tris-d6), except for
YesSH3 that were acquired in 50 mM KPi, pH = 6.5, 150 mM NaCl, and 2 mM DTT.

The spectrum of phosphorylated Ile-labeled (2H/13C-CH3
δ) Cdc37 was

acquired by mixing 320 μL of Cdc37 at 25 μM, in 20 mM Tris-d6, pH = 7.5, 50 mM
NaCl, 10 mM MgCl2, 0.2 mM EDTA, 3 mM DTT, 2.5 mM ATP and 1 ×
phosphatase inhibitors (Halt), and 7.5% D2O, with 15 μg of active human Yes
kinase (EMD). The mixture was run through a desalting column (Zeba)
equilibrated in the same buffer to remove residual glycerol coming from Yes stock,
concentrated back to 320 μL, and put in a shigemi tube. The 13C-HMQC spectrum
was acquired at 30 °C after incubation for 3 h at the same temperature. A reference
spectrum of unmodified Cdc37 was acquired at the same temperature and the same
buffer.

Analytical size-exclusion chromatography. Size-exclusion chromatography was
performed at 4 °C using a Biorad Enrich SEC 650 analytical column in 20 mM Tris,
pH = 7.5, 100 mM NaCl, 0.5 mM EDTA, and 2 mM DTT. Analysis of ternary
complexes was performed by mixing Hsp90 variants, Cdc37 variants, and bRaf at
stoichiometric ratios of 2:1:1, while analysis of binary complexes by mixing Cdc37
variants and bRaf at stoichiometric ratios of 1:1. In both cases, the total volume was
200 μL and the mixtures were incubated for 15 min at 4 oC. Protein molar con-
centrations (μM) ranged from 40:20:20 to 12:6:6 and 30:30 to 8:8 for ternary and
binary complexes, respectively.

Immunoprecipitation and pull down. Wild-type and mutant constructs of Hsp90
and Cdc37 have been previously described20. Briefly, to construct FLAG-tagged
Hsp90α, BamHI and XhoI sites were engineered by PCR of the human Hsp90α
cDNA (a kind gift from W. Houry, University of Toronto, Toronto, ON, Canada).
The PCR product was subcloned into the BamHI/XhoI sites of the pcDNA3-FLAG
vector (Invitrogen). FLAG-tagged wild-type Cdc37 in pcDNA3 vector was a kind
gift from Dr. Y. Minami (University of Tokyo). To obtain HA-tagged Cdc37, we
subcloned Cdc37 into HA-pcDNA3 plasmid following the manufacturer’s
instructions (Invitrogen). Point mutations in both Hsp90 and Cdc37 were made
using the QuikChange site-directed mutagenesis method following the manu-
facturer’s instructions (Stratagene). FLAG-tagged bRaf plasmid was purchased
from Biomyx (pMEV-HA 2×). Glucocorticoid receptor plasmid (untagged) was
kindly provided by Dr. M. Cox (University of Texas at El Paso). GFP-tagged
androgen receptor (AR) plasmid was a kind gift of Dr. Lisa Butler (University of
Adelaide). All antibodies and other reagents were commercially obtained. HEK-293
cells were purchased from ATCC, and were maintained in culture and transfected
as previously described (Xu et al., 2012). Briefly, cells were grown in DMEM tissue
culture medium containing 10% fetal bovine serum, and cells were transfected with
Lipofectamine 2000 following the manufacturer’s instructions. Proteins were
immunoprecipitated and subjected to SDS-PAGE and western blotting as described
in figure legends. Briefly, 24 h after transfection, cells were washed with PBS and
lysed in a Hepes buffer containing 10 mM Na2MoO4, 30 mM NaF, 2 mM β-glycerol
phosphate, 2 mM sodium vanadate, 100 µM bpv(phen), and Complete protease
inhibitors (Roche Applied Science, Indianapolis, IN). After immunoprecipitation
(see individual figure legends for antibodies used for immunoprecipitation), pro-
teins were boiled in sample-loading buffer, resolved by SDS-PAGE, and transferred
onto PVDF membrane. Membranes were probed with indicated antibodies (see
figure legends). Antibody sources/clone #’s are as follows: GR (glucocorticoid
receptor) monoclonal antibody is from Santa Cruz Biotechnology (cat # sc-393232,
1:5000); GFP monoclonal antibody is from Cell Signaling (cat #2956, 1:1000); GFP-
trap beads are from Chromotek (GFP-Trap A, cat # gta-20); anti-FLAG mono-
clonal antibody (clone M2) is from Sigma (cat # F3165, 1:2000); anti-FLAG resin is
from Sigma (M2 anti-FLAG antibody-linked resin); Hsc/Hsp70 antibodies are
from Santa Cruz (cat # sc-1059, 1:1000, sc-1060, 1:1000); Aha1 antibody is from
Rockland (cat # 600-401-974); p23 antibody is from Assay Designs (ADI-SPA-610,
1:1000); HOP antibody is from Cell Signaling (cat # 4464, 1:1000); FKBP59 anti-
body is from StressMarq (SMC-139, 1:1000); Cdk4 antibody is from Santa Cruz
(sc-601, 1:1000); HA antibody is from Roche diagnostics (rat anti-HA, clone 3F10,
1:1000); anti-c-Myc Agarose Affinity Gel antibody from Sigma (cat # A7470); and
penta·His Antibody, BSA-free, is from Qiagen (cat # 34660, 1:5000). Uncropped
scans of the blots and gels are provided in Supplementary Fig. 5.
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Fluorescence spectroscopy. Trp fluorescence for wild-type, Y298F, and Y298E C-
Cdc37 as a function of urea concentration was carried out on a ISS PC1 single-
photon-counting fluorimeter at protein concentrations of 5 μM. Spectra were
acquired with a 1-nm step interval between 310 and 450 nm and with an excitation
wavelength of 395 nm. Signal intensity at each interval is an average of eight
iterations.

Isothermal titration calorimetry. Titrations were carried out on a PEAQ-ITC
calorimeter (Malvern Scientific) at 20 °C for titrations of bRaf into Cdc37 variants
and at 25 °C for phosphopeptide titrations into SH2 domains. Titrations of
cochaperones to Hsp90β and Hsp90α constructs were performed at 25 and 36 oC,
respectively. Proteins were buffer exchanged into 20 mM Tris, 100 mM NaCl, 0.5
mM EDTA, and 1 mM tris(2-carboxyethyl)phosphine and degassed. For Cdc37-
bRaf titrations, the 200-μL sample cell was filled with Cdc37 at a concentration of
~3–8 μM protein and the 40-μl injection syringe was filled with bRaf at 35–90
μM. For Hsp90-cochaperone titrations, the cell was filled with Hsp90 at a con-
centration of ~20–30 μM and the syringe with the cochaperone at a concentration
of ~300–400 μM. For the SH2-phosphopeptide titrations, the cell was filled with
the SH2 domain at a concentration of 50–60 μM and the injection syringe was
filled with phosphopeptide at a concentration of 600–750 μM. All titrations
included an initial 0.2-μL injection and were carried out by 10–12 injections, with
a 4-min time interval between each injection. The data were processed with
Origin 7.0 (OriginLab Corporation) with the point of the initial injection
excluded. For all experiments, the reported error bars in the Kd values correspond
to the errors resulted in fitting of the data into a single binding site model.

CD experiments. Thermal denaturation of wild-type, Y298F, and Y298E C-Cdc37
for the extraction-melting temperatures (Tm) was performed by monitoring molar
ellipticity at 222 nm, using an AVIV (215) Circular Dichroism Spectrometer. Full
spectra between 195 and 250 nm were acquired at 15, 22, and 30 oC. Protein
samples were at 5 μM in 20 mM Tris, pH = 7.5, 100 mM NaCl, 0.5 mM EDTA, and
2 mM DTT. Signal intensity at each wavelength is reported as an average of tri-
plicate measurements, each of which was obtained using a signal-averaging time of
1 s. The RMSDs ranged between 0.1 and 5.0 across the full spectrum.

In vitro phosphorylation and detection. Proteins were exchanged in 20 mM Tris,
pH = 7.5, 50 mM NaCl, 0.2 mM EDTA, and 2.5 mM DTT and mixed to achieve
final protein molar concentrations (μM) of 24:12:12 and 12:12 for ternary Hsp90-
Cdc37-bRaf and binary Cdc37-bRaf complexes, respectively, at a final volume of
12 μL. The same concentrations were used for free, Hsp90, and Cdc37 variants.
Mixtures were incubated at 4 °C for 15 min and the reactions were initiated by the
addition of phosphatase inhibitor cocktail, 0.91 μg of recombinant full-length Yes
(EMD), and ATP (0.5 mM final concentration), at 22 oC. Phosphorylation was
tested after 2 or 8 h, but final analysis is provided only for the 2-h interval, as the
levels either decrease or remain constant at longer incubation times for different
tyrosine residues. For analysis by mass spectrometry, 6 μl of each reaction was
run on SDS-PAGE. Coomassie-stained gel pieces corresponding to Hsp90 and
Cdc37 were excised from the gel, minced and destained before being reduced
with dithiothreitol (DTT) and alkylated with iodoacetamide (IAA), and finally
digested with trypsin/Lys-C overnight at 37 ˚C. Peptides were extracted using 50/
50 acetonitrile (ACN)/H2O/0.1% formic acid, and dried in a vacuum con-
centrator (Labconco). Peptides were resuspended in 98% H2O/2% ACN/0.1%
formic acid for LC–MS/MS analysis and separated using a 75 µm x 50 cm C18
reversed-phase-HPLC column (Thermo Fisher Scientific) on an Ultimate 3000
UHPLC (Thermo Fisher Scientific) with a 60-min gradient (4–40% ACN with
0.1% formic acid). Analysis was performed on a hybrid quadrupole-Orbitrap
instrument (Q Exactive Plus, Thermo Fisher Scientific). Full MS survey scans
were acquired at 70,000 resolution. The top 10 most abundant ions were selected
for MS/MS analysis. Raw data files were processed in MaxQuant (v.1.5.8.3 www.
maxquant.org). Spectra were identified using Andromeda, the MaxQuant peptide
identification algorithm, and searched against the UniprotKB human protein
sequence database, with constant modification of cysteine by carbamidomethy-
lation and the variable modification, methionine oxidation, and phosphorylation
of serine, threonine, and tyrosine. Trypsin was specified as the protease, with a
maximum of two possible missed cleavages. Additionally, the database search
specified mass tolerance of 20 ppm (first search) and 4.5 ppm (recalibrated,
second search) for precursor ions, and 20 ppm for fragment ions. Proteins were
identified using the filtering criteria of 1% protein and peptide false-discovery
rate.

In total, two phosphorylation sites were detected for Cdc37 (Y298 and Y331)
and nine phosphorylation sites were detected for Hsp90 (Y61, Y160, Y197, Y284,
Y309, Y438, Y492, Y604, and Y667). The results are displayed as normalized ratios
of phosphorylated over non-phosphorylated peptides and errors were calculated by
quantifying phosphorylation in a set of two different reactions. Ratios are provided
only for those sites that the corresponding peptide was identified in both reactions
(Y197, Y61, Y160, Y438, Y492, and Y604). For analysis by ProQ-Diamond staining,
the fraction of the in vitro phosphorylation reaction that was run on SDS-PAGE
contained ~3.0 μg of Hsp90. Staining and destaining were performed by standard
protocols.

Molecular dynamics simulations. Initial structures of the helical core (residues
290–343) of the C-terminal domain of Cdc37 were taken from the protein data
bank (PDB ID 2N5X). Systems were built using CHARMM63, but run with
OpenMM64 using the CHARMM force field65. Three different systems were
modeled, the unphosphorylated and Y298 phosphorylated wild types, and the
Y298E mutant. Systems were solvated in TIP3P66 water boxes, with at least 20 Å of
solvent beyond the protein in all directions. A nonbonded cutoff of 12.0 Å was
used. Long-range electrostatic interactions were handled using the particle mesh
Ewald method67. Heating occurred with restraints of 5 kcal/(mol Å) on the back-
bone atoms from 150 K to either 300 K or 310 K, in intervals of 10 K and 20 ps.
Backbone restraints were then gradually released to 2.5, 1.0, 0.5, and 0.1 kcal/(mol
Å) over 10 ns of further simulation, followed by production runs. The NPT
ensemble was used with Langevin Dynamics and a Monte Carlo Barostat68.
Visualization was performed with VMD69, and AmberTools was used for the other
analyses70.

Data availability. The mass spectrometry proteomics data have been deposited to
the ProteomeXchange Consortium via the PRIDE partner repository with the
dataset identifier PXD008375. Chemical shifts of C-Cdc37Y298E, C-Cdc37Y298F,
and C-Cdc37 in the presence of 9 M urea, free YesSH2, YesSH2 in complex with
pYESL, and YesSH3 are deposited at BMRB, under accession numbers 27322,
27323, 27324, 27325, 27326, and 27327, respectively. All other data that support the
findings of this study are available from the corresponding author upon reasonable
request.
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