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Dipeptidyl Peptidase 4 Is a Novel Adipokine Potentially
Linking Obesity to the Metabolic Syndrome

Daniela Lamers,! Susanne Famulla,' Nina Wronkowitz,! Sonja Hartwig,? Stefan Lehr,?
D. Margriet Ouwens,? Kristin Eckardt,! Jean M. Kaufman,®> Mikael Ryden,* Stefan Miiller,’
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OBJECTIVE—Comprehensive proteomic profiling of the human
adipocyte secretome identified dipeptidyl peptidase 4 (DPP4) as a
novel adipokine. This study assessed the functional implications of
the adipokine DPP4 and its association to the metabolic syndrome.

RESEARCH DESIGN AND METHODS—Human adipocytes
and skeletal and smooth muscle cells were used to monitor
DPP4 release and assess the effects of soluble DPP4 on insulin
signaling. In lean and obese subjects, depot-specific expression of
DPP4 and its release from adipose tissue explants were de-
termined and correlated to parameters of the metabolic syndrome.

RESULTS—Fully differentiated adipocytes exhibit a substantially
higher release of DPP4 compared with preadipocytes or macro-
phages. Direct addition of DPP4 to fat and skeletal and smooth
muscle cells impairs insulin signaling. A fivefold higher level of
DPP4 protein expression was seen in visceral compared with
subcutaneous fat of obese patients, with no regional difference in
lean subjects. DPP4 serum concentrations significantly correlated
with adipocyte size. By using adipose tissue explants from lean and
obese subjects, we observed a twofold increase in DPP4 release
that strongly correlated with adipocyte volume and parameters of
the metabolic syndrome and was decreased to the lean level after
weight reduction. DPP4 released from adipose tissue correlated
positively with an increasing risk score for the metabolic syndrome.

CONCLUSIONS—DPP4 is a novel adipokine that may impair
insulin sensitivity in an autocrine and paracrine fashion. Further-
more, DPP4 release strongly correlates with adipocyte size, po-
tentially representing an important source of DPP4 in obesity.
Therefore, we suggest that DPP4 may be involved in linking adipose
tissue and the metabolic syndrome. Diabetes 60:1917-1925, 2011

besity is the hallmark of the metabolic syn-
drome and represents a major global health
problem that frequently associates with the de-
velopment of chronic diseases, including type 2
diabetes and cardiovascular disease (1). A complex inter-
organ cross-talk scenario between adipose tissue and other
central and peripheral organs underlies the progression of
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these diseases, with adipose tissue on top of the cross-talk
hierarchy (2). This is attributed to the huge diversity of
signaling and mediator molecules released from adipose
tissue, which is now considered one of the major endo-
crine organs (3,4). Recent data show that adipokines,
which are proteins and peptides released by various adi-
pose tissue cells, create a complex interconnected net-
work of feedback loops (5). Enlargement of adipose tissue
leads to dysregulation of adipokine secretion, representing
a potential critical pathogenic link among obesity, insulin
resistance (IR), and type 2 diabetes (1). Therefore, we
conducted a comprehensive proteomic profiling of condi-
tioned media derived from differentiated, primary human
adipocytes. This resulted in the identification of novel
adipokines, including the exoprotease dipeptidyl peptidase
4 (DPP4).

DPP4 is a ubiquitously expressed transmembrane glyco-
protein that cleaves N-terminal dipeptides from a variety of
substrates, including growth factors and hormones, neuro-
peptides, and chemokines (6). Two substrates of DPP4,
glucagon-like peptide-1 (GLP-1) and gastric inhibitory
polypeptide (GIP), are released from the intestinal mucosa
and responsible for ~60% of postprandial insulin secre-
tion, the so-called incretin effect (7). Because GLP-1 re-
mains active under hyperglycemic conditions in type 2
diabetes, DPP4 has gained considerable interest as a ther-
apeutic target, and a variety of DPP4-inhibitors that pro-
long the insulinotropic effect of GLP1 are now in clinical
use as antidiabetic drugs (8). Substantial DPP4 activity is
also found in plasma and other body fluids because of
a soluble form of DPP4 lacking the cytoplasmic tail and the
transmembrane region of this protein (9). Both the mem-
brane abundance and the circulating activity of DPP4 have
been found to be altered in a variety of neurologic and
inflammatory diseases (6). However, although a fraction of
soluble DPP4 most likely originates from cells of the im-
mune system (10), the major source of circulating DPP4
and its regulation remain unknown.

Furthermore, essentially no data are currently available
regarding the potential effects of soluble DPP4 on insulin
target tissues, including muscle and fat. In the present in-
vestigation, we combined in vitro experiments with two
independent clinical studies, aiming to validate DPP4 as
a novel adipokine and to characterize the association of
DPP4 to different parameters of the metabolic syndrome.
We show that 1) DPP4 is a novel adipokine released from
differentiated human adipocytes and that it may exert
autocrine and paracrine effects leading to IR; 2) DPP4
expression is substantially elevated in visceral fat of obese
subjects and that serum DPP4 correlates with adipocyte
size and all parameters of the metabolic syndrome; and 3)
adipose tissue explants from obese subjects release sub-
stantially more DPP4 with a prominent decrease after
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weight reduction. In light of the well accepted interference
of DPP4 with the incretin system, we now suggest that
DPP4 may play a role in linking obesity to IR and the
metabolic syndrome.

RESEARCH DESIGN AND METHODS

Materials. Reagents for SDS-PAGE were supplied by GE Healthcare (Freiburg,
Germany) and Sigma-Aldrich (Munich, Germany). Polyclonal antibodies for
adiponectin and actin were supplied by Abcam (Cambridge, U.K.). Horseradish
peroxidase (HRP)-conjugated goat anti-rabbit and goat anti-mouse IgG anti-
bodies were supplied by Promega (Mannheim, Germany). Collagenase NB4 was
obtained from Serva (Heidelberg, Germany). Troglitazone, tumor necrosis
factor (TNF)-a, and BSA (fraction V, fatty acid free, low endotoxin) were
obtained from Sigma-Aldrich. Adiponectin was purchased from Biovendor
(Heidelberg, Germany). Complete protease inhibitor cocktail and PhosStop
phosphatase inhibitor cocktail were provided by Roche (Mannheim, Germany).
FCS was supplied by Gibco (Invitrogen, Carlsbad, CA). All other chemicals were
of the highest analytic grade commercially available and purchased from
Sigma-Aldrich. Human recombinant DPP4 was purchased from R&D Sys-
tems (Wiesbaden-Nordenstadt, Germany), and a polyclonal antibody was
purchased from Abnova (Heidelberg, Germany). The specific DPP4 inhibitor
K579 was purchased from Biozol (Eching, Germany).
Clinical studies of DPP-4 concentration in serum and DPP4 release
from adipose tissue. For all studies, protocols were approved by local ethics
committees, and all participants gave written, informed consent.

Study 1 included 20 male obese patients and 20 lean controls who
were recruited at Gent University Hospital (Belgian registration number
B67020084018). For all patients, anthropometric and routine blood parameters

were assessed. Fasting blood samples were collected, and adipose tissue bi-
opsies were fixed for microscopic evaluation of adipocyte surface area analysis.

Study 2 included 19 obese (BMI =30 kg/m?) otherwise healthy and 10 lean
(BMI <25 kg/m?) healthy women who were recruited at Karolinska Institute
and investigated in the morning after an overnight fast. Sixteen obese women
were reinvestigated 18-24 months after gastric bypass in a weight-stable pe-
riod for at least 3 months, according to self-report (reduction of BMI from 43.0
to 27.9 kg/m>). A venous blood sample was obtained for the analysis of glucose
and insulin to be used as an estimation of insulin sensitivity in vivo with the
homeostasis model assessment (HOMA) index as described (11). Thereafter,
abdominal subcutaneous adipose tissue biopsies were obtained by needle
aspiration as described previously (12). One part of the tissue was used for
measurements of DPP4 release as described previously (13). Methodological
experiments revealed that DPP4 release was linear with time for at least 3 h,
suggesting no important cell damage (data not shown). Another part of the
tissue was subjected to collagenase treatment, and mean adipocyte volume
and weight were determined as described previously (14).

For calculation of the risk score for the metabolic syndrome, we used Adult
Treatment Panel-IIl definitions as follows: I) fasting glucose >110 mg/dL or di-
agnosis of type 2 diabetes, 2) blood pressure >135/85 mmHg, 3) serum triglyc-
erides >150 mg/dL, 4) HDL-cholesterol <40 mg/dL for men and <50 mg/dL for
women, and 5) abdominal obesity characterized by a waist >102 cm for men and
>88 cm for women. The risk score is equal to the number of criteria fulfilled.
Subjects with a risk score of =3 are qualified as having the metabolic syndrome.

HOMA for IR was determined in all patients, with the exception of those
treated with insulin, by a mathematic transformation of fasting blood glucose
and insulin measurements (HOMA = insulin [nU/mL] X glucose [mmol/L}/22.5).
Adipocyte isolation and culture. Subcutaneous adipose tissue was obtained
from lean or moderately overweight women undergoing plastic surgery for
mammary reduction or breast reconstruction with subcutaneous abdominal
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FIG. 1. DPP4 protein level and release during adipocyte differentiation and after stimulation with different regulatory factors. A: Human primary
adipocytes were differentiated as described in RESEARCH DESIGN AND METHODS, and DPP4 protein level during differentiation was analyzed by
SDS-PAGE and Western blot. Adiponectin expression served as a control of differentiation. Data were normalized to the protein level of actin and
are expressed relative to day 0. Data are mean values = SEM, n 25, *P < 0.05 vs. preadipocytes. B: Detection of DPP4 at day 14 of differentiation
using 1-5 pL of concentrated conditioned medium analyzed by SDS-PAGE and Western blot. Twenty-four-hour release of DPP4 by adipocytes
determined at different time points of differentiation was analyzed by ELISA. Data are mean values + SEM, n 25, *P < 0.05 vs. day 0.
C: Differentiated adipocytes were treated with 5 pmol/L troglitazone, 10 ng TNF-,, 50 mmoV/L insulin, 5 nmol/L adiponectin, or incubated under
hypoxic conditions for 24 h. DPP4 release by differentiated adipocytes after indicated 24-h treatments as measured by ELISA. Data are mean
values = SEM, n 27, *P < 0.05 vs. control. D: DPP4 release by preadipocytes, differentiated adipocytes, and adipose tissue-derived and cultured
human macrophages was analyzed by ELISA. Data are mean values = SEM, n 23; 10 ng total lysates derived from adipocytes and macrophages were
analyzed by SDS-PAGE and Western blot, and signals were detected by enhanced chemiluminescence. A, adiponectin; Ad, adipocyte; CM, condi-
tioned medium; H, hypoxic; I, insulin; M@, macrophage; Pre, preadipocyte; Tro, troglitazone.
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adipose tissue. The procedure was approved by the ethical committee of the
Heinrich-Heine-University (Diisseldorf, Germany). All subjects were healthy
and free of medication and had no evidence of diabetes according to routine
laboratory test results. Preadipocytes were isolated by collagenase digestion
of adipose tissue as previously described by Dietze-Schroeder et al. (15).
Isolated cell pellets were resuspended in Dulbecco’s modified Eagle’s medium/
Ham’s F12 (DMEM/F12) medium supplemented with 10% FCS. After overnight
incubation, cultures were washed and further incubated in an adipocyte dif-
ferentiation medium (DMEM/F12; 33 pmol/L biotin, 17 pmol/L d-pantothenic
acid, 66 nmol/L insulin, 1 nmol/L triiodo-L.-thyronine, 100 nmol/L. cortisol,
10 pg/mL apotransferrin, 50 ng/wL gentamycin, 15 mmol/L HEPES, and 14 nmol/L
NaHCO3, pH 7.4) for 15 days with medium change every 2-3 days and the
addition of 5 pmol/L troglitazone for the first 3 days. The degree of differen-
tiation was determined by Oil Red staining and induction of adiponectin
expression. Differentiated adipocytes were used for the generation of adipocyte-
conditioned media, as recently described by Dietze-Schroeder et al. (15). In
brief, after in vitro differentiation, adipocytes were washed and incubated for
48 h in a-modified DMEM followed by collection of the medium. Macrophages
were isolated from human adipose tissue and cultured using a method de-
scribed by Curat et al. (16). For hypoxia treatment, differentiated adipocytes
were incubated with a gas mixture containing 1% O, 5% CO,, and 94% N in
MIC-101 modular incubator chambers (Billups-Rothenburg, Del Mar, CA) at
37°C for the indicated times.

Skeletal muscle cell culture. Primary human skeletal muscle cells of healthy
Caucasian donors were supplied as proliferating myoblasts (5 X 10° cells) and
cultured as described previously (15). For an individual experiment, myoblasts

were seeded in six-well culture dishes (9.6 cm*well) at a density of 10° cells
per well and cultured in o-modified DMEM/F12 medium containing skeletal
muscle cell growth medium supplement pack up to near confluence. The cells
were then differentiated and fused by culture in a-modified DMEM for 4 days
and used for experiments.

Smooth muscle cell culture and proliferation. Primary human coronary
artery smooth muscle cells were obtained from PromoCell (Heidelberg,
Germany). Cells from four different donors were supplied as proliferating cells
and kept in culture according to the manufacturer’s protocol. For all experi-
ments, subconfluent cells of passage three were used. Cells were character-
ized as smooth muscle cells by morphologic criteria and by immunostaining
with smooth muscle a-actin.

Immunoblotting. Adipocytes and macrophages were treated as indicated and
lysed in a buffer containing 50 mmol/L. HEPES, pH 7.4, 1% Triton X-100,
complete protease inhibitor, and PhosStop phosphatase inhibitor cocktail.
After incubation for 2 h at 4°C, the suspension was centrifuged at 10,000g for
15 min. Thereafter, 5-10 g adipocyte lysates were separated by SDS-PAGE
using 10% horizontal gels and transferred to polyvinylidene fluoride filters in
a semidry blotting apparatus. Filters were blocked with Tris-buffered saline
containing 0.1% Tween and 5% nonfat dry milk and subsequently incubated
overnight with a 1:1,000 dilution of the appropriate antibodies. After washing,
filters were incubated with secondary HRP-coupled antibody and processed
for enhanced chemiluminescence detection using Immobilon HRP substrate
(Millipore, Billerica, MA). Signals were visualized and evaluated on a LUMI
Imager (Boehringer, Mannheim, Germany) or VersaDoc 4000 MP (Bio-Rad
Laboratories, Munich, Germany) work station.
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FIG. 2. Effect of DPP4 on insulin-stimulated Akt phosphorylation in adipocytes and skeletal muscle cells. Differentiated human adipocytes (A and B)
and skeletal muscle cells (C and D) were treated with the indicated amounts of DPP4 without and with concomitant administration of a specific DPP4
inhibitor for 24 h. After stimulation with insulin (100 nmoV/L, 10 min), the cells were lysed and 5-10 pg of total lysates were resolved by SDS-PAGE
and blotted to polyvinylidene fluoride membranes. Membranes were blocked with 5% milk in TBS containing 0.1% Tween 20 and incubated
overnight with p-Akt antibody. After incubation with the appropriate HRP-coupled secondary antibody, the signal was detected by enhanced
chemiluminescence. Signals were analyzed on a LUMI Imager Work Station (Boehringer). Data are actin normalized mean values + SEM (n = 3-8).
Representative Western blots are presented. For A, lanes were excised from a single Western blot and displayed in the presented order. Basal
(white bars); insulin-stimulated (black bars). *Significantly different from insulin-stimulated control or indicated situation. ns, not significant.
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ELISA. DPP4 and heme oxygenase-1 secretion by human primary adipocytes
and macrophages were determined using ELISA kits purchased from R&D
Systems and Streegen Biotechnologies (Lorrach, Germany). The assays were
performed in duplicates according to the manufacturer’s instructions.
Presentation of data and statistics. Data are expressed as mean = SEM.
The Shapiro-Wilcoxon test was used to test the Gaussian distribution of bi-
ological parameters. Student ¢ test and ANOVA followed by P for linear trend
post-test when appropriate were used for comparison between groups. Cor-
relations were performed by Pearson. For adjustment (BMI, age), we applied
a multiple linear regression modeling using least-squares means tests. All
statistical analyses were done using JMP statistics software (SAS Institute Inc.,
Cary, NC) or Prism (GraphPad Software, Inc., La Jolla, CA) considering a
P value <0.05 as statistically significant. Corresponding significance levels are
indicated in Figs. 1 to 7.

RESULTS

DPP14 is a novel adipokine exhibiting regulated release
from human adipocytes. Comprehensive proteomic pro-
filing of the adipocyte secretome led to the identification of
347 proteins, with 263 proteins being predicted or anno-
tated as secretory proteins (data to be presented in an-
other publication). Although ~80% of these proteins have
been reported in earlier studies (17-19), our approach
has identified >40 novel adipokines, including DPP4.

To validate this novel adipokine, we used in vitro dif-
ferentiated human adipocytes and macrophages isolated
from adipose tissue. DPP4 expression in human adipo-
cytes is significantly increased during differentiation with a
maximum reached at day 7 (fourfold over undifferentiated

control) (Fig. 1A). DPP4 expression is paralleled by a
marked release of this adipokine (Fig. 1B), which was sig-
nificantly elevated compared with the undifferentiated con-
trol starting at day 4 and increasing up to day 9 (1.1 ng/mL
released over 24 h by 3.5 X 10° cells). DPP4 in the super-
natant of adipocytes was quantified by ELISA and confirmed
by Western blotting (Fig. 1B). We further analyzed the re-
lease of DPP4 with prominent regulators of adipocyte se-
cretory activity, such as troglitazone, TNF-o, insulin, and
adiponectin (15,20,21). As shown in Fig. 1C, DPP4 release is
significantly upregulated by TNF-a and insulin. In addition
to adipocytes, adipose tissue-derived macrophages release
measurable amounts of DPP4 (Fig. 1D). However, this is
only one third compared with adipocytes, pointing to a ma-
jor contribution of adipocytes to DPP4 output from adipose
tissue.

Soluble DPP4 exerts direct effects on fat and muscle
cells. The soluble form of DPP4 may bind to the extra-
cellular matrix (22) and affect a variety of cells, yet this
has not been investigated so far. To assess potential direct
effects of soluble DPP4 on peripheral cells, we studied
insulin signaling in adipocytes and skeletal muscle cells.
DPP4 treatment of human adipocytes results in a dose-
dependent decrease in insulin-stimulated Akt phosphory-
lation, which reached significance using a dose of 200 ng/mL
(Fig. 2A). This demonstrates an autocrine effect of DPP4
on adipocytes. It should be noted that circulating DPP4
concentrations were found in the range of 200 to 600 ng/mL
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FIG. 3. Effect of DPP4 on insulin-stimulated Akt phosphorylation and proliferation in smooth muscle cells. A and B: Smooth muscle cells were
treated with the indicated amounts of DPP4 without and with concomitant administration of a specific DPP4 inhibitor for 24 h. After stimulation
with insulin (100 nmol/L, 10 min) the cells were lysed and Western blots performed as indicated in Fig. 2. Data are actin normalized mean values *=
SEM (n = 3-6). Basal (white bars); insulin-stimulated (black bars). C: Proliferation of smooth muscle cells was determined by measuring the
incorporation of BrdU into DNA. Data are expressed relative to the basal control value, taken as 100%. Data are mean values = SEM (n = 3-8). ns,
not significant. *Significantly different from control or indicated situation.
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in healthy patients. The effect of DPP4 on insulin-stimulated
Akt phosphorylation can be completely blocked by a spe-
cific DPP4 inhibitor (Fig. 2B). Validation experiments using
this compound proved inhibition of DPP4 in vitro, which
remained unaltered for a period of at least 8 h (data not
shown). Similar to adipocytes, DPP4 also induces IR in
skeletal muscle cells at the level of Akt phosphorylation in
a dose-dependent way but less prominent compared with
adipocytes (Fig. 2C and D). To prove whether DPP4 has
a functional impact not only on insulin signaling, we de-
termined DPP4-stimulated proliferation and insulin signal-
ing in primary human smooth muscle cells. In addition to
the induction of IR at the level of Akt in this cell type, DPP4
induced a 1.6-fold increase in cell proliferation that can be
completely blocked by the DPP4 inhibitor (Fig. 3A-C).
DPP4 is elevated in serum of obese patients and
correlates with various anthropometric and clinical
parameters (clinical study 1). Measuring DPP4 in serum
from age-matched lean and morbidly obese subjects (pa-
tient characteristics in Supplementary Table 1) revealed
that obese subjects are characterized by significantly in-
creased DPP4 concentrations (Fig. 44). DPP4 expression
in adipose tissue biopsies from the same patients revealed
that DPP4 protein expression is regulated by both the
fatness of the individual and the adipose tissue depot (Fig.
4B). Although there is only a trend for higher DPP4 ex-
pression in visceral fat of lean subjects, obese patients are
characterized by significantly higher DPP4 in visceral ad-
ipose tissue compared with subcutaneous adipose tissue.
Furthermore, expression of DPP4 in both depots is sig-
nificantly higher in obese subjects compared with lean
subjects. DPP4 levels positively correlate with BMI, the
size of subcutaneous and visceral adipocytes, insulin, and
leptin, whereas a negative correlation with age and adi-
ponectin could be found (Fig. 5A-G). Adjusting DPP4 for
age has no impact on these correlations. However, when
adjusted for BMI, DPP4 serum concentrations significantly
correlate only with the size of subcutaneous adipocytes
(P =0.04, r = 0.32), pointing to a close relation between the
size of adipocytes and the release of this adipokine.
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FIG. 4. DPP4 serum concentration and expression in adipose tissue
from lean compared with obese patients (clinical study 1). A: Sera from
lean (n = 20) and morbidly obese (n = 20) men were analyzed for their
DPP4 concentration by ELISA. Data are mean values = SEM, *P < 0.05
vs. lean group. B: DPP4 protein level in adipose tissue biopsies was
analyzed by SDS-PAGE and Western blot. Data were normalized to the
protein level of actin and are expressed relative to subcutaneous adi-
pose tissue from lean subjects. Data are mean values = SEM, n = 8 for
lean and n = 14 for obese patients, *P < 0.05 respective subcutaneous
or designated group.
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DPP1 is released from subcutaneous adipose tissue in
vitro (clinical study 2). We investigated lean and obese
subjects after weight reduction and analyzed the release of
DPP4 from whole adipose tissue. Adipocytes from lean
subjects were significantly smaller than those from obese
patients (Fig. 6A). Surgery-induced weight loss reduced
the average size of adipocytes below the size from lean
subjects. DPP4 release is significantly increased from ad-
ipose tissue of obese subjects compared with lean subjects
(Fig. 6B), whereas weight reduction by bariatric surgery
normalized the DPP4 release to the lean level. This was
paralleled by a significant reduction in the circulating
DPPA4 level, supporting the notion that adipose tissue is an
important source of serum DPP4 (Fig. 6C). In the group of
lean and obese subjects, DPP4 release from adipose tissue
significantly correlates with BMI, waist circumference,
percent body fat, triglycerides, HOMA, adipocyte volume,
and leptin, whereas the correlation is negative with HDL-
cholesterol (Fig. 6D-K). All of these factors are denomi-
nators of the metabolic syndrome. It is noteworthy that
leptin shows similar correlations with the above men-
tioned parameters, with the exception of triglycerides, for
which no correlation could be found. Notably, the release
of DPP4 from adipose tissue correlates with many param-
eters that correlate with circulating DPP4 concentrations.
There is also a strong correlation between adipose secre-
tion of leptin and DPP4 (Fig. 6K).

DPP4 serum concentrations and release from adipose
tissue are significantly related to the metabolic
syndrome. In both obese patient groups providing data
for circulating DPP4 levels and DPP4 release from adipose
tissue explants, the respective concentrations of DPP4 are
significantly increased in subjects with a risk score for the
metabolic syndrome of =3, as calculated according to the
Adult Treatment Panel-IIl guidelines (Fig. 7A and B). By
performing the same analysis for the circulating levels
of leptin, monocyte chemotactic protein-1, RANTES (reg-
ulated upon activation, normal T cell expressed and se-
creted), plasminogen activator inhibitor-1, chemerin, and
high-sensitivity C-reactive protein, we did not find any
such relationship with the metabolic syndrome (data not
shown). In contrast, adiponectin serum levels were sig-
nificantly decreased in patients with the metabolic syn-
drome (data not shown). Including the lean subjects in this
type of analysis does not change the outcome of this
analysis, and it should be noted that the relationship of
DPP4 with the risk score for the metabolic syndrome in
the obese subjects is independent from BMI.

DISCUSSION

Our proteomics approach identified DPP4 as a novel adi-
pokine released by fully differentiated human adipocytes.
This was confirmed by Western blot, ELISA, and deter-
mination of enzymatic activity. DPP4 release increased
substantially on fat cell differentiation, and comparison
with preadipocytes and adipose tissue macrophages
showed that adipocytes most likely represent the major
source of DPP4 released from the intact organ to the
circulation. DPP4 is a multifunctional, type II integral
membrane glycoprotein exhibiting ubiquitous expression,
including adipose tissue (23), being highly abundant in the
kidney, on T lymphocytes and endothelial cells (22). DPP4
is certainly different from many other adipokines in that
1) the protein is not secreted but released from the plasma
membrane as soluble DPP4 subsequent to proteolytic
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cleavage (24), 2) DPP4 exerts dual functions both as
a regulatory protease and a binding protein, and 3) this
protein is already an established target for treatment of
type 2 diabetes (8), supporting our notion that DPP4 may
potentially link adipose tissue to type 2 diabetes and the
metabolic syndrome. Regulators of DPP4 release are
presently unknown, but we show that both insulin and
TNF-a augment the shedding of soluble DPP4 by ~50%
despite an unaltered expression. Thus, factors related to
IR and adipose tissue inflammation enhance the release of
this novel adipokine from the fat cell. In addition to the
endocrine effects of DPP4 released to the circulation, both
cell surface resident and soluble DPP4 may have multiple
autocrine and paracrine functional implications for adi-
pose tissue physiology. First, DPP4 recruits adenosine
deaminase to the cell surface (25), which may modulate
the well established antilipolytic effects of adenosine. Sec-
ond, DPP14 is a strong inhibitor of the antilipolytic activity of
neuropeptide Y (23), which is one of the best peptide sub-
strates of the enzyme (26). Therefore, enhanced abundance
of both resident and soluble DPP4 within adipose tissue of
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obese subjects may substantially augment the lipolytic
activity of enlarged adipocytes. Finally, DPP4 inactivates
or alters the specificity of many chemokines, including
RANTES, eotaxin, macrophage-derived chemokine, stromal-
derived factor-1, and many others (22), making it likely that
DPP4 plays a yet undefined functional role in the intraorgan
cross-talk among macrophages, adipocytes, and other com-
ponents of the stroma-vascular fraction.

So far, the direct effects of soluble DPP4 on isolated
cells have not been investigated, although it binds to the
extracellular matrix and may exert signaling functions
(22). We demonstrate for the first time that DPP4 consis-
tently impairs insulin signaling at the level of Akt in three
different primary cell types, namely, adipocytes, skeletal
muscle, and smooth muscle cells. Enzymatic activity of
DPP4 seems to be involved in this process, but DPP4
inhibitors may also affect the binding properties of sDPP4
to a putative receptor. This issue is currently under in-
vestigation in our laboratory. It may be speculated that
DPP4 exerts an autocrine action on adipocytes, which may
be of particular interest for perivascular fat, where DPP4

diabetes.diabetesjournals.org



D. LAMERS AND ASSOCIATES

A 1500 B 5o * * C s 400, * *
= = T
& * * 40 g
o o - S 300
£ 1000 e = o
=] o @ 304 c =
2 < ° o £
9 [ 0 = 200+
o (=]
8 ¥ < 201 Ec
>
5‘ 500 o g’ fus
[
o o< & 100+
£ 10 o
T o
© o
c T T T c T T T Q c T T T
lean obese post-obese lean obese post-obese lean obese post-obese
- - 80 5
60 p=0.0001; r=0.66 200 p=0.0004; r=0.62 25 p=0.03; r=-0.41
| |
5 70 5201 mm
A .
= —_ 1 — ] ® | |
T 5150 & 60 % 154
=] < %' 2
2 40- - 3 50 )
s 2 < S 1.0- .-
o 2 100+ 2 40 2 =
30
30- T 059
p=0.001; r=0.57
zc T T T 1 50 T T T 20 T T T 1 0.0 T T T 1
0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80
DPP4 (ng/107 cells) DPP4 (ng/107 cells) DPP4 (ng/10” cells) DPP4 (ng/107 cells)
0.6+ 1.5+ 1500 100-
5 p=0.0003; r=0.63 ~ 500 0 p=0.004;r=0.56 M
0 0.4 u C 2 go] .
g 1.0 o @
= < £ 1000+ ©
g 0.2 = 3 s 60
2 2 os- g 5
£ 0.04 - 2 £ 401
g Y g 5001 £
) .04 -
2 0.2 e <3 o 204
<0.0001; r=0.74 5 2
% p<0.0001; =0 K p<0.0001; r=0.74
'0'4 T T T 1 '0-5 T T T 1 c T T T 1 c T T T 1
0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80

DPP4 (ng/107 cells) DPP4 (ng/107 cells)

DPP4 (ng/107 cells) DPP4 (ng/107 cells)

FIG. 6. DPP4 release of explants obtained from adipose tissue of lean controls and obese patients before and after bariatric surgery, and linear
correlation with various clinical and biochemical parameters (clinical study 2). A and B: Samples of adipose tissue were obtained from lean
controls (n = 10) and obese patients before (n = 19) and after (n = 16) bariatric surgery, and used to generate explants as described in RESEARCH
DESIGN AND METHODS. The size of adipocytes for each subject was measured (A). DPP4 release was analyzed by ELISA and related to the quantity
of adipocytes (B). C: DPP4 serum concentration was measured in lean and obese patients before and after bariatric surgery. D-K: Linear
regression analysis of DPP4 release per 107 cells and patient characteristics such as BMI (D), waist circumference (E), percent of body fat (F'),
HDL-cholesterol concentration (G), triglycerides concentration (H), HOMA (I), adipocyte volume (J), and leptin (K). A-C: Data are mean

values = SEM. *P < 0.05 between respective groups.

may also act in a paracrine/endocrine fashion on the vas-
cular wall. DPP4 induces proliferation of human vascular
cells in parallel to an impairment of insulin signaling,
suggesting a potential role in obesity-associated vascular
complications. In this study, we used DPP4 concentrations
that match circulating levels that were measured in both
lean and obese subjects. Because obese patients are char-
acterized by significantly increased circulating DPP4, it may
be speculated that DPP4 may interfere with insulin sensi-
tivity not only in adipose tissue but also in other insulin-
sensitive peripheral organs. This would substantially extend
the current view of DPP4 as a target for treatment of type 2
diabetes. Future work will be needed to address the mech-
anism and the functional role of these effects in the patho-
genesis of IR and obesity-associated complications.

Serum DPP4 is altered in many pathophysiologic con-
ditions, such as different types of cancer, allergic asthma,
or hepatitis C (10). To the best of our knowledge, this is
the first study to analyze circulating DPP4 in the context of
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obesity and adipose tissue. Morbidly obese men are char-
acterized by elevated DPP4 levels compared with lean
controls. DPP4 serum concentrations are significantly
correlated with the BMI, the size of adipocytes in sub-
cutaneous and visceral fat, and the adipocyte hormones
adiponectin (negatively) and leptin, showing that DPP4 is
related to not only increased body weight but also other
important parameters of adipose tissue in particular. DPP4
is negatively associated with age, but all of the above
mentioned parameters are still significantly correlated
with DPP4, even after adjustment for age. In a different
manner, BMI adjustment causes the disappearance of most
of these correlations, with the exception of the size of
subcutaneous adipocytes. In addition to circulating DPP4,
the protein expression of this adipokine is significantly
different not only between lean and obese subjects but
also between their fat depots. Former studies report con-
tradicting data, describing both decreased and increased
mRNA expression of DPP4 in adipose tissue of obese men
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FIG. 7. DPP4 in serum and release from adipose tissue explants in re-
lation to a risk score for the metabolic syndrome. A risk score for the
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score of 23 were qualified as “with metabolic syndrome (MS).” Patients
with a score of <2 were qualified as “without MS.” Data were analyzed
using a t test. Data are mean values = SEM. *P < 0.05, **P < 0.01.

(23,27). We now clearly demonstrate at the protein level
that obesity leads to a prominent induction of DPP4
abundance in both subcutaneous and visceral adipose
tissue and that the visceral fat exhibits the highest DPP4
level in obese subjects. Therefore, we conclude that en-
largement of visceral adipocytes in obesity may sub-
stantially contribute to the augmented level of circulating
DPP4 in obese patients. It is noteworthy that we measured
DPP4 serum concentration and not its activity. However,
in additional experiments, other samples from the same
patients were used to determine DPP4 activity that is sig-
nificantly correlated with circulating DPP4 levels (data not
shown). Thus, DPP4 activity is also significantly increased
in obese compared with lean subjects.

DPP4 expression in adipose tissue is increased in obese
compared with lean individuals, a fact that is reflected by
an increased release of DPP4 from adipose tissue explants
of obese patients compared with lean controls. Similar to
circulating DPP4, its release from adipose tissue correlates
with various classic markers for the metabolic syndrome,
namely, BMI, waist circumference and plasma triglycerides,
and HOMA as an index of IR, as well as with fat cell vol-
ume and the adipokine leptin. In addition, DPP4 release
can be reversed to normal levels by surgery-induced
weight loss, which is also reflected by DPP4 being signif-
icantly reduced in serum of these patients. With the ex-
ception of one study reporting on DPP4 levels in obese
children before and after weight loss (28), this is the first
description of significantly decreased DPP4 levels after
weight loss induced by obesity surgery in adults. Thus, in
obesity, both circulating levels of DPP4 and DPP4 release
by adipose tissue are increased but can be reduced to
control levels by substantial weight loss.

Both circulating DPP4 and DPP4 release by adipose
tissue correlate strongly with the metabolic syndrome.
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Thus, DPP4 may be of relevance as a novel biomarker of
the metabolic syndrome and for detection of obese sub-
jects at high risk for obesity-associated complications.
Future studies are needed to address this important issue
and to define the molecular pathways that link adipose
DPP4 to the metabolic syndrome and type 2 diabetes. An
adipose-specific knockout of DPP4 would be required to
prove a causal role of this protein, and this mouse model is
currently under development in our laboratory. However,
several lines of evidence support our notion that the novel
adipokine links obesity to the metabolic syndrome. First,
DPP4 impairs the function of the incretin system, which is
of key importance for glucose homeostasis (29). Incretin-
based therapies are known to preserve B-cell function and
to exert salutary effects on blood pressure and lipid profile
(30). Second, DPP4 inhibitors are well known to improve
glucose tolerance in animal models of obesity (31). More
important, chronic DPP4 inhibition in ZDF rats was shown
to delay the onset of type 2 diabetes (31). Finally, pre-
clinical data suggest that GLP-1 is cardioprotective (32),
and DPP4 inhibition was shown to improve cardiovascular
outcomes in rodents (33). Our data strongly support the
current view (20) that adipocytes and specifically adipose
tissue play a major, most likely causative role in the
pathogenesis of metabolic diseases.

In summary, we showed that DPP4 is a novel adipokine
that is substantially overexpressed in visceral fat from
obese subjects and exhibits an augmented release in obe-
sity. Soluble DPP4 exerts autocrine and paracrine effects
and impairs insulin signaling. We further observe a tight
correlation of DPP4 release to adipocyte cell size, and
plasma levels of DPP4 strongly correlate with the risk of
having the metabolic syndrome. Therefore, we suggest
that DPP4 is a novel biomarker and a potential link be-
tween obesity and the metabolic syndrome.
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