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Abstract

Recent scientific advances have accumulated a tremendous amount of biomedical knowl-

edge providing novel insights into the relationship between molecular and cellular processes

and diseases. Literature mining is one of the commonly used methods to retrieve and

extract information from scientific publications for understanding these associations. How-

ever, due to large data volume and complicated associations with noises, the interpretability

of such association data for semantic knowledge discovery is challenging. In this study, we

describe an integrative computational framework aiming to expedite the discovery of latent

disease mechanisms by dissecting 146,245 disease-gene associations from over 25 million

of PubMed indexed articles. We take advantage of both Latent Dirichlet Allocation (LDA)

modeling and network-based analysis for their capabilities of detecting latent associations

and reducing noises for large volume data respectively. Our results demonstrate that (1) the

LDA-based modeling is able to group similar diseases into disease topics; (2) the disease-

specific association networks follow the scale-free network property; (3) certain subnetwork

patterns were enriched in the disease-specific association networks; and (4) genes were

enriched in topic-specific biological processes. Our approach offers promising opportunities

for latent disease-gene knowledge discovery in biomedical research.

Introduction

In recent decades, a vast amount of biomedical research has been conducted to investigate

disease classifications, health records, clinical trials, and adverse event reports that can be uti-

lized to establish links between disease and genes, in order to identify novel treatments for dis-

eases [1]. This effort provides an unprecedented opportunity to extract phenotype-genotype

PLOS ONE | https://doi.org/10.1371/journal.pone.0191568 January 26, 2018 1 / 23

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Zhang Y, Shen F, Mojarad MR, Li D, Liu

S, Tao C, et al. (2018) Systematic identification of

latent disease-gene associations from PubMed

articles. PLoS ONE 13(1): e0191568. https://doi.

org/10.1371/journal.pone.0191568

Editor: Vladimir B. Bajic, King Abdullah University

of Science and Technology, SAUDI ARABIA

Received: July 10, 2017

Accepted: January 8, 2018

Published: January 26, 2018

Copyright: © 2018 Zhang et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This project was supported by the

National Cancer Institute grant P30 CA 134274–04

to the University of Maryland Baltimore, the Cancer

Prevention & Research Institute of Texas (CPRIT)

Rising Star Award (CPRIT R1307), and grants from

National Institutes of Health (1K99LM012021-

01A1, R01LM011368, R01GM102282, and R01LM

011829). The funders had no role in study design,

https://doi.org/10.1371/journal.pone.0191568
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0191568&domain=pdf&date_stamp=2018-01-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0191568&domain=pdf&date_stamp=2018-01-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0191568&domain=pdf&date_stamp=2018-01-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0191568&domain=pdf&date_stamp=2018-01-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0191568&domain=pdf&date_stamp=2018-01-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0191568&domain=pdf&date_stamp=2018-01-26
https://doi.org/10.1371/journal.pone.0191568
https://doi.org/10.1371/journal.pone.0191568
http://creativecommons.org/licenses/by/4.0/


associations, which plays an important role toward the eventual development of a comprehen-

sive, relational, multi-dimensional “data translator” integrating multiple types of existing data

sources [2].

Biomedical literature is one of the richest and most reliable information resources and

extracting association information from literature is critical for scientists to explore potential

associations among different biomedical concepts, such as diseases and genes [3]. To facilitate

and expedite such an investigation process, natural language processing (NLP) has been exten-

sively applied to automatically extract association information from biomedical literature,

such as the Semantic MEDLINE database (SemMedDB) [4, 5]. However, due to the huge vol-

ume of data with complex associations and noises, it is still challenging to discover knowledge

from literature. In addition, current disease classification is mostly done through phenotypic

observations while ignoring the underlying molecular and pathophysiological information.

Therefore, to tackle these issues, a novel integrative informatics framework needs to be

designed.

Latent Dirichlet Allocation (LDA) is a generative computational model aiming to explain

sets of observations by unobserved variable groups [6]. Recently, LDA has been widely used to

uncover underlying semantic associations among biomedical concepts embedded in medical

databases and public domain in the informatics field. For instance, Arnold et al [7] applied

LDA to identify clinically significant topics using case-based patients’ notes. Angues et al [8]

employed an unsupervised LDA method to prioritize clinical dialogues for visualizing shared

content in communication. Wang et al [9] proposed BioLDA to identify complex biological

relationships in literature. Wu et al [10] proposed a probabilistic Kullback-Leibler (KL) dis-

tance based on LDA to rank the gene-drug associations in biomedical literature. Bisgin et al

[11, 12] and Bian et al [13, 14] used LDA in the drug repositioning research. LDA-based

approaches have also been used for information retrieval such as interpretation of MeSH

terms in literature [15], diversity ranking of genomics information retrieval in microbial stud-

ies [16, 17], and MeSH-indexing with labeled LDA [18]. For example, Chen et al [17] proposed

to identify functional groups in microbial gene catalogue using LDA by considering functional

elements (e.g., taxonomic levels, indicators of gene orthologous groups, and KEGG pathway

mappings) as words and each functional group as topics in the LDA modeling. Their experi-

mental results showed that topic modeling could effectively cluster functional elements into

highly interpretable groups.

In recent years, network-based computational approaches have become one of the major

analytical and visualization tools to extract informative content from high dimensional data

and reduce noise among disease and gene associations in biomedical research [19]. Applica-

tions of these approaches include drug repositioning [20, 21], disease gene prioritization [22–

24], and identification of disease relationships [25, 26]. For instance, Hu and Agarwal [27] cre-

ated a human disease-drug network based on genomic expression profiles collected from the

GEO database, in which 170,027 interactions between diseases and drugs were considered sig-

nificant. These expression-based associations between diseases and drugs could serve as future

research directions. Bauer-Mehren et al [28] developed a comprehensive disease-gene associa-

tion network by integrating associations from several sources that covers different biomedical

aspects of diseases. The results indicated a highly shared genetic origin of human diseases. To

systematically analyze disease-drug-gene relationships, Daminelli et al [29] proposed a net-

work-based approach to predict novel drug-gene and drug-disease associations by completing

incomplete bi-cliques in the network. This approach holds great potential for discovery of

novel disease mechanisms and drug repositioning. For a detailed review of network-based

approaches, please refer to a series of review articles [19, 30–32]. One of such network

approaches enables us to analyze heterogeneous networks by decomposing them into
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statistically significant recurring subnetworks, called network motifs (NMs) [33]. They are the

smallest basic functional and evolutionarily conserved units in various types of biological net-

works. Network motifs are usually considered as significant sub-patterns representing the

backbone of the network by forming larger network modules with specific functional roles. In

our previous study [34], we developed a network motif-based approach to investigate vaccine-

related disease-drug-gene network, demonstrating that a combinatorial analysis using litera-

ture knowledgebase, semantic technology, and network approach is able to reveal latent

knowledge critical to biomedical research and public health and generate testable hypotheses

for future experimental verification.

In this study, we proposed an integrative informatics framework that leverages LDA and

network analysis to facilitate novel knowledge discovery using disease-gene association infor-

mation extracted from literature. Literature mining will enable us to stay current. The ability

of LDA to represent distributed semantics embedded in data will enable us to group diseases

based on associated molecular and pathophysiological level information. Further reducing the

dimensionality and noises through network analysis can expedite the discovery. Specifically,

our approach is able to detect latent disease topics with semantic granularity and discover

potential important disease mechanisms from the literature with minimum noises. First, we

applied an LDA-based modelling approach to group 7,039 diseases into 160 optimal disease

topics based on 146,245 disease-gene associations recorded in SemMedDB Version 25. Based

on the diseases and genes involved in each disease topic, we constructed a network for each

disease topic and investigated latent novel disease mechanisms based on a series of network

properties. Specifically, in our case study topic of Alzheimer’s Disease (AD), we examined the

properties of the association network by investigating both overall network properties such as

node degree distribution, and local network structure called network motifs. The genes

involved in each association network were also analyzed by gene set enrichment analysis. The

overall approach is illustrated in Fig 1(A). Our results demonstrate that (1) the LDA-based

approach is able to group related diseases into same disease topics based on their high-dimen-

sional yet sparse associations with genes; (2) the disease-specific association network follows

the scale-free network property, in which hub nodes are rich in diseases and genes closely

related with each other; (3) significant network motif patterns can be detected in the disease-

specific networks indicating novel yet latent disease mechanisms; and (4) genes in the associa-

tion network are significantly enriched in biological processes and canonical pathways highly

involved in hub diseases.

Results

LDA-based modelling revealed diverse disease topics and their associated

genes

From SemMedDB Version 25, we extracted 146,245 disease-gene associations between 7,039

diseases and 10,921 genes from titles and abstracts of over 25 million PubMed articles. Diseases

were identified by semantic type (e.g. “dsyn” or “neop”) and genes were identified by gene

terms approved by HGNC (https://www.genenames.org/). Based on our LDA modelling on

these associations, we assembled these 7,039 diseases into 160 optimal disease topics. The opti-

mal number of disease topics was determined by the log likelihood score defined in the

Method section. As shown in Fig 1(B), the highest log likelihood score was obtained when

LDA grouped the diseases into 160 topics. In addition, in 1000 iterations of the LDA algo-

rithm, the curve of log likelihood score was convergent at topic number of 160 (Fig 1(C)), indi-

cating that is a reasonable optimum number of topics.
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In our LDA result, each topic can be represented as a group of diseases associated with the

same groups of genes. It can also be viewed as a group of genes involved in similar diseases.

We investigated the distribution of diseases and genes across the 160 topics, in which the gene

distribution represented the number of genes assigned to each topic with non-zero proportion,

and the disease distribution represented the number of diseases contributing to each topic.

Topics 115, 127, 129, 66 and 18 are the top 5 topics involving largest number of genes (i.e.,

441, 408, 400, 308, and 304 genes respectively), while Topics 123, 65, 147, 37 and 59 are the 5

topics with the smallest number of genes (i.e., 83, 80, 79, 76 and 71 respectively). Similarly,

Topics 115, 103, 94, 136 and 43 are top the 5 topics containing the largest number of diseases

(i.e., 472, 414, 403, 387 and 380 diseases respectively), while Topics 146, 119, 55, 108 and 31 are

5 topics containing the smallest number of diseases (i.e., 163, 162, 154, 148 and 142 respec-

tively). To examine the distributions between genes and diseases in same topics, we overlaid

both distributions in Fig 2(A). We observed that the number of genes was not necessarily cor-

related with that of diseases in same topics. In most cases, topics contain a larger number of

diseases than genes, indicating that many diseases may share common genes. However, a few

topics (e.g., Topic 119 with 162 diseases and 230 genes) contain a relative small number of

Fig 1. (A) Overview of the proposed approach. (B) The Log likelihood score across different number of topics. (C) The Log likelihood score across

different iterations.

https://doi.org/10.1371/journal.pone.0191568.g001

Systematic identification of latent disease-gene associations from PubMed articles

PLOS ONE | https://doi.org/10.1371/journal.pone.0191568 January 26, 2018 4 / 23

https://doi.org/10.1371/journal.pone.0191568.g001
https://doi.org/10.1371/journal.pone.0191568


diseases while containing many shared genes, suggesting that diseases in these topics are very

complex and have many genes involved.

To further explore the extent to which each disease topic contains the disease-gene associa-

tion information in our dataset, we ranked 160 topics based on their normalized posterior

probabilities, top 10 of which were presented in S1 Table. Topic 115 had the highest posterior

probability of 0.02346, indicating that LDA assigned the largest number of genes to Topic 115.

In other words, Topic 115 contained the largest number of genes involved in different

diseases.

We also investigated the similarities among disease topics based on their containing genes

and diseases using the cosine similarity approach. Cosine similarity [35] is commonly used on

two non-zero vectors to measure the cosine of the angle between them in order to quantify the

similarity between vectors. Here we compared each topic with all the others based on their dis-

eases and genes, aiming to explore the divergences among topics generated by LDA. We con-

ducted a pair-wise comparison of the distribution of cosine similarity values based on diseases

and genes for each topic-topic pair. The cosine similarity is used in the positive space, whose

value range is between 0 and 1. Therefore, we partitioned [0, 1] into ten interval groups in

each of which the frequency of topic-topic pairs was shown in S2 Table. No topic pairs showed

significantly high similarities, suggesting that LDA is capable to group similar diseases into

same groups. In general, topics shared a higher level of similarity at disease level than gene

level, suggesting that even phenotypically similar diseases might be grouped into different

groups based on their associations with different groups of genes representing distinct biologi-

cal processes.

We then took a closer look at the similarity among the top 10 topics at disease and gene

level respectively (Fig 2(B) and 2(C)). These 10 topics were divergent at gene level. The highest

similarity was observed between Topic 50 and 115 (similarity score is 0.15), which shared 30

genes including pik3ca, neurl1, hpse, neu1, and birc5. Consistent with the results of overall

cosine similarity measurement, the similarities of top 10 topics were higher at disease level

Fig 2. (A) Distribution of diseases and genes across 160 optimal disease topics. (B) The heatmap of cosine similarity for top 10 topics presented at

disease level. (C) The heatmap of cosine similarity for top 10 topics presented at gene level. (D) Overall Distribution of 146 LDA Topics on 19 Human

Disease Network Categories in Goh et al.

https://doi.org/10.1371/journal.pone.0191568.g002
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(average value is 0.26) than at gene level (average value is 0.146). These observations suggested

that although there are overlapping genes and diseases among topics, our LDA process was

able to generate distinct disease groups based on the disease-gene associations embedded in

SemMedDB.

Comparison of disease topics with disease categories in other works

To further evaluate the extent of the coverage of disease topics generated by our LDA analysis,

we compared the 160 topics with existing disease categories annotated by Goh et al [36]. We

downloaded the human disease network file “diseasesome.gexf” (https://exploringdata.github.

io/info/human-disease-network/), and extracted 3,926 disease-gene associations between 784

unique diseases and 638 unique genes. These 784 diseases were grouped into 22 categories,

including Bone, Cancer, Cardiovascular, Connective tissue disorder, Dermatological, Develop-

mental, Ear-Nose-Throat, Endocrine, Gastrointestinal, Hematological, Immunological, Meta-

bolic, Multiple, Muscular, Neurological, Nutritional, Ophthamological, Psychiatric, Renal,

Respiratory, Skeletal, and Unclassified. We extracted the diseases in our 160 LDA-derived dis-

ease topics and mapped them onto these 22 categories. To capture a broader mapping, we did

the mapping by checking both disease names and their synonyms. Using the method proposed

by Frick et al [37], we considered diseases to be similar if they share a common ancestor within

three generations. We used SNOMED-CT[38], a comprehensive and systematically organized

ontology of medical terms, for disease similarity calculation. We found that 19 out of 22 dis-

ease categories can be mapped to 146 topics, except Developmental, Ear-Nose-Throat, and

Respiratory. The heatmap in Fig 2(D) represents the overall distribution between 146 disease

topics in our results and 19 disease categories in Goh et al [36]. We found that Cancer has the

highest overlap level with the LDA disease topics, i.e., the Cancer category in Goh et al has

observable overlaps with 73 LDA topics. Metabolic, Hematological, and Neurological also

have relatively higher overlap with LDA topics, i.e., they have observable overlaps with 49, 46,

and 39 LDA topics respectively. However, Gastrointestinal, Unclassified, Psychiatric, and

Nutritional have the least coverage of diseases contained in each topic, which indicates that

SemMedDB has relatively fewer disease-gene associations related to these categories. A

detailed list of diseases contained in each topic is presented in S1 File.

To better describe relationships between topics and disease categories in Goh et al, we also

listed top topics that contributed the most diseases for each category as shown in Table 1. We

found that Metabolic has the most diseases in Topic 39, and Neurological also has a significant

number of diseases in Topic 34. In addition, Hematological, Ophthamological, Connective tis-

sue disorder, Cancer shared relatively bigger groups of diseases with Topic 109, 52, 54, and 107

respectively. Although Gastrointestinal category does not overlap with many topics, it shared

133 diseases with Topic 152, indicating that Gastrointestinal category has a closer association

with this topic. Similarly, Nutritional, Psychiatric, and Unclassified have closer association

with Topics 2, 145, and 39 respectively.

To further evaluate the 146,245 disease-gene associations extracted from SemMedDB, we

compared them with disease-gene associations annotated by the Online Mendelian Inheri-

tance in Man (OMIM) [39] knowledge base. For each disease topic, we calculated the distribu-

tion of disease-gene association coverage as described in the Methods section. In total, 159

topics have disease-gene associations annotated by the OMIM. The only exception is Topic 37.

In general, the average coverage across the 159 topics is 17.8%. We listed top 10 topics with the

highest OMIM disease-gene association coverage in Table 2, in which Topic 123 held the high-

est coverage as 32.3%. A detailed list containing the percentage of disease-gene associations

shared by each LDA topic and OMIM is presented in S2 File.

Systematic identification of latent disease-gene associations from PubMed articles

PLOS ONE | https://doi.org/10.1371/journal.pone.0191568 January 26, 2018 6 / 23

https://exploringdata.github.io/info/human-disease-network/
https://exploringdata.github.io/info/human-disease-network/
https://doi.org/10.1371/journal.pone.0191568


Evaluation of disease topics at disease level

To investigate the detailed composition of disease topics at disease level, we first examined

the distribution of the top 5 diseases in terms of their probabilities for top 10 disease topics

(Fig 3(A)). The most representative diseases in these topics were quite diverse, including pri-

mary glioblastoma, squamous papilloma of the larynx, common variable immunodeficiency,

adenosquamous carcinoma, enterocolitis necrotizing, invasive ductal breast cancer, diffuse

large B cell lymphoma of the mouse hematologic system, polymyalgia rheumatic, superficial

bladder cancer, and chondroblastoma.

To further systematically evaluate the similarity of diseases involved in each disease topic,

we adopted three widely used disease ontologies (i.e., SNOMED-CT [38], Disease Ontology

(DO) [40] and Human Phenotype Ontology (HPO) [41]) to investigate the semantic similari-

ties between diseases within each topic as well as across topics. We defined that two diseases

Table 2. Top 10 LDA topics containing most OMIM disease-gene associations.

LDA Topic Percentage of Disease-Gene Associations overlapped with OMIM

123 32.3%

149 29.2%

23 27.3%

76 27.2%

30 26.7%

112 23.8%

117 23.7%

13 22.7%

94 22.6%

135 22.4%

https://doi.org/10.1371/journal.pone.0191568.t002

Table 1. Topics with the most diseases mapped on Human Disease Network Categories.

Disease Category in Goh et al Mapped LDA Topic # Mapped Diseases

Bone 96 141

Cancer 107 209

Cardiovascular 159 184

Connective tissue disorder 54 238

Dermatological 1 116

Endocrine 154 135

Gastrointestinal 152 133

Hematological 109 296

Immunological 33 129

Metabolic 39 482

Multiple 27 123

Muscular 114 140

Neurological 34 333

Nutritional 2 56

Ophthamological 52 242

Psychiatric 145 77

Renal 38 120

Skeletal 41 110

Unclassified 39 75

https://doi.org/10.1371/journal.pone.0191568.t001
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are related if they share the same ancestor nodes within three levels of the ontology hierarchy

[37]. S3 Table lists the statistics of three ontologies provided by BioPortal [42]: SNOMED-CT

contains the largest number of classes, properties and children, DO holds the smallest number

of classes with a medium size of properties and children, and HPO maintains a medium num-

ber of classes with the smallest size of properties and children. First, we annotated diseases in

top 10 topics with three different ontologies. For SNOMED-CT, we found all SNOMED codes

including their synonyms for each disease in our dataset. For DO and HPO, we extracted all

UMLS CUI along with their synonyms for each disease. S4 Table presents the annotation

results by three ontologies. For each topic, SNOMED-CT provides the highest coverage of

annotation, DO has the second highest coverage of annotation, and HPO has the lowest cover-

age of annotation. We applied the information retrieval metrics to evaluate if one disease has

higher similarity with other diseases in the same topic than ones annotated by same ontology

Fig 3. (A) Top 10 topics and their corresponding top 5 diseases based on probabilities. (B) Top 10 topics and their corresponding top 5 genes based on

probabilities. For both figures, color blue, red, green, purple, and cyan represent top 1 to 5 diseases/genes respectively.

https://doi.org/10.1371/journal.pone.0191568.g003
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terms which is considered as one of the gold standards. The purpose was to investigate if each

LDA topic can indeed group similar diseases together. We employed the precision-recall

curve, one of the widely adopted information retrieval metrics. Specifically, the precision was

defined as the percentage of diseases that has at least one similar disease in the topic, and the

recall was defined as the percentage of diseases that have similar pairs in both LDA topic and

ontologies. For all diseases in top 10 topics, we divided them into 10 folds and calculated the

precision and recall for each fold to measure the trade-off between precision and recall. The

precision-recall curve for each of top 10 topics was presented in Fig 4(A). In most topics, SNO-

MED-CT achieved the best performance, DO the second, and HPO the worst except for Topic

136 and 112, with recall ranging from 0 to 0.2. This result was consistent with their coverage

difference of disease terms. We also measured the area under curve (AUC) for each ontology

annotation (Fig 4(B)) and obtained the same results, i.e., SNOMED-CT had the highest AUC

scores while HPO had the lowest AUC scores across the top 10 topics due to its low annotation

coverage of disease terms in our study. The average AUC score derived from SNOMED-CT

was around 0.8, suggesting that our LDA grouping is consistent with independent disease

ontology knowledge derived by the biomedical community. To give a comprehensive evalua-

tion of ontology matching for LDA topics, we computed the AUC score for all 160 topics as

shown in S1 Fig. We found that evaluation results are pretty consistent with which conducted

for top 10 topics, indicating that SNOMED-CT has the highest matching performance, Disease

Ontology is the second highest one and HPO achieved the lowest performance.

Evaluation of disease topics at gene level

To explore whether there were some dominant genes allocated in each disease topic, we exam-

ined the top 5 genes in terms of their probabilities for top 10 disease topics (Fig 3(B)). We

observed that genes h3f3ap6, ifi27, cd8b, esr1, tlr4, erbb2, tnfrsf6b, hla-drb1, cdkn1a and tp63
occupied the largest proportion in the top 10 topics respectively. We then calculated the

LDAKL score as described in Methods section for the top two genes within each topic and pair

of top two genes across the top 10 topics (S5 Table). The LDAKL scores of top two genes in

same topics were much smaller than that of two genes from different topics, suggesting that

the LDA grouping were capable of grouping similar genes into distinctive disease topics.

Network analysis of disease-gene association networks

To explore novel yet latent disease-gene association(s) within each disease topic, for each of

the top ten disease topics, we constructed a disease-specific association network by extracting

associations involving these disease terms. As shown in Table 3, each disease topic focused on

some specific disease categories. The association statistics were also presented in Table 3, in

which each association network contains thousands of nodes (i.e., disease, and genes) and

edges (i.e., associations between nodes). Since these associations are usually high-dimensional

yet noisy, it is impractical for domain experts to manually investigate these associations. To

address this problem, we investigated these association networks with a series of network

properties such as hub nodes and degree distribution. The overall results were listed in

Table 3, suggesting that these networks share the scale-free network properties as other biolog-

ical networks. A table containing the statistics and network properties for all 160 disease topics

was presented in S3 File. In the following three case studies, we used three disease topics (i.e.,

Alzheimer’s Disease, asthma-lymphoma, and lymphoma) to demonstrate that a more thor-

ough network-based informatics approach can expedite the identification of novel disease-

gene associations and interpret them in a biologically meaningful way.
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Fig 4. (A) The precision recall curve for top ten topics annotated by three independent disease ontologies. (B) Area under curve (AUC) score

for top 10 topics using three independent disease ontologies.

https://doi.org/10.1371/journal.pone.0191568.g004
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Case study 1: Alzheimer’s disease topic. Among all 160 disease topics, AD has non-zero

proportion in 55 of them. We focused on Topic 61, the most representative AD topic based on

its proportion, to further illustrate the AD related mechanisms. Specifically, we applied a net-

work-based analytical approach to dissect and prioritize significant biomedical concepts and

associations in this network. The diseases with highest node degrees include not only AD, but

also Parkinson’s disease, neurodegenerative disorders, and amyotrophic lateral sclerosis, all of

which have been shown to have significant associations with AD (S6 Table). There are also

other highly connected diseases with less known associations with AD (e.g., tardive dyskinesia),

which could serve as promising future directions in AD research. This case study clearly dem-

onstrates the superiority of network-based approach in inferring indirect associations among

diseases in a disease topic generated using LDA modelling. This association network also

showed a scale-free network property, in which certain diseases and genes act as “hubs” (S2

Fig). We then analyzed the local network structure by performing a network motif analysis on

the AD network as described in our previous work [43]. Overall, there were three significant

network motifs in the AD-specific association network (S7 Table). The finding that certain

network motifs are statistically enriched in the association network compared to random

Table 3. Statistics of top ten disease topics.

Topic ID Hub Disease (node degree) Number of Nodes Number of Associations Network Diameter Characteristic Path Length

115 carcinoma, non-small-cell lung (219) 608 10,895 5 2.55

squamous cell carcinoma (210)

neoplasm metastasis (194)

24 chronic b-cell leukemias (42) 459 2,957 6 3.01

cancer of rectum (41)

liver neoplasms (38)

94 Asthma (86) 398 2,971 6 2.82

lymphoma, large-cell, diffuse (85)

chronic lymphocytic leukemia (77)

103 endometrial carcinoma (58) 330 2,293 6 2.83

epithelial ovarian cancer (52)

malignant neoplasm of endometrium (50)

136 rheumatoid arthritis (76) 378 2,259 6 2.94

inflammatory bowel diseases (68)

inflammatory disorder (63)

50 salivary gland neoplasms (17) 244 1,058 7 2.71

prostatic intraepithelial neoplasias (14)

mucinous neoplasm (14)

112 Lymphoma (97) 377 1,883 8 3.02

lymphoma, large-cell, diffuse (85)

chronic lymphocytic leukemia (77)

124 celiac disease (29) 265 892 7 3.03

Sarcoidosis (22)

graves disease (21)

43 malignant neoplasm of skin (16) 231 984 7 2.57

dysplastic nevus (13)

carcinoma in situ of uterine cervix (12)

53 uterine cervical neoplasms (14) 240 799 6 2.69

mouse pancreatic intraepithelial neoplasia-2 (12)

endometrial adenocarcinoma (11)

https://doi.org/10.1371/journal.pone.0191568.t003
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networks of same network topology indicates that these network motifs represent underlying

biological specificity that could not be found in other networks.

To explore the pathways and biological processes the genes in the AD association network

are enriched in, we performed a gene set enrichment analysis using the Ingenuity Pathway

Analysis (IPA) tool (see a complete gene list in S4 File). Table 4 listed the top ranked canonical

pathways and networks enriched in the genes, most of which have been proven to be associ-

ated with AD. For instance, since AD is the common cause of dementia, it is not surprising to

see that the Huntington’s disease signaling pathway is enriched in the topic. Because both AD

and Parkinson’s disease are neurodegenerative (i.e., brain cells (neurons) become damaged

and die during the course of the disease), we also found that Parkinson’s signaling pathway

is enriched in the topic. In addition, we observed that the G Protein-Coupled Receptors

(GPCRs) pathway is enriched in the AD topic. There have been many studies demonstrating

the link between GPCRs and AD, whereas the effect of GPCRs on AD progress is yet to be fur-

ther explored given its complexities [44]. The mutations in Amyloid Precursor Protein (APP)

have been associated with the pathogenesis of Alzheimer’s disease in many recent studies [45–

48]. We found four enriched pathways involving APP: Mitochondrial Dysfunction, WReelin

Signaling in Neurons, Neuroprotective Role of THOP1 in AD, and Amyloid Processing (S5

File). Some of these pathways can serve as potential future research directions for the AD

research community. There are also other significant pathways and networks that are not well

known to be associated with AD (see a complete pathway list in S5 File), which could serve as

potential future research directions in AD research.

Case study 2: Lung cancer topic. In this case study, we investigated the top disease topic

focusing on lung cancer, a leading cause of cancer death in men and women in the United

States [49]. The assembled disease-gene association network consists of 608 nodes (i.e., 180

diseases and 428 genes) and 10,895 associations between them. The mostly highly connected

diseases include "carcinoma, non-small-cell lung", “squamous cell carcinoma”, and “neoplasm
metastasis”. The network motif analysis found same significant three-node network motifs in

this lung cancer-specific association network as the ones in Case Study 1. The gene set enrich-

ment analysis suggested that these genes are statistically enriched in many cancer signalling

pathways, such as p53 signalling, pancreatic adenocarcinoma signalling, and prostate cancer

Table 4. A list of enriched diseases and disorders associated with genes in the AD association network.

Canonical Pathways -log(p-

value)

Ratio Molecules

Huntington0s Disease Signaling 8.95 0.06 BDNF,CREBBP,TBP,NGF,TGM2,HDAC6,GRM5,AKT1,

HDAC3,ATP5B,KL,HTT,DLG4,DCTN1,SNCA

G-Protein Coupled Receptor

Signaling

6.5 0.05 GRM5,HTR2C,FYN,AKT1,GRK2,KL,CREBBP,PRKAR1B,

HTR1A,DRD3,DRD2,ADORA2A,HTR2A

Neuropathic Pain Signaling In

Dorsal Horn Neurons

5.37 0.08 GRM5,NTRK2,GPR37,BDNF,KL,GRIN2D,PRKAR1B,

ELK1

Parkinson0s Signaling 5.21 0.25 GPR37,PARK7,PARK2,SNCA

Mitochondrial Dysfunction 4.74 0.05 SOD2,ATP5B,PARK7,LRRK2,HTRA2,PARK2,SNCA,APP,

PINK1

Neurotrophin/TRK Signaling 4.37 0.07 AKT1,NTRK2,BDNF,KL,CREBBP,NGF

PEDF Signaling 4.28 0.07 SOD2,AKT1,BDNF,KL,NGF,ELK1

Serotonin Receptor Signaling 4.23 0.09 HTR2C,GCH1,SLC6A4,HTR1A,HTR2A

Dopamine Receptor Signaling 4.09 0.07 GCH1,COMT,PRKAR1B,DRD3,DRD2,SLC6A3

P Value: B and H multiple testing corrected p-values; Ratio: number of molecules in a given pathway that meet cut

criteria, divided by total number of molecules that make up that pathway.

https://doi.org/10.1371/journal.pone.0191568.t004
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signalling. Most of the top ranked canonical pathways and networks enriched in these genes

have been proven to be associated with lung cancer (S6 File). These results suggested that 1)

the lung cancer topic shares similar network properties as other disease-gene association net-

works, where important diseases were prioritized through network analysis, and 2) genes allo-

cated in the topic were enriched in biological processes that can serve as potential research

focuses in lung research.

Case study 3: Asthma-lymphoma topic. In this case study, we selected the disease topic

of asthma and lymphoma. There have been a few studies discussing potential association

between asthma and lymphoma, implying that the common cause and progression of the two

diseases relates to some common imbalance of the immune system [50, 51]. Our assembled

disease-gene association network of Topic 94 suggested that these two diseases are indeed

associated with a large number of common diseases and genes (i.e., 180 diseases and 279

genes) through 10,895 associations. The mostly highly connected diseases include "asthma",

“lymphoma, large-cell, diffuse”, and “chronic lymphocytic leukemia”. Similarly, three same net-

work motifs were identified in the asthma-lymphma topic. The enriched pathways in the 279

genes include the Th1 and Th2 Activation Pathway [52, 53], Crosstalk between Dendritic Cells

and Natural Killer Cells [54], and Altered T Cell and B Cell Signaling [55–57], among many

cancer and immune related biological processes and functions (S7 File). Another interesting

finding is enriched lupus-related biological processes in this asthma-lymphoma topic.

Although lupus is not a highly connected disease term, many genes are annotated by many

biological processes involved in lupus annotated by the independent IPA enrichment analysis

tool. Other significant pathways and genes that are not well known to be associated with lupus

can serve as future directions.

Discussions and conclusions

To address the issues of semantic granularity and inherent noises brought by high-dimen-

sional disease-gene association data mined from literature, we proposed an integrative analyti-

cal framework which combines LDA and network analysis to facilitate latent disease-gene

association discovery and provide insights into the relationship between molecular and cellular

processes and diseases. Specifically, we applied LDA modelling to identify significant disease

topics based on thousands of disease-gene associations mined from literature. Within each dis-

ease topic, we reconstructed and dissected a disease topic-specific association network to

explore novel yet latent disease mechanisms by network properties as well as independent bio-

logical knowledge. The analysis of disease-specific association networks, exemplified by the

AD disease topics, demonstrated that our approach is capable to prioritize significant associa-

tion patterns and prominently expedite novel yet latent disease knowledge discovery. To our

knowledge, our approach is the first attempt to integrate both topic modelling and network

decomposition techniques for the discovery of novel disease mechanisms, allowing for high-

dimensional reduction, noise removal, and nonlinear latent association inference among mul-

tiple biomedical concepts rather than pairwise associations.

As a community-based knowledge resource, ontology based classification is also able to

detect disease-disease and gene-disease associations. However, the major difference between

ontology and LDA is that ontology only contains explicit semantic information and our pro-

posed framework enables the use of empirical distributed semantics to assist the exploration

of associations. Meanwhile, novel association discovery highly depends on real-time knowl-

edge update while there is a latency in capturing the latest information in ontology-based

approaches [58]. The interpretation of “novel” genes can be difficult due to the fact that some

genes may not be “novel” since they have already been published in literature. For example,
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OMIM doesn’t include the association between the p.E318G variant and Alzheimer’s disease

(AD) [59], while it is reported in the literature. Specifically, in our AD case study, we con-

ducted an additional experiment to compare the number of associations identified by LDA

and OMIM. In total, there are 544 AD associated genes identified from SemMedDB. Our LDA

approach was able to recover 144 of them among top 10 topics. Meanwhile, there were only 46

AD-related genes annotated by OMIM. This comparison suggests our framework can be used

as a complementary data-driven approach to mine latent disease-gene associations from large

collections of literature (e.g., PubMed) in order to detect latent novel associations and help

enrich existing ontology.

There have been many discussions between LDA and unsupervised clustering approaches.

The main reason that we adopted LDA is that LDA is in fact a unique bi-clustering approach

[60]. In our study, we employed LDA to cluster genes based on their co-occurrences in the

same document(s), which can reflect which genes are semantically closer. Meanwhile, LDA

clusters documents based on the gene distributions within them. Other clustering methods

such as k-means, can only consider one type of similarity measurement during the grouping

process. Topic modelling approaches such as LDA can consider one gene assigned to multiple

disease topics based on their similarities to other genes in the same topic, i.e., LDA is a mixture

model. Different from usual soft clustering, we consider both document similarity and gene

similarity in the LDA process. Furthermore, LDA is also a robust generative Bayesian model-

ling approach, which specifically fits the big data analysis. The robustness comes from partially

that LDA adopts conjugate distribution, such as Dirichlet and multinomial to build models.

These features are unique to LDA not seen in many unsupervised methods.

In this work, we focused on disease-gene associations in SemMedDB. Besides disease-gene

associations, there are other types of disease-related associations that we can obtain, such as

disease-drug associations. Our approach can be easily adopted to dissect such complicated and

heterogeneous associations in the future, leading to other biomedical applications such as drug

repositioning. In addition, our LDA modelling is able to remove the strict reliance on a given

ontology. Instead of learning only from the keywords which map directly to an ontology class,

LDA can use a vocabulary more tailored to the association data on which it is trained. Addi-

tionally, LDA can form associations from multiple types of information at once, in which top-

ics may include a mixture of genetic or phenotypic information (e.g., genes) as well as any

other clinically relevant characteristics (e.g., drugs). It is especially useful that the output of the

model is interpretable and can be easily inspected. Our results suggest that the proposed LDA

process is able to better differentiate topics by genes than by diseases, which also reflect the

essence of topic modelling.

One limitation of our current study is that SemMedDB now only contains disease-gene

associations based on the co-occurrence relationship. Therefore, even if some diseases do not

have close biomedical associations with each other, they may be still clustered together based

on their co-occurrences with other biomedical terms. Since the focus of this study is to demon-

strate the capacity of LDA in grouping closely related diseases and SemMedDB has ~77% pre-

diction accuracy of associations [61], we expect similar false positive discovery rate in our

study. To address such challenges, we propose to extend and refine the proposed approach in a

few directions. First, instead of using the uninformed priors for alpha, we can provide a prior

from the dataset itself. Second, instead of assigning a fixed number of topics beforehand, we

will employ a hierarchical Dirichlet process to automatically find the best number of topics.

Third, we can calculate the distances between topics so that these topics with closer distances

can be merged. We believe that all three refinements will lead to better and more accurate

grouping in the LDA process. We also plan to integrate our current dataset with other data

resources such as omics data and OMIM knowledge base. For instance, interactive LDA, in
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which manual reviews can be incorporated into iterations of topic generations, could be a

promising framework. Also, by including complementary gene-disease association data

resources, we anticipate to increase the prediction accuracy in future research. We expect to

extend our work in several related research topics, including (1) integration of additional

supervised information (e.g., key words for PubMed abstracts) to make LDA generate more

controllable and interpretable topics [62–64]; (2) integration of more comprehensive associa-

tion databases among disease, drug, and gene (e.g., HPRD [65] and DrugBank [66]) to con-

struct more complete base association networks; (3) a framework to automatically extract such

disease-specific association network so that such analysis can be extended to each disease

topic; (4) additional network-based investigation of the relationships among disease, drug, and

gene at other network levels such as module subnetwork identification; and (5) investigation

on possible ways to improve the network by assigning weights or confidence values to different

types of associations or associations from different sources.

Materials and methods

Retrieval of disease-gene association data from SemMedDB

Semantic MEDLINE Database (SemMedDB) is a repository of semantic predications (i.e., sub-

ject-predicate-object triples) extracted from the titles and abstracts of all PubMed citations [5].

In this study, we used SemMedDB Version 25, which contains more than 84 million predica-

tions (i.e., associations) between concepts extracted from titles and abstracts of over 25 million

PubMed indexed [67]. Since we focused on the investigation of disease-gene associations, we

developed a preprocessing framework (S3 Fig) to extract disease-gene associations from the

sentence predication table in SemMedDB. First, we used the semantic type filtering strategy to

retain associations relevant to diseases only (i.e., only predications involving semantic types

dsyn (Disease or Syndrome) or neop (Neoplastic Process) were kept). Second, we used the gene

symbols approved by HGNC[68] to retain associations relevant to genes only. Through this fil-

tering process, we were able to generate the list of disease-gene associations recorded in

SemMedDB.

Disease grouping with latent dirichlet allocation

In this study, each disease was considered as a document containing its associated gene(s)

recorded in SemMedDB. We used these disease-gene associations as the input data for LDA

analysis. S8 File lists some examples of disease-gene associations we used for LDA analysis.

The LDA hierarchical Bayesian generative process is shown in S4 Fig, in which the big plate

represents a collection of documents, the middle small plate represents one document p, node

c refers to one gene, and arrows denote the conditional probability dependencies. For a topic

zi, we denote the proportion of a gene c allocated in zi as ci. Each gene ci has a probability �
zi
ci

in

topic zi, where i refers to the index of each gene, ci is a scalar to represent the ith gene, and zi is

a vector to represent the topic of ith gene. The uniqueness of LDA is that it places symmetric

Dirichlet priors on both y
pj
zi

and �
zi
ci

, with y
pj
zi
� DirichletðaÞ and �

zi
ci
� DirichletðbÞ. The spar-

sity of distributions can be controlled with hyper-parameters α and β. The above generative

process can be summarized as:

cijzi; �
zi
ci
� Polynomialð�zi

ci
Þ; i ¼ 1; . . . ;C ð1Þ

�
zi
ci
� DirichletðbÞ; zi ¼ 1; . . . ; K ð2Þ
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zijy
pj � PolynomialðypjÞ; i ¼ 1; . . . ; C ð3Þ

y
pj � DirichletðaÞ; pj ¼ 1; . . . ; P ð4Þ

where pj represents the jth disease (i.e., document), and zi denotes the topic of the ith gene (i.e.,

word ci). Each gene in the vocabulary ci 2 V = [c1, c2, . . ., cC] is assigned to each latent topic

variable zi. Given a topic zi = k, the expected posterior probability ŷpj of topic mixings of a

given disease pj and the expected posterior probabilities �̂zi
ci

of gene ci are calculated as below:

�̂zi
ci
¼

ncik þ b
PC

j¼1
ncjk þ Cb

ð5Þ

ŷpj ¼
npjk þ a

PK
k¼1

npj;k þ Pa
ð6Þ

where ncik is the count of ci in topic k, and npj;k is the count of topic k in the disease pj. In the

LDA process, the values of hyper-parameters α and β need to be determined beforehand: the

former controls the disease distributions, while the latter controls the gene distributions. The

higher α is, the more similar the diseases are within same disease topics. Similarly, the higher β
is, the more similar the topics are according to gene distributions. The optimal values of α and

β can be obtained through the grid search. In this study, we set α as 0.1 of topics while β as 0.01

according to LingPipe LDA implementation (http://alias-i.com/lingpipe/demos/tutorial/

cluster/read-me.html).

To obtain the posteriors in the LDA analysis, we used collapsed variational Bayesian infer-

ence (CVB) because of relatively large number of topics in our study and its computational

efficiency [69]. After we obtained the posteriors, we calculated the log-likelihood of the whole

collection of documents by integrating all the latent variables.

Determination of optimal disease topics

The number of topics was determined heuristically by examining a range of topic number

with fixed step size and choosing the one with the highest log likelihood value indicating the

optimal topic number as described in Griffiths et al [70]. The log likelihood is defined as

pðcjzÞ ¼
YT

t¼1

Z

�zt

pðcj; �zt
Þpð�zt

jztÞd�zt

" #

¼
GðCbÞ

T

GðbÞ
C

" #

�
YT

t¼1

Q
ci
Gðntci þ bÞ

Gðnt ð�Þ þ CbÞ
ð7Þ

Evaluation of gene similarity

The KL divergence is used to evaluate how similar two genes associated with the same disease

are. Due to its directionality, we defined a symmetric version of KL divergence, called LDAKL,
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as in Eq (8):

LDAKLðci; cjÞ ¼ KLðci; cjÞ þ KLðcj; ciÞ

¼
PT

t¼1
pðcijtÞlog

pðcijtÞ
pðcjjtÞ

 !

þ
PT

t¼1
pðcjjtÞlogð

pðcjjtÞ
pðcijtÞ

Þ
ð8Þ

Similarity between topics

We evaluated the topic similarity using the cosine similarity of their contained genes and cov-

ered diseases for each pair, respectively. Eq (9) calculated the cosine similarity between topics,

where Xl and Yl represent the components of gene/disease vector X and Y for any two topics,

m indicates the total number of components in X and Y.

Cosine Similarity ¼
Pm

l¼1
XlYlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

l¼1
X2
l

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
l¼1

Y2
l

p ð9Þ

Calculation of the disease-gene association coverage

The disease-gene association coverage (DGAC) was calculated as

DGACðA;BÞ ¼
jA \ Bj
jAj

ð10Þ

where the sets A and B represent disease-gene associations found in each topic and OMIM

respectively.

Calculation of precision and recall

The precision and recall rate of disease category using independent ontology knowledge is cal-

culated by the following equations. Specifically, for any given diseases A and B in the same

topic, they are considered a similar pair if A and B are also considered similar in ontology.

Each ontology is considered as a gold standard containing annotated diseases in ontology.

Precision ¼
Number of annotated diseases that have similar pairs found in ontology

Number of extracted diseases
ð11Þ

Recall ¼
Number of annotated diseases that have similar pairs found in ontology

Number of gold standard diseases
ð12Þ

Network property of disease-specific association network

For each disease topic, a disease-gene association network was reconstructed consisting of dis-

eases and their associated genes. The disease-gene associations were integrated into a bipartite

disease-gene association network. In this network, nodes represent biomedical concepts (i.e.,

diseases or genes), and edges between nodes represent associations between two nodes (e.g.,

association between diseases and genes). The important diseases/genes were identified by their

significant higher node degree compared to other diseases/genes in the same network. The

Cytoscape tool [71] was used to analyze and visualize the network.
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Network motif analysis

In this study, we focused on three-node network motif identification for this disease- gene net-

work since larger size network motifs (number of nodes > 3) are usually composed of three-

node network motifs in most cases [43]. All connected subnetworks containing three nodes in

the interaction network were collated into isomorphic patterns, and the number of times each

pattern occurred was counted. The number of occurrences was at least five (the default setting

of the algorithm) for each pattern to be considered as a candidate network motif. In addition,

statistical significance test was performed by generating 1000 randomized networks and com-

puting the fraction of randomized networks in which the pattern appeared at least as often as

in the interaction network [72]. The z score is calculated using the following equation:

Z ¼
Nreal� < Nrand >

srand
ð13Þ

where Nreal is the number of times one three-node subnetwork was detected in the real net-

work, < Nrand > is the mean number of times this subnetwork was detected in 1000 random-

ized networks, and σrand is the standard deviation of the number of times this subnetwork was

detected in randomized networks. The p value of a motif is the number of random networks in

which it occurred more often than in the original networks, divided by the total number of

random networks. By default, a pattern with p�0.05 was considered statistically significant.

This network motif discovery procedure was performed using the FANMOD tool [73].

Gene set enrichment analysis

The gene set enrichment analysis in one disease topic was conducted using the IPA tool

(http://www.ingenuity.com). This tool maps and generates enriched putative networks and

pathways based on the manually curated knowledge database of pathway interactions extracted

from the literature. Pathways were ranked by significance scores that measured the probability

of genes included in the pathway by chance. Specifically, a hypergeometric test was applied to

the genes involved in one pathway against the whole gene knowledge base manually curated in

IPA. The canonical pathways were ranked by the adjusted P value. An adjusted p value less

than 0.01 was used as cut off to select enriched canonical pathways.
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