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ABSTRACT

Objectives: Repetitive transcranial magnetic stimulation (TMS) is a promising treatment for suicidality, but it is underlying
neural mechanisms remain poorly understood. Our prior findings indicated that frontostriatal functional connectivity cor-
relates with the severity of suicidal thoughts and behaviors. In this secondary analysis of data from an open label trial, we
evaluated whether changes in frontostriatal functional connectivity would accompany suicidality reductions following
TMS. We also explored the relationship between frontostriatal connectivity change and underlying white matter
(WM) organization.

Materials and Methods: We conducted seed-based functional connectivity analysis on participants (N = 25) with comorbid
post-traumatic stress disorder and depression who received eight weeks of 5 Hz TMS to left dorsolateral prefrontal cortex. We
measured clinical symptoms with the Inventory of Depressive Symptomatology-Self Report (IDS-SR) and the PTSD Checklist for
DSM-5 (PCL-5). We derived suicidality from IDS-SR item 18. Magnetic resonance imaging data were collected before TMS, and
at treatment end point. These data were entered into analyses of covariance, evaluating the effect of suicidality change across
treatment on striatal and thalamic functional connectivity. Changes in other PTSD and depression symptoms were included as
covariates and results were corrected for multiple comparisons. Diffusion connectometry in a participant subsample (N = 17)
explored the relationship between frontal WM integrity at treatment baseline and subsequent functional connectivity changes
correlated with differences in suicidality.

Results: Suicidal ideation decreased in 65% of participants. Reductions in suicidality and functional connectivity between the
dorsal striatum and frontopolar cortex were correlated (p-False Discover Rate-corrected < 0.001), after covariance for clinical
symptom change. All other results were nonsignificant. Our connectometry results indicated that the integrity of frontostriatal
WM may circumscribe functional connectivity response to TMS for suicide.

Conclusions: Targeted reduction of fronto-striatal connectivity with TMS may be a promising treatment for suicidality. Future
research can build on this multimodal approach to advance individualized stimulation approaches in high-risk patients.
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INTRODUCTION

Despite advances in mental health treatment, suicide is a lead-
ing cause of death in the United States (1) and worldwide, an esti-
mated 800,000 people die by suicide every year (2). Almost 50%
of individuals that die by suicide have a history of psychiatric ill-
ness (3). Clearly, novel, effective treatments for suicide are needed
to meet the challenge of this public health crisis.
Repetitive transcranial magnetic stimulation (TMS) is an effec-

tive treatment for pharmacoresistant major depression (4–6) and
anxiety disorders (7,8). Most TMS protocols used to treat depres-
sion and anxiety stimulate the dorsolateral prefrontal cortex
(DLPFC) (9). DLPFC plays a key role in domain-general cognitive
control of thought and behavior (10). It is hypothesized that
upregulating DLPFC function via stimulation enhances control
over cognitive and affective symptoms of psychiatric illness,
including suicidal thoughts and behaviors.
The history of TMS as a suicide reduction intervention is modest, yet

promising. Despite variance between TMS protocols, multiple studies
have reported suicidality decreases in patients treated for depression
(11–16). One randomized controlled trial (RCT) reported a 44% reduc-
tion in “being bothered by thoughts of suicide,” after completing a
course of high-dose left DLPFC TMS (12). Similarly, a study pooling data
frommultiple sham-controlled RCTs found that bilateral TMSwas asso-
ciated with reductions in suicidal ideation (17). In some cases, these
reductions were independent of decreases in overall depression
(13,14,17), or occurred regardless of the adequacy of depression symp-
tom response (13,14,17). These observations suggest that TMS may
possibly reduce suicidality through independentmechanisms.
Optimizing TMS as an antisuicidal intervention will require

targeting the precise neural circuits underlying observed
suicidality reductions. Unfortunately, optimization efforts are lim-
ited by the lack of essential circuit-level data. Moreover, the
extent to which suicidality reductions represent specific or non-
specific responses to TMS is under debate. RCTs specifically evalu-
ating TMS for suicidality have not consistently demonstrated
statistically significant separation between active and sham TMS
(12–14). Though neural data alone cannot resolve this contro-
versy, it may disambiguate circuits implicated in specific, from
nonspecific, treatment responses. This information is critical for
optimization of TMS as a suicide treatment.
Circuits underlying decision-making networks, in particular the

valence and cognitive control networks, are promising potential
targets for optimizing TMS for suicidality. The valence network
contributes to decision-making through its involvement in rein-
forcement learning (18). Functional magnetic resonance imaging
(fMRI) studies consistently demonstrate that normative valence
activation during decision-making is disrupted in adults with
depression and history of suicide attempts (19–21), youths with
behavioral disorders and ideation (22), and is sometimes corre-
lated with impaired decision-making (19,20), an established corre-
late of suicidal thoughts and behaviors (23–27). The relationship
between suicide and cognitive control is well documented,
though not well defined at the process level (28). Nonetheless,
aberrant fMRI activation of control regions is reported consistently
in studies of decision-making and suicide, though the directional-
ity of reported effects is variable (reviewed in Reference 29).
Moreover, the relationship between decision-making circuit

function and suicide is robust enough to be observed in resting-
state functional connectivity (RSFC) (30). In a prior investigation,
we used functional connectivity to identify seed-to-seed

correlations between regions-of-interest (ROIs) that varied system-
atically with self-reported suicidality in participants diagnosed
with posttraumatic stress disorder (PTSD) (N = 50). Significant
findings of this study included hyperconnectivity between striatal
and anterior frontal cortex ROIs associated with the valence net-
work, as well as between anterior cingulate and the pars orbitalis
cognitive control ROIs.
If hyperconnectivity between these regions contributes to sui-

cide and related problems with decision-making, using
neuromodulation to disrupt pathological signaling may produce
antisuicidal effects. As a preliminary test of this hypothesis, we
conducted a secondary functional connectivity analysis of resting-
state MRI in participants (N = 25) from an open label trial of 5 Hz
TMS of left DLPFC for comorbid PTSD and depression (7). The pre-
sent study’s goal was to identify brain areas where changes in the
functional connectivity of the striatum or thalamus following com-
pletion of the eight-week TMS course varied systematically with
post-TMS differences in suicidality. We focused our analysis on
the striatum and thalamus because of their established relation-
ship with decision-making, suicidality, and functional connectivity
in our prior study (30). As both the valence and cognitive control
networks are indirectly connected via the cortico-striatothalamic
cortical (CSTC) anatomical loops converging in the striatum and
thalamus, we reasoned that modulation of either network would
be reflected in striatothalamic functional connectivity changes.
Here, we employed seed-to-voxel analyses to evaluate changes

in whole-brain RSFC of the striatum and thalamus after comple-
tion of the TMS course. We hypothesized that changes in func-
tional connectivity and suicidality would be correlated, such that
connectivity would decrease in participants experiencing reduc-
tions in suicidal thoughts and behaviors. This expectation was
informed by patterns of hyperconnectivity observed in our prior
work (30), and evidence that left DLPFC TMS stimulation evokes
striatal response (31). We also explored structural relationships at
baseline (pre-TMS) that potentially influence subsequent respon-
siveness to TMS in a subset of participants (n = 17) using diffusion
MRI and deterministic fiber connectometry. Diffusion con-
nectometry (32) is a novel approach that identifies white matter
(WM) segments where local diffusion is statistically associated
with variables of interest, here functional connectivity correlates
of suicidality change.

MATERIALS AND METHODS
Participants and TMS Methods
Data for secondary functional connectivity analyses were obtained

from a subset of participants with PTSD + Major Depressive Disorder
(MDD) that took part in a trial of left DLPFC 5 Hz TMS and com-
pleted pre- and post-TMS MRI scans (n = 25; age = 52.4 ± 10, female
= 12). For inclusion in the parent study, participants were required
to meet DSM-IV criteria for both PTSD and MDD, with overall illness
severity ratings of at least “moderately ill” on the Clinical Global
Impressions-Severity Scale for each diagnosis. Active suicidal intent
or suicidal plan were exclusionary. All participants received up to
eight weeks of unblinded 5 Hz TMS to the left DLPFC, targeted using
the Beam/F3 method; treatment was delivered at 120% of motor
threshold, 3000–4000 pulses for up to 40 sessions. Though this is a
lower than the typical US Food and Drug Administration–cleared
10 Hz “dose” for MDD, naturalistic observations from our clinic indi-
cated that lower frequency stimulation was better tolerated and

931

Neuromodulation 2021; 24: 930–937© 2021 The Authors. Neuromodulation: Technology at the Neural Interface
published by Wiley Periodicals LLC on behalf of International Neuromodulation Society.

www.neuromodulationjournal.com

MULTIMODAL CORRELATES OF TMS FOR SUICIDE



achieved equivalent efficacy in rTMS for MDD. These observations
were corroborated in a related case series (n = 10) examining
acceptability and safety of 5 Hz TMS, as well as changes in PTSD and
MDD symptoms (33). The trial found TMS was associated with statis-
tically significant and clinically meaningful reductions in depressive
and PTSD symptoms (all p < .001). For complete details of enroll-
ment criteria, TMS methods, and results, see Carpenter et al. (7). We
note that fMRI data collected at baseline only (not post-TMS) were
included in a previous, larger secondary analysis (N = 50) examining
network relationships and suicidality (30). However, the analytic
approach (seed-to-voxel, see p. 11) and brain connectivity and
suicidality scores (post-pre TMS difference) differ in the present
study. All procedures were conducted at the Providence VA Medical
Center, Brown University, or Butler Hospital in Providence, Rhode
Island under the supervision of the Institutional Review Boards at
each study site. Written informed consent was obtained for all partic-
ipants in accordance with the Declaration of Helsinki.

Clinical Measures
Study participants completed the self-reported PTSD Symp-

tom Checklist for DSM-5 (PCL-5 (34)) and Inventory of Depres-
sive Symptoms Self-Report (IDS-SR (35)) before and after their
course of TMS. Pre- and post-TMS suicidality scores were
derived from the IDS-SR “thoughts of suicide” item (item #18).
Possible responses to item #18 include: (0) “no thoughts of
death or suicide,” (1) “feeling that life is empty or wondering if
it is worth living,” (2) “thinking of suicide or death several times
a week for several minutes,” or (3) “thinking of suicide or death
in detail multiple times each day, having a specific suicide plan,
or having made an attempt.” We derived an index of lifetime
suicidality from intake interviews and verified that previous psy-
chiatric hospitalizations were related to suicidality by chart
review. See Table 1 for clinical scores, demographic, and medi-
cal information.

MRI Data Collection
Structural, functional, and diffusion neuroimaging data were

acquired within one week of beginning and ending TMS. All
imaging data were collected at the Brown University MRI
Research Facility on either a Siemens (Erlangen, Germany) 3T
TimTrio or 3T Prisma scanner using a 32-channel head receiver
coil. At each timepoint, we collected a high-resolution
T1-weighted anatomical image (voxel size = 1.0 mm3, repetition
time [TR] = 1900 msec, echo time [TE] = 2.98 msec, field-of-view
[FOV] = 256 mm2) and one 8-min run of “resting state” gradient-
echo echo-planar imaging (EPI) T2*-weighted functional MRI
(voxel = 3.0 mm3, TR = 2500 ms, TE = 28 ms, flip angle = 90� , FOV
= 64 × 64, 42 axial slices, 192 volumes). During resting-state scans,
participants were instructed to keep their eyes open and remain
as still as possible. A 12-min, 64 direction, diffusion-weighted EPI
scan (voxel size = 1.8 mm3, TR = 10,200 msec, TE = 103.0 msec,
slices = 76, b = 1000 sec/mm2, b0 = 12) was collected during the
pre-TMS session from participants (n = 17). Diffusion data were
collected for all participants; however, we restricted our analysis
to participants scanned with the Prisma because small modifica-
tions of the diffusion sequence were made at the time of the
model upgrade.

Functional Connectivity Preprocessing and Analysis
We used SPM12 (University College London; https://www.fil.ion.

ucl.ac.uk/spm/) and the CONN toolbox (www.nitrc.org/projects/
conn) for functional MRI preprocessing and analysis. Basic
preprocessing included slice-time correction, motion estimation
and realignment, segmentation, normalization to Montreal Neuro-
logical Institute (MNI)-152 atlas space, and spatial smoothing with
a 6 mm full-width half-max Gaussian kernel. We implemented
additional functional connectivity-specific preprocessing steps to
reduce further influence deleterious effects of motion and non-
neuronal signals on functional connectivity estimates (36). Per the
ART Toolbox as implemented by CONN (37), we flagged high
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Table 1. Demographics and Clinical Measures by Change in Suicidal Severity.

All Decreased IDS-SR item #18 Increased IDS-SR item #18 No change IDS-SR item #18

n 25 11 3 11
Age, mean (SD) 52.4 (10.0) 59.2 (6) 47.0 (19.6) 46.7 (10.0)
Females, n (%) 12 (48) 5 (45) 2 (67) 5 (45)
IDS-SR
Baseline, mean (SD) 45.4 (12.4) 45.9 (16.6) 46.9 (15.9) 43.6 (9.7)
End point, mean (SD) 27.2 (17.9) 20.6 (18.7) 31.9 (15.5) 30.0 (18.3)
% change, mean (SD) 42.6 (31.3) 58.8 (21.5) 27.8 (33.3) 33.2 (35.5)
PCL
Baseline, mean (SD) 49 (12.6) 47.2 (13.2) 47.6 (17.5) 48.6 (12.9)
End point, mean (SD) 28.5 (19.0) 20.9 (20.0) 31.1 (15.1) 32.5 (19.2)
% change, mean (SD) 41.8 (38.0) 58.0 (33.4) 29.3 (37.1) 30.2 (42.2)
Medications*
Antidepressants, n (%) 18 (72) 6 (55) 2 (67) 10 (91)
Benzodiazepines, n (%) 10 (40) 5 (45) 1 (33) 4 (36)
Anticonvulsants, n (%) 5 (20) 3 (27) 0 (0) 2 (18)
Antipsychotics, n (%) 10 (40) 5 (45) 0 (0) 5 (45)
Stimulants, n (%) 7 (28) 3 (27) 1 (33) 3 (27)

Descriptive data for participants grouped according to change in IDS-SR item #18 score following a course of 5 Hz TMS treatment for comorbid PTSD and
depression.
*Note that medications were stable for at least six weeks prior to stimulation.
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motion (translational > 0.5 mm, rotational > 0.02 radians) and
global signal variance (>3sd) volumes from preprocessed data.
We also used Anatomical CompCor (38) within CONN to decon-
struct signal time courses (WM and cerebrospinal fluid [CSF]).
Flagged volumes, five principal components each for WM and
CSF, six motion parameters and their first derivatives, and the lin-
ear trend were regressed from subject-level data to limit contribu-
tions of potential confound variables. CONN’s regression-based
motion correction strategies and quality diagnostic tools available
are aligned with those of recent alternatives such as XCP (39) and
fMRIPrep (40). The resulting residuals were band-pass filtered
(high-pass = 0.008, low-pass = 0.1) after nuisance regression (41).

Seed ROIs and Subject-Level Functional Connectivity Analyses
We measured whole-brain seed-to-voxel functional connectivity

in four a priori seeds in each hemisphere. Seed masks included
the executive- and limbic-projecting subregions of the striatum
from the diffusion-based parcellation of Tziortzi et al. (42), approx-
imating commonly used dorsal and ventral divisions defined by
cyto- or receptor-architecture. Diffusion-based frontal and tempo-
ral projecting zones of the thalamus from Behrens et al. (43) that
overlap with portions of medial dorsal and the anterior complex
of the thalamus. For each subject and seed, we extracted the
average blood oxygen level-dependent time course and com-
puted its cross-correlation with time courses from individual
voxels, producing a whole-brain map of bivariate Pearson’s corre-
lations. These Pearson’s maps were then converted into Fisher-
transformed Z scores to improve conformation to assumptions of
normality.

Second Level RSFC Analyses
Our second-level analyses evaluated whether changes in striatal

or thalamic functional connectivity following a course of TMS
were associated with changes in suicidal severity. We
operationalized these changes as the difference in IDS-SR item #18
scores from baseline-to-endpoint. To identify brain regions where
functional connectivity and suicidality differences were correlated,
we entered subject-level RSFC seed maps into an analysis of
covariance (using age, percent change in overall PCL and IDS-SR
scores as covariates). Models evaluated the between-subjects
effect of change in suicidality on within-subject functional con-
nectivity differences across treatment. We adopted a dual-
thresholding procedure to correct for multiple comparisons (44).
Significant voxels were identified using a voxel-height threshold
(p-uncorrected < 0.001) but were only considered significant if
they were part of a cluster of voxels exceeding an expected size
threshold (p-False Discover Rate-corrected [FDR] < 0.05) based on
random field theory estimate. Post hoc sensitivity analyses were
conducted to assess potential effects of sex or scanner. Other sen-
sitivity tests indicated that removing age as a covariate did not
influence our findings. The association between change in
suicidality and functional connectivity was weaker and nonsignifi-
cant when overall PTSD and depression symptoms we not
regressed from models.

Diffusion MRI Preprocessing and WM Reconstruction
FSL (45) was used for diffusion preprocessing and visual quality

assurance. Preprocessing included: 1) affine registration to the
first nondiffusion-weighted (b0 image) (46), 2) eddy current cor-
rection (47), and 3) reorientation of diffusion vectors (48).

Diffusion image reconstruction was carried out with DSI Studio
(http://dsi-studio.labsolver.org). Subjects’ preprocessed diffusion
data were submitted to Q-space diffeomorphic reconstruction
(QSDR) (49). QSDR is an extension of the deterministic generalized
q-sampling imaging (GQI) reconstruction algorithm (50). Because
the GQI and QSDR model free reconstruction algorithms operate
at the subvoxel level, they are less vulnerable to the limitations of
tensor-based methods, for example, partial volume effects, poor
resolution of orientation in voxels with crossing fibers. In QSDR,
spin distribution functions (SDFs) (50) are computed from voxels’
diffusion signals and mapped directly into stereotaxic space (MNI
Atlas). The resulting whole-brain SDF map describes the density
of oriented spins at every voxel.

Local Connectometry Analysis
DSI Studio also was used for connectometry analysis. Con-

nectometry is executed at the level of the local connectome. Local
connectomes describe relative similarity and density of oriented
spins from adjacent voxels (32). For every subject and voxel, ori-
ented spin densities were extracted and entered into the n-by-m
local connectome matrix Y, where n is equal to the number of
subjects, and m is the number of oriented spins. Connectometry
analysis employs permutation-based testing procedure to localize
associations between local connectomes to group or other
explanatory variables to shared WM bundles (for complete details,
see Yeh et al. (32)). Our group analysis identified fiber segments
where WM integrity at study baseline was associated with subse-
quent functional connectivity change after TMS. To this end, we
treated subject-level coefficients from significant functional con-
nectivity clusters as explanatory variables in a linear regression
testing their association with the nonpermuted matrix Y. For
hypothesis testing, null distributions were obtained by random
resampling of the matrix (5000 row permutations). We then
regressed explanatory variables against permutations to obtain
the null distribution. We applied a dual thresholding procedure to
reduce false positives. First, we applied the threshold t > 1.0 to
the unpermuted matrix to identify potential local connectomes
associated with functional connectivity. We then subjected these
fibers to two iterations of topology-informed pruning to remove
likely false connections (51). The second minimum length thresh-
old of 20 voxels was used to filter out the remaining short, frag-
mented and likely false positive tracks. Length histograms were
constructed for retained tracks and we derived the false discovery
rate (FDR) for nonpermuted tracks from the null distribution of
track lengths.

RESULTS
Clinical Measures
Table 1 describes demographics and descriptive statistics of the

participant sample. Participants completed 36 ± 6 TMS sessions
(median = 37 sessions, mode = 40 sessions, range 13–40 ses-
sions). Suicidal ideation of any severity (i.e., IDSSR item 18 score of
at least 1) was reported by 68% of participants at study baseline,
with 10 participants reporting a score of one, five participants
reporting a score of two, and two participants reporting a score
of three. After TMS, suicidality decreased by a minimum of one
point in n = 11 (65%) of participants who endorsed suicidality
pretreatment, t15 = 8.2, p < 0.00001. Suicidality increased in n = 3
(12%) participants; of note, including a one-point increase in one
participant that did not endorse suicidality at baseline (i.e.,
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item 18 = 0). Across participants, mean change in overall PCL-5
and IDS-SR scores was 41.8% and 42.6%, respectively, in this sub-
set of the original study cohort. In the parent sample, average
decrease in PCL-5 was 35.5% and IDS-SR was 37.6% (see Carpen-
ter et al. (7) for complete details).

Functional Connectivity
Our seed-to-voxel results indicated that frontostriatal connectiv-

ity decreased in participants whose suicide item scores were
reduced after TMS; connectivity increased in those participants
whose item scores increased. Using the left frontal projecting stri-
atum seed, we observed a significant cluster in the right frontal
pole (MNI: +28 +62 +04, k = 192, p-FDR < 0.0001), as well as a sec-
ond cluster in the left frontal pole that was marginally significant
after multiple comparisons correction (MNI: −32 +54 –04, k = 55,
p-FDR = 0.07) (Fig. 1). Functional connectivity decreases between
the right frontal projecting striatum seed and right frontal pole
also were significantly correlated with changes in suicidality (MNI:
+30 +54 –10, k = 66, p-FDR < 0.05). Results for all other seeds
were nonsignificant. Post hoc sensitivity tests indicated that
removing age as a covariate did not influence our findings. The
association between change in suicidality and functional

connectivity was weaker when we did not regress overall PTSD
and depression symptoms from the model.

Diffusion Connectometry
Our connectometry results indicated that pretreatment fron-

tostriatal WM integrity was associated with the above changes in
functional connectivity (i.e., changes that occurred with TMS).
Changes in left frontopolar functional connectivity to the right
striatum were associated with a broadly distributed set of local
frontal WM pathways, including the left u fibers (76%), left cor-
ticothalamic pathway (12%), left cortico striatal pathway (7.8%),
left inferior fronto occipital fasciculus (3.7%) (p-FDR < 0.01)
(Fig. 2). Baseline anatomical connectivity was not associated with
subsequent change in functional connectivity for the right fronto-
polar clusters (all p-FDR > 0.05).

DISCUSSION

To our knowledge, this is the first multimodal neuroimaging
investigation of neural mechanisms underlying suicidality reduc-
tion following an acute course of TMS therapy. We observed a sig-
nificant association between reductions in suicidality and
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Figure 1. Decreases in frontostriatal functional connectivity are correlated with reductions in suicidality following TMS. Left: Location of striatal seeds. Seed cor-
responded to the “prefrontal” projecting subregion of striatum per Tziortzi et al. (45). Center: Frontopolar cortex clusters where changes in RSFC to striatum and
suicidality are correlated (p-FDR < 0.001). Right: Though changes in suicide self-rating were analyzed as a continuous measure, violin plots depict distributions of RSFC
change by group for illustrative purposes. White circles denote medians, whiskers illustrate interquartile rang. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 2. Frontostriatal WM integrity is associated with functional connectivity response to TMS for suicidality. Pathway segments where increased quantitative
anisotropy at study baseline was associated with RSFC correlates in suicidal ideation (IDS-SR item #18) after TMS (nonparametric p-FDR < 0.05). Colors denote fiber
orientations. [Color figure can be viewed at wileyonlinelibrary.com]
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decreased frontostriatal functional connectivity. Importantly, this
relationship was independent of improvement in other clinical
symptoms. The independence of this effect implies that
neuromodulation directed toward a distinct frontostriatal circuit
may specifically reduce pathological signaling related to suicide.
The potential importance of this frontopolar striatal circuit in

reducing suicidality aligns with the broader neuroimaging literature
surrounding suicide, valance, and value-based decision-making
(52–55), and the association of valence disruption with emotional
distortions in psychiatric illness (56). The cortical portions of this cir-
cuit include frontopolar and adjacent orbitofrontal cortex; prior
studies have linked aberrant fMRI activation in these regions to
impaired decision-making and suicide (20,57,58). Our earlier work
revealed evidence of frontostriatal hyperconnectivity in this circuit,
even in the absence of a task (30). This earlier study also found of
evidence of suicidality-related hyperconnectivity in control net-
works. We restricted the scope of the present analysis to striatal
and thalamic functional connectivity, reasoning that if control con-
nectivity were modulated, it would likely occur involve CSTC sub-
cortical structures, given the lack or weakness of direct anatomical
connections between the DLPFC stimulation site and these regions.
Our results did not support this expectation. Thus, though this
awaits sham-controlled replication, our findings suggest that
administering left DLPFC TMS may be an effective means of reduc-
ing pathological valence hyperconnectivity, but not control net-
work connectivity, in individuals struggling suicide. Future work
should explore whether it is possible to remediate hyper-
connectivity in control circuits using other stimulation targets.
Though our frontostriatal results are promising, their alignment

with findings from a recent clinical trial (NCT01832805) of acceler-
ated intermittent theta-burst stimulation for depression, recom-
mends they must be interpreted cautiously (16). This trial reported
correlated reductions in suicidality and frontopolar perfusion (mea-
sured by arterial spin labeling) in participants receiving sham, but
not active stimulation (16). The similarity of the circuit identified in
this study to that of Baeken et al. is striking, especially given the
differences in diagnostic criteria, magnetic pulse pattern (i.e., 5 Hz
vs. theta-burst protocols), and neuroimaging modality across stud-
ies. While our collective results may reflect the frontopolar cortex’s
involvement in a common process contributing to the resolution of
suicidality, we would be remiss if we did not acknowledge that it
may be nonspecific, rather than attributable to TMS. Additional
research is needed to disambiguate nonspecific, from treatment
effects of TMS. This caveat notwithstanding, this circuit’s consistent
implication in reducing suicidality nonetheless argues that optimiz-
ing frontostriatal engagement may improve treatment response,
be it verum or nonspecific.
We do wish to be cautious about interpreting null effects. However,

null findings for the remaining seeds are not wholly unexpected.
Though all seeds are sites of CSTC loop convergence and have shown
suicidality-related hyperconnectivity, only modulation of the striatum
after DLPFC stimulation has been demonstrated directly (31). Our
observation of significant results for the frontal, but not temporal,
striatal subregions correspond with this previous demonstration.
Last, our exploratory connectometry results further highlight

the significance of frontostriatal circuits in suicidality. Our findings
are broadly consistent with observations of reduced frontal WM
integrity in those with history of suicidal thoughts or behaviors,
including general decreases in frontal fractional anisotropy (59)
and specific decreases in frontothalamic (60), frontostriatal (61),
and inferior capsule (62) circuits. The convergence of these previ-
ous findings upon frontal striatothalamic circuits is noteworthy

given demonstrations of acute modulation of striatal and thalamic
fMRI activity following left DLPFC TMS (31), and evidence that
DLPFC-striatal functional connectivity at baseline predicts symp-
tom response to left DLPFC TMS for depression (63). As part of
the CSTC loop system (64,65), these anatomical pathways are
likely essential for efficient propagation of TMS-evoked signals to
the subcortex. Indeed, evidence links anisotropy in these circuits
to the magnitude of TMS-evoked responses in striatum and thala-
mus following frontal polar cortex stimulation (66). Though pre-
liminary, our findings identify a structural pathway whose
pretreatment integrity impacts engagement of functional targets.
Thus, these data reveal a potential avenue for optimizing TMS
delivery and for its development as an emerging treatment for
suicidality. For example, future work could explore using metrics
of baseline circuit integrity to calibrate optimal stimulation fre-
quencies for target engagement.

Limitations
Because we lack sham-controlled data, we cannot disambiguate

specific from nonspecific brain correlates, a notable shortcoming
given recent findings (16). Though this limits scientific interpreta-
tion, providing entirely inactive treatments to symptomatic and
potentially suicidal patients does raise important ethical caveats.
Potential medication effects may influence our results given our
naturalistic sample. We are underpowered to address this
statistically, but future work should evaluate potential effects of
medications on response to TMS for suicidality, especially given
research demonstrating impacts on motor cortex excitability
(e.g., benzodiazepines as reviewed in Reference 67).
We also acknowledge the limitations of our single-item mea-

sure of suicidality, derived from the IDS-SR. This measure conflates
severity and frequency and cannot parse severe ideation from
behaviors. While not ideal, derived scores were necessary as
change in suicidality was not a primary outcome of the parent
study. An alternative option would have been to use the PHQ9 to
derive this measure, as it also was collected in the parent study.
The PHQ9 has been shown to predict changes in cumulative sui-
cide risk at one year (68), though it generates more false positives
than gold-standard measures like the Columbia Suicide Severity
Rating Scale when used for risk screening (69). We speculate that
false positives may stem from the conflation of suicide and other
forms of self-harm in the phrasing of the PHQ9 suicide item. Thus,
despite its limitations, we chose to derive our measure from the
IDS-SR because it asks about suicide, specifically. There are many
validated measures designed to quantify suicidal thoughts and
behaviors (reviewed in Reference 70) which should be incorpo-
rated into future studies of TMS and suicide. Though we treated
overall depression and anxiety scores as model covariates, we
acknowledge that this strategy cannot completely control for the
influence of these factors (71,72). We also note that we adopted a
more liberal approach to multiple comparisons correction which
we applied FDR-correction at the seed, rather than the analysis
level. Our study also is subject to the limitations inherent to all
small sample studies, and we acknowledge that though promis-
ing, our findings should be regarded as preliminary.

CONCLUSIONS

While preliminary, our study adds to a growing literature dem-
onstrating that TMS reduces suicidal thoughts and behaviors.
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Using a multimodal approach, we localized potential mechanisms
of suicidality reduction to a specific frontostriatal circuit. This par-
ticular circuit’s implication aligns with prior work, though addi-
tional research is needed to distinguish specific effects.
Collectively, findings argue that the precise targeting of fronto-
polar circuits via diffusion-guided individualized targeting (73–75)
may enhance neuromodulation delivery precision to our highest-
risk patients. Combing these methodologies with innovations in
5 Hz TMS delivery, such as pulse energy optimization (76), may
further improve its efficacy as an antisuicidal treatment.
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