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Abstract: Bacterial biofilms are involved in most device-associated infections and remain a challenge
for modern medicine. One major approach to addressing this problem is to prevent the formation
of biofilms using novel antimicrobial materials, device surface modification or local drug delivery;
however, successful preventive measures are still extremely limited. The other approach is concerned
with treating biofilms that have already formed on the devices; this approach is the focus of
our manuscript. Treating biofilms associated with medical devices has unique challenges due to
the biofilm’s extracellular polymer substance (EPS) and the biofilm bacteria’s resistance to most
conventional antimicrobial agents. The treatment is further complicated by the fact that the treatment
must be suitable for applying on devices surrounded by host tissue in many cases. Nanomaterials
have been extensively investigated for preventing biofilm formation on medical devices, yet their
applications in treating bacterial biofilm remains to be further investigated due to the fact that
treating the biofilm bacteria and destroying the EPS are much more challenging than preventing
adhesion of planktonic bacteria or inhibiting their surface colonization. In this highly focused review,
we examined only studies that demonstrated successful EPS destruction and biofilm bacteria killing
and provided in-depth description of the nanomaterials and the biofilm eradication efficacy, followed
by discussion of key issues in this topic and suggestion for future development.
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1. Introduction

Despite hygienic techniques and prophylactic antibiotics, infection rates of primary implants
remain clinically significant. In the US alone, infections related to medical devices account for
45% of total nosocomial (hospital-based) infections [1], with approximately one million cases per
year [2]. Device-associated infection is predominantly linked with bacterial biofilm formation. Biofilms
can form on most medical devices from a wide range of bacterial species [3]. The process initiates
with bacterial adherence to the device surfaces or the compromised surrounding tissue. Bacteria
then proliferate, colonize and form the biofilm consisting of bacterial cells enclosed in the secreted
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extracellular polymeric substances (EPS) (Figure 1) [4,5]. The EPS comprises polysaccharides, nucleic
acids, proteins and lipids [5,6] with an acidic microenvironment caused by hypoxia and anaerobic
glycolysis [6–8]. The biofilm provides bacterial cells with protection against shear stress, host immune
defence and antibiotic actions [9–11]. Moreover, bacterial cells released from biofilms and can cause
local recurrence or infection at other sites by haematogenous dissemination [3,10].
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formation. The gold standard for biofilm prevention involves aseptic techniques and antibiotic 
prophylaxis [13,14]. Systemic administration and local antibiotic reservoirs have been frequently 
employed as prophylactic means in clinical settings [15–18]. More advanced preventive measures, 
still in research and development, include new biomaterials with intrinsic antimicrobial properties 
or surface modification with antimicrobial moieties. The main rationales behind these designs are 
based on the concept of ‘race for the surface’ put forward by Gristina in 1987 [19], which postulated 
that bacteria and mammalian cells compete for available binding sites on the implant surface and 
implant success depends largely on who wins this competition. Prevention of bacterial colonization 
and biofilm formation thus should allow tissue cells to form a natural protective layer on the implant. 
Yet, despite a large number of in vitro and in vivo studies demonstrating promising biofilm-
preventing results [20–22], only very few have been successfully translated to clinical applications. 
For example, besides local antibiotic depots that were not specifically designed to act as antimicrobial 
implant surface treatments, only four technologies have become commercially available technologies 
or have shown clinical efficacy in orthopaedics and trauma for clinical use, including silver coating, 
iodine coating, gentamicin-poly(D,L-lactide) (PLLA) coating, and PLLA-linked hyaluronan hydrogel 
coating containing antibiotics [23]. Even so, the efficacy of these four technologies in large clinical 
trials remain to be proven. 

Clinically, treating device-associated biofilms is most relevant in device/implant retention 
surgery. In contrast to the common one- or two-stage device exchange surgeries [24] where infected 
devices are removed and replaced by a new implant, the implant retention surgery (also known as 
‘debridement, antibiotics and implant retention—DAIR’) is less invasive and preferable in scenarios 
such as early or acute infection. The success rate of DAIR heavily depends on the ability to effectively 
eradicate the biofilms [25], yet it is well recognized that the biofilm’s EPS provides a protective matrix 
which reduces the penetration of antimicrobial agents and the embedded, dormant biofilm bacteria 
are highly resistant to conventional antimicrobial agents such as antibiotics [26]. 

There are already many excellent reviews on medical device-associated bacterial biofilms, their 
implication in infections, or strategies to prevent their formation, such as those by Rodney [27], Hall-
Stoodley [28], or Ferraris and colleagues [29,30]. Several recent publications have also reviewed the 

Figure 1. Biofilm formation and dispersion. (1) Bacterial cell attachment onto the surface. (2) Bacterial
cells becoming irreversibly attached. (3) Bacterial proliferation and EPS secretion. (4) Biofilm formation
and maturation. (5) Biofilm dispersal and mobility of planktonic cells (reproduced from [12] with
permission from Elsevier, 2015).

One major strategy in the infection control of implantable medical devices is to prevent biofilm
formation. The gold standard for biofilm prevention involves aseptic techniques and antibiotic
prophylaxis [13,14]. Systemic administration and local antibiotic reservoirs have been frequently
employed as prophylactic means in clinical settings [15–18]. More advanced preventive measures,
still in research and development, include new biomaterials with intrinsic antimicrobial properties
or surface modification with antimicrobial moieties. The main rationales behind these designs are
based on the concept of ‘race for the surface’ put forward by Gristina in 1987 [19], which postulated
that bacteria and mammalian cells compete for available binding sites on the implant surface and
implant success depends largely on who wins this competition. Prevention of bacterial colonization
and biofilm formation thus should allow tissue cells to form a natural protective layer on the implant.
Yet, despite a large number of in vitro and in vivo studies demonstrating promising biofilm-preventing
results [20–22], only very few have been successfully translated to clinical applications. For example,
besides local antibiotic depots that were not specifically designed to act as antimicrobial implant
surface treatments, only four technologies have become commercially available technologies or have
shown clinical efficacy in orthopaedics and trauma for clinical use, including silver coating, iodine
coating, gentamicin-poly(d,l-lactide) (PLLA) coating, and PLLA-linked hyaluronan hydrogel coating
containing antibiotics [23]. Even so, the efficacy of these four technologies in large clinical trials remain
to be proven.

Clinically, treating device-associated biofilms is most relevant in device/implant retention surgery.
In contrast to the common one- or two-stage device exchange surgeries [24] where infected devices are
removed and replaced by a new implant, the implant retention surgery (also known as ‘debridement,
antibiotics and implant retention—DAIR’) is less invasive and preferable in scenarios such as early
or acute infection. The success rate of DAIR heavily depends on the ability to effectively eradicate
the biofilms [25], yet it is well recognized that the biofilm’s EPS provides a protective matrix which
reduces the penetration of antimicrobial agents and the embedded, dormant biofilm bacteria are highly
resistant to conventional antimicrobial agents such as antibiotics [26].

There are already many excellent reviews on medical device-associated bacterial biofilms, their
implication in infections, or strategies to prevent their formation, such as those by Rodney [27],
Hall-Stoodley [28], or Ferraris and colleagues [29,30]. Several recent publications have also reviewed
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the methods of eradicating these biofilms, such as the work by Verderosa et al. [31]. In the current
paper, we focused on reviewing nanomaterials, a subset of biomaterials, in eradicating bacterial
biofilm. In particular, we only examined studies that demonstrated success in destroying the EPS and
killing the embedded bacteria rather than preventing biofilm formation. Here, we focused on the key,
most promising nanomaterials and provided details of the most significant results to offer a highly
focused and in-depth review of the topic and provide readers with clear comparison of the synthesis
and effectiveness of these materials to guide future development.

2. Nanomaterials for Treating Bacterial Biofilms on Medical Devices

In this section, we categorized the nanomaterials in biofilm treatment into three groups, including
(i) nanomaterials with intrinsic biofilm-eradicating properties, (ii) nanomaterials as delivery vehicles
for biofilm-eradicating agents, and (iii) responsive nanomaterials (Figure 2).
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Figure 2. Schematic indicating the growth of mature bacterial biofilm and three major types of
nanomaterials for biofilm treatment: (i) intrinsically biofilm-eradicating nanomaterials, (ii) nanocarriers
of biofilm-eradicating agents, and (iii) responsive biofilm-eradicating nanomaterials.

2.1. Nanomaterials with Intrinsic Biofilm-Eradicating Properties

Despite the fact that there is a large number of nanomaterials with intrinsic bactericidal properties,
which have been reviewed elsewhere, only some nanomaterials have been shown to have the intrinsic
abilities to destroy the EPS or killing bacterial biofilm [32,33]. Most of the intrinsic biofilm-eradicating
nanomaterials are derived from bactericidal nanomaterials and thus they were often also demonstrated
to have effects on biofilm formation as reviewed below.

A key type of nanoparticle with intrinsic anti-biofilm activities is metallic nanoparticles. Certain
metallic nanoparticles can release soluble ions that target bacteria or the EPS; some can interact
with the biofilm’s EPS as a result of surface functional groups or charge interaction [6,34–37]. Silver
is among the most studied metallic nanomaterials with high bactericidal properties on a broad
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spectrum of microorganism species and has been shown to be able to eradicate biofilms. In one study,
Salunke et al. [38] synthesized AgNPs from plant extract and investigated their antimicrobial properties
on Acinetobacter baumannii, E. coli and S. aureus, using the disk diffusion test. They showed that AgNPs
inhibited bacterial growth with low minimum inhibitory concentration (2 µg/disk against E. coli and
8 µg/disk against A. baumannii and S. aureus), compared to the chemically synthesized AgNPs used
as a control. In biofilm disruption assays, the biofilms were grown for 24 h. The results show that
AgNPs could disrupt 88%, 67%, and 78% of A. baumannii, E. coli and S. aureus biofilms, respectively;
and 64% of mixed biofilm after 24 h treatment at 37 ◦C [38]. In another study, Gaidhani et al. used
Acinetobacter calcoaceticus to synthesize silver nanoparticles (AgNPs) with sizes ranging from 4–40 nm
and showed that the nanoparticles were able to disrupt biofilms of 20 different pathogenic bacteria [39].

Some researchers showed anti-biofilm activity of gold nanoparticles. For example, Habimana et al. [40]
developed gold particles (GNP) functionalized with enzyme proteinase K (denoted as GNP + PK) and
tested them against Pseudomonas fluorescens biofilms which were formed for 72 h. The biofilm volume,
measured from 3D confocal laser scanning microscopy, was found to decrease by 40%, 77%, and 74%
after 24 h treatment with proteinase K (PK), GNP, and GNP + PK, respectively. The combined GNP +

PK was able to reduce the biofilm thickness by 78%, while PK and GNP induced a reduction of 52%
and 72%, respectively. Overall, the GNP + PK particles displayed greater antimicrobial/antibiofilm
effects than either PK or GNP alone by causing structural damage to the biofilm, killing sessile cells
within the biofilm and mechanically dispersing the cells in suspension [40].

Several research groups have also investigated polymeric nanomaterials with inherent anti-biofilm
properties. These materials often work through mechanisms related to electrostatic interactions with
bacteria and biofilm’s EPS, which usually have a negatively charge on the outer layer [41–43] Chitosan
is a commonly used charged polymer that has high antibacterial activity. Mohamed et al. developed
chitosan nanoparticles and tested on multi-species biofilm in the root canal, which inhibited 97%
and 94% of the formation of biofilm in single and mixed-species biofilm, respectively. Furthermore,
the chitosan nanoparticles also gradually disrupted the one-week pre-formed mixed-species biofilm
for 8 days (5-log reduction) [44]. In another study, chitosan nanoparticles were tested against a 7 day
old E. faecalis biofilm. After incubating with chitosan nanoparticles at 37 ◦C for 72 h, the authors
found that the chitosan concentration of 5 mg/mL induced a maximum reduction in biofilm bacteria
viability of 4 logs; and at the concentration of 20 mg/mL, most bacterial cells were completely killed [45].
In another study, Zhu et al. [46] showed that cationic PLGA nano-polymer could inhibit the growth of
Streptococcus mutants over a 24 h period, with most bacteria being killed after 90 min. Furthermore,
the cationic nano-polymer totally disintegrated 1 day old biofilms and induced 73% bacterial death at
the concentration of 100 µg/ML [46]. In yet another study, Harper et al. [47] combined the effects of
electrolyte charge screening and anionic (+) alpha-tocopherol phosphate (α-TP) liposome nanoparticles
to enhance the diffusion through biofilm of the latter (Figure 3). The bacterial biofilm was grown for
18 h before being treated with the nanoparticles for 2 min. The self-assembled 700 nm liposomes had a
zeta potential of −20 mV and could not penetrate the oral multispecies oral biofilms (from a donor) in a
phosphate (-ve) buffer. In a tris(hydroxymethyl)aminomethane (+ve) buffer, the liposomes were found
to penetrate 12.4 ± 3.6µm into the biofilms and kill the embedded microbes [47].
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phosphate (α-TP) charged liposome nanoparticles. The penetration of negatively charged α-TP
liposomes were enhanced in the Tris buffer (positively charged) causing bacteria death as compared to
poor penetration and ineffective in phosphate buffer saline (PBS) (reproduced from [47] with permission
from Elsevier, 2015).

2.2. Nanomaterials as Carriers of Biofilm-Eradicating Agents

The interactions between the biofilm, bacteria and antimicrobial agents are crucial in treating
bacterial biofilms [6]. For therapies targeting biofilm bacteria, penetration into the biofilm is crucial.
Antimicrobial compounds may not be able to reach the bacteria in a mature biofilm for several reasons,
such as reduced diffusion across the EPS, drug degradation, or the poor interactions with biofilm
components [48–50]. Nanoparticles can act as drug delivery vehicles that could address these problems.
These nanocarriers with their intrinsic high surface-area-to-volume ratio and rich surface chemistry can
be designed to have a controllable therapeutic dose, improve the stability of their ‘cargo’, or temporal
and spatial cargo release. Nanocarriers can be made from various organic (e.g., lipid and polymer) and
inorganic materials [49,51] and some even have intrinsic antimicrobial or antibiofilm properties [52,53].

A straightforward design involves using antibiotics in nanocarriers. In one example, Elbi et al. [54]
developed chitosan nanoparticles containing ciprofloxacin and coated with Fucoidan to enhance
antimicrobial activity and the endocytosis of the material into macrophages to kill intracellular bacteria.
The authors showed that the nanocarriers effectively dispersed the 2 day old S. Paratyphi A biofilm,
significantly more effective than ciprofloxacin alone (1.6 times better) and were not toxic to RAW 264.7
macrophages after 48 h of treatment. Furthermore, the nanocarriers also entered the macrophages
and killed the intracellular S. Paratyphi A in a coculture model [54]. Mu et al. [55] utilized a similar
concept for P. aeruginosa and S. aureus biofilm treatment. In this case, gentamicin was loaded in
phosphatidylcholine-decorated AuNPs (GPA NPs) and the loaded nanoparticles were shown to
eliminate 78%, 65%, 71% and 69% of the biofilms of P. aeruginosa, S. aureus, E. coli, and L. monocytogenes,
respectively. Furthermore, GPA NPs were nontoxic to murine macrophage cells and also reduced
the viability of intracellular bacteria from 5 × 107 to 1 × 105 CFU and 3.5 × 106 to 0.5 × 106 CFU for
P. aeruginosa and L. monocytogenes in the infected macrophages, respectively [55].

Besides nanocarriers containing antibiotics, other nanocarrier systems have also been developed
to deliver non-drug agents, such as enzymes or essential oils. Tan et al. [53] utilized positively charged
chitosan nanoparticles as a nanocarrier for deoxyribonuclease I (DNase I, used to target biofilm’s
extracellular DNA) and oxacillin to target S. aureus biofilms. The loaded polymer nanoparticles were
shown to eradicate 70% and 100% of a S. aureus mature biofilm at oxacillin concentration of 0.0625 and
2 µg/mL, respectively after 24 h of treatment [53]. In another example, poly(lactic-co-glycolic acid)
(PLGA) nanoparticles coated with poly(lysin) (PL) were used as the nanocarriers for ciprofloxacin
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(Cip) and DNase I. Tested nanoparticle formulations comprised PLGA-PL-Cip, PLGA-PL-Cip +

PLGA-PL-DNase I, and PLGA-PL-Cip-DNase I. The nano-systems were investigated against a biofilm
of the Gram-negative bacteria P. aeruginosa. In this study, the biofilm was cultivated at 37 ◦C in flow cell
chamber for 4 days and treated with different nano-formulations for 24 h and the biomass and thickness
of the biofilm were evaluated. The biomass and thickness reduced by 24% and 50%, respectively, in the
PLGA-PL-Cip group, and by 29% and 52% in the combined PLGA-PL-Cip + PLGA-PL-DNase I group.
In particular, the last group (PLGA-PL-Cip-DNase I) showed the best efficacy with a reduction of 43%
in biomass and 63% in thickness. Moreover, this formulation also eradicated over 95% of the 2 day old
biofilm at a concentration of antibiotic as low as 0.0078 µg/mL [56].

Duncan et al. [57] evaluated the use of silica nanoparticles functionalized with either peppermint
oil (P-Cap) alone or in combination with cinnamaldehyde (CP-Cap) to disrupt and destroy E. coli
DH5, P. aeruginosa, S. aureus, and Enterobacter cloacae complex biofilms (Figure 4). The biofilm was
cultivated for 1 day before being treated with nanoparticles. After 3 h of CP-Cap treatment, the results
show that these nanoparticles had the ability to reduce of the biofilm bacteria viability by 100%
in all biofilms of P. aeruginosa, E. coli, S. aureus, and E. cloacae complex at 2% of emulsion solution.
Meanwhile, bacterial colony forming units of E. coli biofilm also decreased by 4 logs after 3 h treatment
of CP-Cap in a co-culture experiment. This nanoparticle formulation displayed the highest efficacy of
biofilm eradication and bacterial killing among the formulations tested. The P-Cap and control groups,
in contrast, were not effective [57].
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Landis et al. [58] investigated the potential of using oil-in-water emulsification to fabricate
nanocomposites containing carvacrol oil (X-NCs) to treat P. aeruginosa, S. aureus, E. coli, and E. cloacae
biofilms. After 3 h of treatment, the bacterial viability in 1 day old biofilms was remarkably reduced by
95–90% for all bacterial types. Landis also investigated the effectiveness of X-NCs in a coculture by
seeding the bacterial cells with a monolayer of fibroblasts overnight to form the biofilm. After 3 h of
treatment with 10 wt% X-NCs, the number of biofilm bacteria was reduced 4 log, whilst the viability of
the fibroblasts was maintained [58].

Another group of nanocarriers are based on the delivery of nitric oxide (NO) as a reactive free
radical. Several studies have used this agent in the form of nanoparticles for biofilm eradication. As an
example, Slomberg et al. [59] conjugated NO to silica nanoparticles and tested them against S. aureus
and P. aeruginosa biofilms. The biofilms were cultivated for 48 h in a bioreactor before being treated
with the nanoparticles for 24 h. The results show that the size and shape of the nanoparticles influenced
the efficacy of biofilm eradication. The smaller size of silica particles displayed higher ability in treating
P. aeruginosa biofilm, with the minimum bactericidal concentration (MBC) of 6 mg/mL for the 14 nm
particles compared with 10 mg/mL for the 150 nm particles. Moreover, the spherical shape of silica
particles showed MBC of 12 and 8 mg/mL for S. aureus and P. aeruginosa, respectively, compared with
4 and 1 mg/mL for rod shape particles [59]. Mihu et al. synthesized NO-containing nanoparticles
from a combination of polyethylene glycol, glucose, chitosan and sodium nitrite. It was found that the
nano-platform was able to interfere with biofilm formation on central venous catheters both in vitro
and in vivo. In an in vitro biofilm formation study, a 5 mm-long catheter was placed into the MRSA
culture and incubated for 24 h at 37 ◦C under shaking condition to form the biofilm. The colonized
catheter was then treated with 5 mg/mL of NO-nanoparticles for 24 h. The treatment resulted in a
75% decrease in biofilm bacteria viability compared to that of the untreated control. The authors also
inserted catheters into veins of rats and inoculated the lumens with MRSA to form biofilm in vivo.
After 24 h, a single dose of 5 mg/mL NO-nanoparticles or PBS (as a control) was injected into the
catheter lumens to treat the biofilms. After 48 h, the authors found that NO-nanoparticle treatment
resulted in roughly a 1 log reduction of CFU/cm2 compared to the control and that samples treated
with NO-nanoparticles had only a small number of bacterial clusters without biofilm slime, compared
to presence of abundant biofilm on the untreated control [60]. This study thus showed that these
promising nanoparticles need to be further investigated and optimization.

2.3. Treating Biofilms with Responsive Nanomaterials

Magnetic field, light, or the pH of the micro-environment have been exploited to activate a nanomaterial
or transform it into a more active species for destroying bacterial biofilms. These nanomaterials are
often metallic nanoparticles or nanocarriers that exert physical disruption to bacterial biofilms [1,61].
Their advantages include rich surface chemistry and the nanoscale dimensions, which promote
infiltration into the biofilms as well as targeting bacteria when activated or transformed. Additionally,
some non-specific biofilm disruption mechanisms such as heat and physical force allow for a wide
range of bacterial biofilms to be targeted [51,62].

2.3.1. Magnetically Responsive Nanomaterials

The main mechanism of this strategy is that a magnetic field is used to exert forces on magnetic
nanoparticles and thus facilitates the penetration of nanoparticles into the biofilm [63]. Taylor et al.
fabricated iron oxide nanoparticles (IONs) conjugated with metal ions and showed that after 24 h
treatment under the magnetic field, the magnetic IONs conjugated with zinc, silver, and iron ions
at concentration 370 µg/mL could disrupt up to 85%, 40%, and 50% of the 24 h old S. aureus biofilm,
respectively [64]. This concept was also applied by Leuba et al. [65] for the disruption of S. aureus biofilms
where amine, carboxylate and isocyanate-functionalized superparamagnetic-ION were used to increase
their diffusion into the biofilm and consequently enhance biofilm disruption. Amine, carboxylate,
and isocyanate functionalized disrupted 28.1%, 33.5%, and 31.1% of 24 h old S. aureus biofilm after
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24 h of treatment, respectively, higher than superparamagnetic IONs alone. This phenomenon was
explained by the catabolism of carbon and nicotinamide adenine dinucleotide (NADH) generation
involved in biofilm eradication [65]. A different study by Zhang et al. developed a nanohybrid
complex containing silver and iron oxide. In the absence of a magnetic field, the nanohybrid complexes
disrupted only 50% and 40% of E. coli and P. aeruginosa biofilms, respectively. However, the treatment
efficacy was significantly improved (88% in E. coli and 90% in P. aeruginosa) in the presence of a magnetic
field [66]. The study also showed that iron oxide promoted the penetration of silver nanoparticles,
which then killed the microorganisms. This strategy is still at the proof-of-principle stage where
the experiments are usually set up so that the nanoparticles are pulled toward biofilms grown on a
substrate by using magnets placed underneath the substrate. In future clinical application, this method
needs to be further optimized considering important factors such as the types of implants and their
geometry/physiological locations.

2.3.2. Local pH or Exogenous H2O2—Responsive Nanomaterials

In an acidic environment, certain nanomaterials can catalyze the production of oxidative species.
As a result, stimuli such as local pH and/or H2O2 can be exploited to assist in the treatment of biofilms.
Gao et al. [67] developed iron oxide nanoparticles (ION) with peroxide-like activity for attacking
bacteria (E. coli) and biofilm (P. aeruginosa). The nanoparticles catalyzed H2O2 into free radicals through
the Fenton reaction [68,69]. This study showed that 82% of P. aeruginosa biofilm was eliminated and
98% of E. coli were killed within 5 min of exposure to peroxide-like ION [67]. A later study by Gao et al.
also reported that peroxide-like ION could disrupt S. mutants oral biofilm in vitro and in vivo in rodent
dental caries [70]. The particles were shown to kill 99.9% of S. mutants within 5 min and degraded
approximately 57% of in vitro S. mutants biofilm. In vivo, the particles alone could reduce the severity
of moderate and extensive stage caries in rodents after topical treatment. Meanwhile, the particles in
combination with H2O2 were able to completely remove the extensive caries preventing the distinct
cavitation. The particles were also non-toxic to other cell types and organs when being applied topically
on rodent caries. The particles also released iron ions, which helped in decreasing the acid dissolution
of bone mineral, hydroxyapatite. A schematic describing the effects of the nanoparticle platform on
bacterial biofilms is shown in Figure 5, where the ION infiltrated the bacterial biofilm, and upon
addition of H2O2 caused bacterial cell death and biofilm disruption. This peroxide-like ION was also
found to be more effective than chlorhexidine, a commonly used antimicrobial agent [70].
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Figure 5. Schematic of biofilm disruption using hydrogen peroxide and iron oxide nanoparticles (ION).
(1) The CAT-NP distributed in 3D biofilm structure after a brief topical exposure. (2) The CAT-NP
catalyzed H2O2 via the Fenton reaction under acidic condition to produce free radicals. The generated
free radicals (3) degraded EPS and (4) killed bacteria inside the biofilm. (5) CAT-NP were also able
to release iron ions that can reduce acid dissolution of hydroxyapatite (reproduced from [70] with
permission from Elsevier, 2016).
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A study by Horev et al. [8] provided an example of pH-activated nanomaterials. Here polymeric-based
nanoparticles comprised of 2-(dimethylamino)ethyl methacrylate (DMAEMA), butyl methacrylate
(BMA) and 2-propylacrylic acid (PAA) (p(DMAEMA)-b-p(DMAEMA-co-BMA-co-PAA)) containing
farnesol for S. mutants biofilms treatment were developed. The nanoparticles showed high binding
affinity to the biofilm and were also sensitive to an acidic environment, causing the release of free
farnesol, a hydrophobic bactericidal agent. The results show that the nanoparticles effectively disrupted
the biofilm and reduced 80% of bacteria and increased biofilm removal by two-fold after five applications
over a 44 h period [8].

2.3.3. Light/Heat—Responsive Nanomaterials

Another key strategy is photodynamic treatment or photothermal ablation, which is based on
light-induced transformation or degradation of nanomaterials into biofilm-destroying species, or the
generation of heat. Tierlinck et al. [71] investigated vapor nanobubbles (VNB) induced by the laser.
The gold nanoparticles (70 nm in size) were able to deeply penetrate into the biofilm because of their
small size. The gold nanoparticles (AuNPs) then received a high-energy laser pulse and induced
rapid water evaporation and produced nanobubbles. The produced nanobubbles then created gaps
within the biofilm, thus facilitating antibiotic penetration and transport. The results show synergy
of VNB and tobramycin which resulted in approximately 80, 20, and 25 times CFU reduction in
24 h old B. multivorans, P. aeruginosa, and S. aureus biofilms after 3 min laser application and 24 h
tobramycin treatment, respectively [71]. In a later study, the authors used these laser-induced VNB
to functionalize the nanocarriers containing antibiotics for P. aeruginosa biofilm treatment (Figure 6).
The AuNPs functionalized liposomes containing tobramycin reduced the CFU and biofilm biomass by
approximately four times and 1.5 times as compared to untreated and liposomes containing tobramycin
only, respectively [72].Nanomaterials 2020, 10, x FOR PEER REVIEW 10 of 20 
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Figure 6. Laser-induced vapor nanobubbles (VNB) improved antibiotic delivery to biofilms. Impaired
biofilm diffusion is caused by the fact that sessile cells cluster together into dense aggregates of hundreds
of micrometers in size and because of the multi-component nature of the biofilm matrix which can
trap molecules in their passage through biofilms. The mechanical impact of laser-induced VNB could
increase the space between sessile cells, leading to a better flux and the effectivity of antimicrobial
agents and their mechanical force can trigger antibiotic release from nanocarriers close to sessile bacteria
(reproduced from [72] with permission from MDPI, 2019).
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Recently, graphitic carbon nitride (g-C3N4) has been shown as an efficient photocatalyst and
photodegrading agent, which generated reactive oxygen species (ROS). Bing et al. [73] developed a
nanoplatform of g-C3N4 nanosheets embedded with silver nanoparticles (Ag/g-C3N4). They showed
that Ag/g-C3N4 nanoplatforms could effectively kill approximately 100% of E. coli and S. aureus at a very
low concentration (50 µg/mL) after 30 min of activation by visible light. The nanoplatform at 200 µg/mL
also cleaved the biofilm polysaccharide linkages and caused approximately 70% disruption of 48 h
old S. aureus biofilm and killed the residue bacteria in the remaining biofilm after 3 h of activation by
light [73]. Shrestha et al. [52] reported another approach for bacterial biofilm treatment using chitosan
nanoparticles functionalized with Rose Bengal (RB), a photosensitizer agent, to enhance photodynamic
therapy. The nanohybrids at concentration 0.1 mg/mL effectively killed 100% Enterococcus faecalis
(E. faecalis) after a 15 min continuous light illumination at an intensity of 2 J/cm2 as compared to RB
treatment only. Remarkably, the nanohybrids at concentration 0.3 mg/mL completely eradicated a
21-day old biofilm after 30 min of irradiation at an intensity of 20 J/cm2 [52].

2.3.4. Nanomaterials with Combination of Light and Environmental pH Stimulation

The combination therapy concept has attracted significant interest to increase treatment efficacy.
A study by Hu et al. provided an example of the ability to attack S. aureus (MRSA) biofilms and kill the
bacteria by using near infrared light (NIR) and environmental pH [74]. The authors created a coating
consisting of zwitterionic gold nanoparticles that stayed as a dispersion of positively charged particles
in normal pH, but turned into negatively charged particles at acidic pH (c.a. 5.5) in the bacterial biofilm.
This conversion helped the particles to adhere electrostatically to the positively charged MRSA bacteria
and to form aggregates. NIR irradiation then allowed the aggregates to convert and concentrate the
photon energy into heat, causing local disruption of the biofilm. Meanwhile, the particles remained
as well-dispersed particles in the normal pH and hence minimized photothermal damage to healthy
tissue [74].

Deng et al. [75] also took advantage of the difference in pH between biofilm and healthy tissue
to develop a sophisticated nanomaterial platform consisting of metal–organic framework (MOF)
nanodots containing porphyrin and manganese dioxide embedded in human serum albumin for
treating E. coli and S. aureus biofilms (Figure 7). Porphyrin absorbs light (maximum absorption occurs
near a wavelength of 400 nm) and induces formation of singlet oxygen and other oxygen species in the
presence of molecular oxygen [76,77]. MnO2 was designed to increase the O2 production via H2O2

catalyzation. Once the platform entered an acidic pH microenvironment in the biofilm, NIR irradiation
would facilitate their decomposition, thereby releasing porphyrin-containing MOF dots (pMOF) while
simultaneously generating oxygen. It was designed such that under the activation of NIR, the pMOF
further oxidized the O2 to create ROS such as singlet oxygen 1O2, OH- radicals, and O2− radicals to
eradicate biofilm. This platform was shown to decrease 82% and 84% of E. coli and S. aureus growth,
respectively, after 15 min irradiation in the absence of H2O2. In the present of H2O2, 99% and 90% of
E. coli and S. aureus growth was inhibited, respectively. The nanomaterials also disrupted 80% of 48 h
old S. aureus biofilm using 15 min irradiation and H2O2. The material was further demonstrated to heal
biofilm-infected abscesses in mice with no detectable damage to the surrounding healthy tissue [75].
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Figure 7. (A) Schematic illustration of nanomaterial fabrication for a multi-component nanoplatform
(MMNPs) containing porphyrin-containing metal–organic framework (pMOF) dots. (B) Schematic of
the mechanism of bacterial biofilm treatment by the nanoplatform (MMNPs) and external activation
by NIR light. The MMNPs decomposed under an acidic environment, causing MnO2 degradation
and pMOF dot release. The pMOF dots were then activated by NIR light to produce the reactive
oxygen species. Additionally, in the presence of H2O2, MnO2 catalyzed H2O2 to form O2, enhancing
the photodynamic therapy (reproduced from [75] with permission from John Wiley and Sons, 2019).

3. Conclusions and Future Perspectives

As the recurrence of bacterial infection in revision surgeries remains clinically significant, new
methods for treating device-associated biofilms are urgently needed. A large number of nanomaterials
have emerged as promising materials in preventing biofilm formation, yet not all have been
demonstrated to be able to destroy biofilms. This is mainly due to the fact that bacterial biofilms
present a highly resistant community of bacteria embedded within a matrix of their self-secreted
extracellular polymer substance (EPS). Treating these biofilms involves destroying their EPS and
killing these bacteria and, thus, is significantly more challenging than preventing biofilm formation.
Some nanomaterials have been shown to possess intrinsic biofilm-eradicating properties, such as
those reviewed in this paper, yet combinations of intrinsic bactericidal or EPS-lysing properties with
stimulation (such as local pH or magnetic fields or light) are expected to significantly increase the
treatment efficacy. We have summarized the studies cited in this review in Table 1 to provide a quick
reference to the key materials for this development of new nanomaterials.

Key issues in using nanomaterials for biofilm treatment are their cytotoxicity and the fact that
their fates in the body remains incompletely understood. For example, it is known that cationic
nanoparticles are often also toxic to mammalian cells and easily recognized by the reticuloendothelial
system [78–80]. Nanomaterials’ toxicity strongly depends on their physicochemical properties such as
shape, size, surface chemistry, structure, and agglomeration state [81]. Smaller sizes were often found
with a higher level of toxicity, and agglomeration reduces the toxicity level [82]. Cytotoxicity also
depends on the cell types in contact with the nanomaterials. For example, AuNP exhibit no significant
toxic effects to dendritic cells, although they damage many other cell types [83]. The concerns of
nanomaterial’s cytotoxicity and complex tissue distribution following administration are common for
all nanomaterials and have been extensively reviewed elsewhere and therefore will not be reviewed
here again; rather, we would like to draw the attention to an issue that has been largely overlooked in
current biofilm treatment approaches, as below.
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Table 1. A summary of nanomaterials for treating biofilms on medical devices.

Activation
Mechanism

Materials Size and Shape Preformed Bacterial Biofilm Treatment Duration
Antibiofilm Efficacy

Ref.EPS
Disruption

Bacterial
Killing

Intrinsic

Biosynthesized AgNPs from P. zeylanica spheres
15–295 nm

24 h-A. baumannii, E. coli, and
S. aureus

24 h-mixed species biofilm
(A. baumannii–S. aureus)

24 h 88%, 67%,
78%, 64% 96% to 99% [38]

biosynthesized AgNPs from Acinetobacter calcoaceticus spheres
4–40 nm

24 h-20 different pathogen
bacterial biofilm 24 h Up to 98% NR [39]

AuNPs + proteinase K spheres
11–27 nm

72 h-Pseudomonas fluorescens
biofilm 24 h 74% 50% [40]

Chitosan NPs + O3 oil NR
24 h-mixed-species biofilm

(S. mutans, E. faecalis,
and C. albicans)

8 days NR 62.5% [44]

Chitosan NPs spheres
220 ± 3 nm 7-day-E. faecalis biofilm 72 h 44% 75–80% [45]

PLGA + Octadecylamide NPs spheres
217.7 nm 24 h-S. mutants biofilm 72 h NR Up to 73% [46]

α-TP + Phosphate
α-TP + Trizma 700 nm 18 h-multispecies oral biofilms 2 min NR ~45% [47]

Nanocarriers

chitosan + DNase I + oxacillin Spheres
166.7 nm 24 h-S. aureus biofilm 24 h Up to 100% [53]

Chitosan NPs + ciprofloxacin (Cip)+ Fucoidan spheres
235 ± 25 nm 48 h-S. Paratyphi A biofilm 48 h 62% in vitro

95% in vivo [54]

Gentamicin + phosphatidylcholine + AuNPs Spheres
~180 nm

24 h-P. aeruginosa biofilm
24 h-S. aureus biofilm

24 h-E. coli biofilm
24 h-L. monocytogenes biofilm

24 h

68.75%
66.67%
69.23%
65.38%

[55]

PLGA -Poly(lysin) + DNase I + Cip spheres
251.9 nm

48 h-P. aeruginosa biofilm
24 h-P. aeruginosa biofilm 24 h NR 43%

95% [56]

Silica + cinnamaldehyde NPs-peppermint oil capsule NPs: ~150 nm
Capsules: 6.7 ± 1.9 µm

24 h-E. coli DH5, P. aeruginosa,
S. aureus, and E. cloacae 3 h NR 90–100% [57]

copolymer Poly(oxanorborneneimide) bearing guanidine,
amine, and tetraethylene glycol monomethyl ether units +

poly(maleic anhydride-alt-octadecene + carvacrol oil

Spheres:
~250 nm

24 h-E. coli DH5, P. aeruginosa,
S. aureus, and E. cloacae 3 h NR 90–95% [58]

Silica NPs + nitric oxide (NO) Spheres
14–150 nm

48 h-S. aureus and P. aeruginosa
biofilm 24 h NR 75% [59]

polyethylene glycol + glucose + chitosan + sodium nitrite +
NO

spheres
10 nm 24 h-MRSA biofilm 24 h NR 75% [60]
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Table 1. Cont.

Activation
Mechanism

Materials Size and Shape Preformed Bacterial Biofilm Treatment Duration
Antibiofilm Efficacy

Ref.EPS
Disruption

Bacterial
Killing

Local pH or exogenous
H2O2

Fe3O4 + H2O2
spheres
500 nm Overnight P. aeruginosa biofilm 2 h 82% [67]

IONs + H2O2
Spheres

213 ± 26 nm 19 h-S. mutants in vitro 5 or 10 min, twice
daily, 43 h 57–60% 99.9% [70]

DMAEMA + BMA + PAA + Farnesol Sphere
∼60 nm 24 h-S. mutants biofilms 44 h 50% 80% [8]

Light/heat

Nanobubbles produced by AuNPs + tobramycin 70 nm
24 h-B. multivorans biofilm
24 h-P. aeruginosa biofilm

24 h-S. aureus biofilm

3 min laser and 24 h
tobramycin NR

98%
95%
96%

[71]

phospholipid 1,2-dioleoyl-sn-glycero-3-phosphocholine+
phospholipid 1,2-dipalmitoyl-sn-glycero-3

-phospho-(1′-rac-glycerol) AuNPs + tobramycin graphene
quantum dot + AuNPs + tobramycin

182 ± 102 nm
39 ± 14 nm

24 h-P. aeruginosa biofilm

3 min laser and 24 h
tobramycin 75%

[72]15 min laser exposure
and 24 h tobramycin 62%

Ag/g-C3N4
g-C3N4 Nanosheet

AgNPs: 6.5 nm 48 h-S. aureus biofilm 3 h 70% 100% [73]

Chitosan NPs + Rose Bengal spheres
60 ± 20 nm 21-day-biofilm

15 min irradiation
from Lumacare lamp

at 540 ± 15 nm
40–60% [52]

Light and environmental
pH

Citrate-caped AuNPs spheres
14 nm

24 h-MRSA biofilm in vitro
24 h-subcutaneous abscess

60 min
10 min NIR light

irradiation for 7 days

92%
88% [74]

pMOF nanodots + porphyrin + MnO2 + human serum
albumin + H2O2

Spheres
105 nm

48 h-S. aureus biofilm
2-day-subcutaneous abscess

15 min visible light
irradiation

87.5%
99.9% [75]

NR—not reported.
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Nanomaterial research in treating bacterial biofilms is expected to continue developing more
sophisticated or more complex mechanisms of destroying the EPS and killing the embedded bacteria.
Considering the significantly higher rates of infection to revision surgery of infected implants compared
to primary implants, it is important that future development should not overlook the prevention
of recurrence after biofilm treatment. In our opinion, as shown in Figure 8, this prevention can be
achieved through in situ functionalizing the treated surface with agents that accelerate tissue growth
on the surface, based on the concept of ‘race for the surface’ [84,85].
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Figure 8. ‘Eradicating-and-preventing’ approach to medical device-associated biofilms. After the
biofilm has been eradicated (step 1), the surface of the implant should be further treated (step 2,
for example by coating with antimicrobial agents or bioactive coating or with bioactive agents to
enable rapid tissue-implant reintegration) to prevent infection recurrence. This proposed approach is
essentially a combination of treating biofilms and preventing biofilm formation.

Yet another challenge remaining is the fact that the use of chemical, thermal or photo-chemical
reactions that allow coating process needs to be implemented directly on the implanted devices
surrounded by host tissue. There are also some ‘mild’ coating methods [86–93] such as using
catechol self-polymerization and surface functionalization chemistry, and photo-initiated crosslinking
or surface-polymerization which should be further investigated to demonstrate biofilm treatment,
recurrence prevention and tissue reintegration efficacy in vivo.
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