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Abstract: Synovial sarcoma is a rare but highly malignant and metastatic disease. Despite its relative
sensitivity to chemotherapies, the high recurrence and low 5-year survival rate for this disease suggest
that new effective therapeutic agents are urgently needed. Marine antimicrobial peptide epinecidin-1
(epi-1), which was identified from orange-spotted grouper (Epinephelus coioides), exhibits multiple
biological effects, including bactericidal, immunomodulatory, and anticancer activities. However,
the cytotoxic effects and mechanisms of epi-1 on human synovial sarcoma cells are still unclear.
In this study, we report that epi-1 exhibits prominent antisynovial sarcoma activity in vitro and
in a human SW982 synovial sarcoma xenograft model. Furthermore, we determined that calcium
overload-induced calpain activation and subsequent oxidative stress and mitochondrial dysfunction
are required for epi-1-mediated cytotoxicity. Interestingly, reactive oxygen species (ROS)-mediated
activation of extracellular signal-regulated kinase (ERK) plays a protective role against epi-1-induced
cytotoxicity. Our results provide insight into the molecular mechanisms underlying epi-1-induced
cell death in human SW982 cells.
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1. Introduction

Synovial sarcoma is a rare, malignant, soft tissue sarcoma that is characterized by the fusion of
SS18 with any of several SSX genes, including SS18:SSX1, SS18:SSX2, and SS18:SSX4 [1,2]. The disease
comprises approximately 8–10% of soft tissue sarcomas [2]. Compared to other types of cancers,
synovial sarcomas are relatively susceptible to chemotherapies [2]. Despite this susceptibility, synovial
sarcoma has a poor prognosis; the 5-year survival is less than 40%, and about 50% of patients
suffer metastatic recurrence within 10 years [1]. Currently, standard therapeutic approaches for local
tumors include surgical excision combined with radiotherapy and/or (neo)adjuvant chemotherapy.
Anthracycline-based regimes are the first-line therapy [3,4]. Second-line chemotherapeutic agents
for synovial sarcoma include Pazopanib, Trabectedin, and Eribulin [4–7]. For metastatic cases,
chemotherapy is the main treatment [2]. However, the combined conventional chemotherapeutic
agents gemcitabine and docetaxel do not further improve treatment outcomes in metastatic synovial
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sarcoma patients [8]. Because of the poor treatment outcomes and low 5-year survival rate, new
therapeutic options are needed for this disease.

Epinecidin-1 (epi-1) is a marine antimicrobial peptide identified from orange-spotted
grouper (Epinephelus coioides), which exhibits broad-spectrum bactericidal [9], antiparasitic, and
immunomodulatory activities [9–12]. Circular dichroism spectroscopy analysis revealed that epi-1
folds into an α-helical structure when it binds to a membrane-like environment [13], and this structure
may be essential for its cytotoxicity to microbes. In addition, epi-1 possesses anticancer activity in
human fibrosarcoma, human leukemia cancer cells, and glioblastoma cells [13,14]. However, its effects
on human synovial sarcoma cells have not yet been explored.

In this study, the in vitro and in vivo antisynovial sarcoma activity of epi-1 and its underlying
mechanisms were examined. Epi-1 showed potent anticancer activity in human synovial sarcoma SW982
cells and in a SW982 xenograft model. Mechanistically, epi-1 increased intracellular calcium levels,
which stimulated reactive oxygen species (ROS) production and calpain activity, subsequently causing
mitochondrial damage and cell death. Interestingly, extracellular signal-regulated kinase (ERK) was
also induced by epi-1 treatment and seems to play a role in protecting against epi-1-induced cytotoxicity.

2. Results

2.1. Epi-1 Induction of Cytotoxicity in Synovial Sarcoma Cells is Dependent on its Folding Structure

To test the cytotoxicity of epi-1 in human synovial sarcoma cells, the SW982 cell line was treated
with a range of epi-1 doses (0, 1.75, 3.5, 5.25, 6.125, and 7 µM). Cytotoxicity was determined by counting
viable cells (Figure 1A) and the MTS/PMS assay (Figure 1B). The results show that cell death was
induced by epi-1 in a dose-dependent manner. To determine the time course of epi-1-induced death,
cells were treated with epi-1 and examined at various time points (0, 0.5, 1, 3, and 5 h). We found
that epi-1-induced loss of cell viability was statistically significant beginning at 1 h after treatment
(Figure 1C,D). To determine whether the α-helical structure is essential for epi-1-mediated cytotoxicity
in synovial sarcoma cells, SW982 cells were treated with epi-1 or scr-epi-1 (scrambled epi-1; has the
same charge as epi-1, but its secondary structure is an imperfect α-helix) [13]. Again, cytotoxicity was
determined by viable cell count (Figure 1E) and the MTS/PMS assay (Figure 1F). Scr-epi-1 failed to
induce cytotoxicity, suggesting that α-helical folding is required for epi-1-mediated cytotoxicity in
SW982 cells.

2.2. Epi-1 Triggers Caspase-Independent Cell Death in SW982 Cells

Various cell death pathways can be induced by antimicrobial peptides, such as apoptosis and
necrosis [15,16]. To determine which cell death pathway is involved in epi-1-mediated death of
synovial sarcoma cells, whole-cell lysates were collected from epi-1- and staurosporine (stau; apoptosis
inducer)-treated SW982 cells, followed by immunoblotting with a caspase-3 antibody. Activation of
caspase-3 was induced by stau but not epi-1 (Figure 2A,B). To monitor whether apoptosis may occur at
an earlier time, cells were tested at various time points after treatment (0.5, 1, 3, and 5 h). Consistently,
epi-1 did not induce activation of caspase-3 at any tested time point (Figure 2D). Next, the involvement
of necrosis in epi-1-mediated cell death was examined. Extracellular cyclophilin A is considered
to be a marker of necrosis [17], and epi-1 effectively increased the levels of cyclophilin A in the
culture supernatant (Figure 2A,C–E). In contrast, extracellular cyclophilin A was not increased by stau
(Figure 2A,C). Epi-1-treated cells also exhibited propidium iodide incorporation, while stau-treated
cells did not (Figure 2F). Furthermore, the necrosis inhibitor, Necrostatin-1 (Nec-1), suppressed
epi-1-induced toxicity (Figure 2G), but apoptosis inhibitor Z-VAD-FMK (Z-VAD) did not (Figure 2H).
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Figure 1. Cytotoxicity of epinecidin-1 (epi-1) on human synovial sarcoma cells. SW982 cells were
treated with indicated doses of epi-1 for 5 h. Cytotoxicity was analyzed by the trypan blue exclusion
assay (A) and MTS/PMS assay (B). Cells were treated with epi-1 (6.125 µM) at different time points
(0.5, 1, 3, 5 h). Cytotoxicity was analyzed by the trypan blue exclusion assay (C) and MTS/PMS assay
(D). Cells were treated with epi-1 (6.125 µM) or scrambled epi-1 (scr-epi-1) (6.125 µM) for 5 h, and
cytotoxicity was determined by the trypan blue exclusion assay (E) and MTS/PMS assay (F). * p < 0.05
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were collected and immunoblotted for caspase-3 and β-actin. (A,B) Band intensities were quantified by
ImageJ. (D) Cells were treated with epi-1 for different times, and cell lysates and supernatants were
collected and immunoblotted with indicated antibodies. (E) Band intensities were quantified. (F) Cells
were treated with epi-1 or stau as described in (A). After stimulation, cells were loaded with propidium
iodide (PI; 1 µg/mL) for 10 min. After rinsing cells with PBS, PI incorporation was observed by
fluorescence microscopy. Cells were pretreated with Necrostatin-1 (Nec-1) (10 µM) (G) or Z-VAD-FMK
(Z-VAD) (100 µM) (H) for 1 h, followed by epi-1 (6.125 µM) treatment for 24 h. Cytotoxicity was
determined by the trypan blue exclusion assay. * p < 0.05 was considered significant.

2.3. Calcium and Calpain are Required for Epi-1-Induced Cell Death

Necrosis often involves intracellular calcium overload, which subsequently activates cell
death-inducing molecules, such as calpain [18]. Epi-1 treatment elevated the intracellular calcium level
within 15 min, and the elevation was sustained to 60 min (Figure 3A,B). Calcium chelator BAPTA
blocked cell death, suggesting that calcium is necessary for epi-1-mediated cytotoxicity (Figure 3C).
Calpain activity was also quickly induced within 15 min (Figure 3D), and suppression of calpain activity
by PD151746 inhibited epi-1-mediated cytotoxicity (Figure 3E). Since BAPTA attenuated epi-1-mediated
upregulation of calpain activity (Figure 3F), calcium seems to be required for epi-1-mediated activation
of calpain.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 5 of 13 
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Figure 3. Calcium-dependent calpain activation is required for epi-1-mediated cytotoxicity. Cells were
preloaded with Fluo-4 (5 µM) for 15 min, then treated with epi-1 at different points as indicated.
Fluorescence of Fluo-4 was observed by fluorescence microscopy (A) and flow cytometry (B). (C) Cells
were preincubated with BAPTA (BA; 10 µM) for 1 h, followed by epi-1 for an additional 5 h. Cytotoxicity
was assessed by the trypan blue exclusion assay. (D) Cells were preloaded with fluorogenic calpain
substrate t-BOC (10µM) for 30 min, followed by epi-1 for the indicated times. (E) Cells were preincubated
with PD151746 (PD) for 1 h, followed by epi-1 for an additional 5 h. Cytotoxicity was determined by
the trypan blue exclusion assay. (F) Cells were pretreated with BA (10 µM) for 1 h, followed by epi-1
for an additional 15 min. Calpain activity was assessed. * p < 0.05 was considered significant.
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2.4. Epi-1 Induces Mitochondrial Hyperpolarization

Next, we analyzed the effect of epi-1 on mitochondrial function by TMRE. We found that
epi-1-triggered mitochondrial hyperpolarization occurs within 30 min and is sustained to 3 h
(Figure 4A–C). Both BAPTA (Figure 4D,E) and PD151746 (Figure 4F,G) suppressed epi-1-induced
mitochondrial hyperpolarization, suggesting that calcium induction of calpain is required for epi-1 to
cause mitochondrial hyperpolarization.
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Figure 4. Calcium-dependent calpain activation plays an essential role in epi-1-induced mitochondrial
hyperpolarization. Cells were treated with epi-1 for the indicated times, followed by incubation with
TMRE (100 nM) for 15 min. Fluorescence intensity of TMRE was assessed by fluorescence microscopy
(A) and flow cytometry (B,C). Dotted line: Basal TMRE levels. Cells were pretreated with BAPTA
(10 µM) for 1 h, followed by epi-1 for an additional 0.5 h. TMRE intensity was assessed by fluorescence
microscopy (D) and flow cytometry (E). Cells were preincubated with PD151746 (PD) for 1 h, followed
by epi-1 for an additional 0.5 h. TMRE intensity was assessed by fluorescence microscopy (F) and flow
cytometry (G). All fluorescent microscope images were taken under in 20×magnification. * p < 0.05
was considered significant.

2.5. Epi-1 Induces Oxidative Stress and Downregulation of Antioxidant Proteins

Intracellular calcium overload has been linked to increased reactive oxygen species (ROS) [19],
so we also monitored intracellular ROS. After epi-1 treatment, ROS generation was elevated within 5 min
and reached a peak at 30 min (Figure 5A,B). Next, we determined the effect of epi-1 on the abundance
of antioxidant proteins, including catalase, superoxide dismutase 1 (SOD1), and superoxide dismutase
2 (SOD2). The levels of catalase (Figure 5C,D), SOD1 (Figure 5C,E), and SOD2 (Figure 5C,E) were all
decreased by epi-1. Moreover, BAPTA reduced ROS generation after epi-1 treatment, suggesting that
calcium acts upstream of ROS (Figure 5G). In contrast, MitoTEMPO did not suppress epi-1-induced
ROS generation (Figure 5H). Since ROS scavengers Trolox (Figure 5I) and TEMPOL (Figure 5J) both
attenuated epi-1-induced cytotoxicity, we conclude ROS plays a role in toxicity. Together, these results
demonstrate that epi-1 induces excessive ROS generation and downregulation of antioxidant proteins.
Furthermore, calcium-dependent ROS generation is important for epi-1-mediated cytotoxicity.
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Figure 5. Epi-1 induces reactive oxygen species (ROS) generation and reduces expression of antioxidant
proteins. (A,B) Cells were treated with epi-1 for different times, as indicated. ROS levels were
monitored by DCF-DA (10 µM) using flow cytometry. (C) Cells were treated with epi-1 as described
in (A), cell lysates were collected and immunoblotted with anti-catalase, anti-SOD1, anti-SOD2, and
anti-β-actin antibodies. (D–F) Band intensities were measured with ImageJ. Cells were preincubated
with BAPTA (10 µM) (G) and MitoTEMPO (10 µM) (H) for 1 h, followed by epi-1 for an additional
30 min. Fluorescence intensity of DCF-DA was assessed by flow cytometry. Cells were preincubated
with Trolox (100 µM) (I) and TEMPOL (150 µM) (J) for 1 h, followed by epi-1 for an additional 5 h.
Cytotoxicity was scored by the trypan blue exclusion assay. * p < 0.05 was considered significant.

2.6. ERK Plays a Protective Role in Epi-1-Mediated Cell Death

ERK has been considered as a therapeutic target of soft tissue sarcoma due to it is associations
with cell proliferation, differentiation, and survival [20]. We found that ERK phosphorylation is
stimulated by epi-1 treatment (Figure 6A,B). Both Trolox (Figure 6C,D) and BAPTA (Figure 6E,F)
effectively inhibited epi-1-induced ERK phosphorylation, and the ERK inhibitor, U0126, potentiated
epi-1-mediated cytotoxicity (Figure 6G) and mitochondrial hyperpolarization (Figure 6H).

2.7. In Vivo Antisynovial Sarcoma Ability of Epi-1

To determine efficacy of epi-1 against antisynovial sarcoma in vivo, epi-1 and/or saline were injected
into tumor xenografts every two days. Epi-1-treated tumors exhibited smaller tumor size, reduced
tumor volume, and lower tumor weight than saline-treated controls (Figure 7A–C). H&E histological
analysis demonstrated that epi-1-treated tumors also exhibited a reduced number of nuclei compared
to saline-treated tumors (Figure 7D). Furthermore, the number of karyolytic cells, a hallmark of
necrosis [21], was significantly increased in the epi-1-treated samples (indicated by red arrows in
Figure 7D). Importantly, epi-1 treatment did not affect the body weight of the mice, suggesting that the
treatment did not cause overt negative systemic effects (Figure 7E). Together, these results demonstrated
that epi-1 possesses antisynovial sarcoma activity in vivo.
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nuclei compared to saline-treated tumors (Figure 7D). Furthermore, the number of karyolytic cells, a 

hallmark of necrosis [21], was significantly increased in the epi-1-treated samples (indicated by red 

arrows in Figure 7D). Importantly, epi-1 treatment did not affect the body weight of the mice, 

suggesting that the treatment did not cause overt negative systemic effects (Figure 7E). Together, 

these results demonstrated that epi-1 possesses antisynovial sarcoma activity in vivo. 

Figure 6. Activation of extracellular signal-regulated kinase (ERK) signaling plays a protective role in
epi-1-induced cytotoxicity. (A) Cells were treated with epi-1 for different times, as indicated. Whole cell
lysates were collected and immunoblotted with anti-phospho-ERK and anti-ERK antibodies. (B) Band
intensities were measured with ImageJ. (C) Cells were preincubated with Trolox (Tro; 100 µM) for 1 h,
followed by epi-1 for an additional 0.5 h. ERK activation was determined as described in (A). Veh:
vehicle; ET: epi-1+Trolox; Tro: Trolox. (D) Band intensity was measured with ImageJ. (E) Cells were
preincubated with BAPTA (BA; 10 µM) for 1 h, followed by epi-1 for an additional 0.5 h. ERK activation
was determined as described in (A). (F) Band intensity was measured with ImageJ. Veh: vehicle; EB:
epi-1+BAPAT; BA: BAPTA. (G) Cells were preincubated with U0126 (20 µM) for 1 h, followed by epi-1
for an additional 5 h. Cytotoxicity was determined by the trypan blue exclusion assay. (H) Cells were
preincubated with U0126 for 1 h, followed by epi-1 for an additional 30 min. TMRE intensity was
analyzed by flow cytometry. * p < 0.05 was considered significant.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 8 of 13 
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Int. J. Mol. Sci. 2020, 21, 2109 8 of 13

3. Discussion

Excessive calcium induces calpain activation, which has been linked to lysosomal and mitochondrial
permeabilization [22,23]. As such, calpain is known to cleave membrane proteins required for the
structural integrity of the lysosome, including lysosome-associated membrane protein 2 [23]. Similarly,
calpain also cleaves Bid to form tBid, which causes mitochondrial permeabilization [24]. Damage to
either mitochondria or lysosomes will release intra-organelle proteases that cause cell death [25,26].
In addition, organelle damage usually leads to excessive ROS generation and oxidative stress [27],
which also contributes to cell death. In addition to these mechanisms of cell death, calpain activation
is known to initiate α2β1 integrin degradation by endosomes [28]. Because α2β1 integrin plays
an essential role in promoting migration and invasion in human osteosarcoma cell lines [29], the
migration and invasion activities of cancer cells might be especially susceptible to epi-1 treatment and
its induction of calpain activation.

Conventional chemotherapeutic agents may be suboptimal cancer treatment options, partially
because they commonly induce apoptosis as the major cell death pathway [30]. Unfortunately, apoptotic
machinery is often defective in cancer cells, which may explain many cases of cancer chemotherapy
failure [31]. Furthermore, chemotherapy-induced adverse effects are usually the main dose-limiting
factors and reason for discontinuation of therapy [32]. Conversely, antimicrobial peptides possess
several advantages as potential anticancer drugs. For example, antimicrobial peptides are cationic
short-chain peptides that are readily attracted to cancer cells by virtue of a membrane that is negatively
charged relative to that of noncancerous cells [33]. This property allows for selective killing of
cancer cells by antimicrobial peptides. Exposure up to 11 µM did not cause cytotoxicity on human
immortalized keratinocyte cell line HaCaT [34]. Additionally, epi-1 induces synovial sarcoma cell
death by necrosis. Induction of necrosis may be an effective approach to eliminate apoptosis-defective
cancer cells [35]. Furthermore, release of cyclophilin A is stimulated by epi-1-induced necrosis,
and cyclophilin A-mediated macrophage differentiation, migration, and proliferation may contribute
to tumor suppression [36]. Notably, epi-1 exerts anticancer effects against various types of cancers by
different mechanisms. For example, epi-1 induces lytic cell death in fibrosarcoma [14], but it triggers
cells death through apoptosis in U937 human leukemia cells [37]. In this study, we found that epi-1
induces necrosis in human synovial sarcoma cells. Thus, epi-1 may initiate cell death through different
pathways in a cell-type-dependent manner, and it may be especially useful as an anticancer agent in
synovial sarcoma.

The rapid tumor suppression activity and induction of necrosis endow epi-1 with high potential
and promise as an anticancer agent for apoptosis-defective and chemoresistant cancer cells in human
synovial sarcoma. Although current formulations of epi-1 may not be suitable for intravenous use
due to protease sensitivity, intratumoral injection of epi-1 could be considered for reducing tumor size
before resection.

4. Materials and Methods

4.1. Reagents

Epi-1 (H-GFIFHIIKGLFHAGKMIHGLV-OH) was synthesized by GL Biochem (Shanghai, China).
Epi-1 was dissolved in normal saline. Propidium iodide (PI), 2′,7′-dichlordihydrofluorescein diacetate
(DCF-DA), Trolox, TEMPOL, MitoTEMPO, BAPTA (BA), U0126, PD151746, Necrostatin-1 (Nec-1),
staurosporine (stau), and DMSO were purchased from Sigma (Merck KGaA, Darmstadt, Germany).
MTS and PMS were purchased from Promega (Madison, WI, USA). Trypan blue, Fluo-4, AM (Fluo-4),
tetramethylrhodamine, ethyl ester (TMRE), and t-BOC-Leu-Met-CMAC (t-BOC) were purchased from
Thermo Fisher Scientific (Waltham, MA, USA). Z-VAD-FMK was purchased from Cell Signaling
(Danvers, MA, USA).
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4.2. Cell Culture

Human synovial sarcoma cell line SW982 was purchased from the Bioresource Collection and
Research Center (Hsinchu, Taiwan). Cells were maintained in Dulbecco’s Modified Eagle’s medium
(DMEM; Gibco, ThermoFisher, Waltham, MA, USA), supplemented with 10% fetal bovine serum (FBS;
Gibco), 2 mM L-glutamine, and antibiotic-antimycotic (FBS; Gibco).

4.3. Cytotoxic Assay

Cytotoxicity was determined as previously described [15,38]. Briefly, after stimulation, culture
supernatant and attached cells were collected using trypsin, and viable cell count was calculated by
trypan blue exclusion assay. For MTS/PMS assay, MTS/PMS mixed reagent was added to cells after
treatment and was incubated at 37 ◦C for 20 min. The absorbance at OD490 nm was recorded using an
ELISA plate reader. For the PI exclusion assay, cells were treated with the indicated treatment followed
by PI for 10 min. Thereafter, cells were rinsed with PBS and observed under fluorescence microscopy
(EVOS FL Cell Imaging System, ThermoFisher, Waltham, MA, USA).

4.4. Western Blotting

After treatment, supernatants were collected in 6X sample buffer (Sigma). Cell lysates were
collected in RIPA buffer (Merck Millipore, Burlington, MA, USA). Thereafter, supernatants and
cell lysates were separated by SDS-PAGE and transblotted onto PVDF membrane (GE Healthcare
Life sciences, Pittsburgh, PA, USA). Target protein abundance was detected using the indicated
antibodies. Equal amounts of protein were loaded for each sample. For detection of caspase-3 and
β-actin, blots were first probed with caspase-3 antibody, followed by stripping and re-probing with
β-actin. For detection of antioxidant proteins, the membrane was cut into three sections according
to the molecular weight for each target protein. The cut blots were probed for catalase, SOD1/SOD2,
and β-actin antibodies. Because the molecular weights of SOD1 and SOD2 are very close, we probed
one membrane section for SOD1 first, followed by stripping and re-probing for SOD2. Molecular
weight marker was purchased from ThermoFisher (Waltham, MA, USA). Band intensity was measured
by ImageJ software (1.51j8; NIH, Bethesda, MD, USA). All antibodies used in this study were purchased
from Cell Signaling.

4.5. ROS Measurement

ROS was monitored using DCF-DA by flow cytometry. Briefly, cells were preincubated with
DCF-DA (10 µM) for 10 min, followed by epi-1 stimulation. Cells were then rinsed with PBS.
Fluorescence intensity of DCF-DA was assessed by flow cytometry (Beckman Coulter, Indianapolis,
IN, USA).

4.6. Calcium and Calpain Activity

To determine whether epi-1 modulates intracellular calcium levels, cells were preincubated with
Fluo-4 (5 µM) for 30 min, followed by epi-1 treatment. Cells were then rinsed with PBS. Fluorescence
intensity of Fluo-4 was observed by microscopy and flow cytometry. Calpain activity was monitored
with a cell-permeable fluorogenic calpain substrate t-BOC [39]. Briefly, cells were preloaded with
t-BOC (20 µM) for 1 h, followed by epi-1 treatment. After stimulation, cells were rinsed with PBS,
and fluorescence intensity of t-BOC was assessed by fluorescence microscopy and flow cytometry
(Beckman Coulter).

4.7. Mitochondrial Function

Mitochondrial function was determined as previously described [15,38]. Briefly, cells were
preloaded with TMRE (100 nM) for 15 min, after which the excess TMRE was washed off with PBS.
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Fluorescence intensity was monitored by fluorescence microscopy and flow cytometry (Beckman
Coulter).

4.8. Human Synovial Sarcoma Xenograft Nude Mice Model

Mouse experiments were approved by the Academia Sinica Institutional Animal Care & Utilization
Committee (Protocol number: IACUC 16-06-973). One-month-old male nude mice (NU/NU) were
purchased from BioLASCO (Taipei, Taiwan). Mice were allowed to adapt to the environment for
2 weeks before experimentation. To establish a synovial sarcoma model in nude mice, experimental
procedures followed a previous study with minor modifications [40]. SW982 cells (4 × 106 cells in
50 µL PBS and 50 µL Matrigel matrix) were subcutaneously inoculated into nude mice to form tumor
xenografts. When tumor size reached 120–180 mm3, mice were randomly assigned into two groups
(n = 3 for each group), saline and epi-1 (250 µg in 100 µL saline). Saline or epi-1 were administered
by intratumor injection once every two days for a total of seven injections. Tumor size and volume
were measured as previously described [41]. Tumors samples were harvested at day 14 for H&E
histological analysis.

4.9. Statistical Analysis

In vitro experiments were performed in triplicate with at least three independent replicates.
Results from in vitro and in vivo experiments were analyzed by one-way ANOVA using GraphPad
Prism 5.0 software. p < 0.05 was considered significant.

5. Conclusions

In this report, we demonstrate that epi-1 exerts antitumor activity in synovial sarcoma cells
in vitro and in vivo. Furthermore, the mechanism underlying epi-1 toxicity involves increased
intracellular calcium and subsequent calpain activation. Importantly, activation of calpain is required
for epi-1-mediated mitochondrial dysfunction and cell death. In addition, elevated calcium induces
ROS generation and diminishes the levels of antioxidant proteins, which also contributes to cell death
in human synovial sarcoma cells (Figure 8).Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 11 of 13 
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