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The purpose of this research is to explore the positive effects of Lactobacillus plantarum and Lactobacillus brevis on the tissue
damage and microbial community in mice challenged by Enterotoxigenic Escherichia coli (ETEC). Twenty-four mice were
divided into four groups randomly: the CON group, ETEC group, LP-ETEC group and LB-ETEC group. Our results
demonstrated that, compared with the ETEC group, the LP-ETEC and LB-ETEC groups experienced less weight loss and
morphological damage of the jejunum. We measured proinflammatory factors of colonic tissue and found that L. plantarum
and L. brevis inhibited the expression of proinflammatory factors such as IL-β, TNF-α, and IL-6 and promoted that of the
tight junction protein such as claudin-1, occludin, and ZO-1. Additionally, L. plantarum and L. brevis altered the impact of
ETEC on the intestinal microbial community of mice, significantly increased the abundance of probiotics such as Lactobacillus,
and reduced that of pathogenic bacteria such as Proteobacteria, Clostridia, Epsilonproteobacteria, and Helicobacter. Therefore,
we believe that L. plantarum and L. brevis can stabilize the intestinal microbiota and inhibit the growth of pathogenic bacteria,
thus protecting mice from the gut inflammation induced by ETEC.

1. Introduction

Diarrhea induced by Enterotoxigenic Escherichia coli (ETEC)
is a major challenge to newborn piglets and weaned piglets.
The condition increases occurrences of morbidity and mor-
tality, which results in huge economic losses in the global
swine industry [1]. ETEC can colonize in the small intestine,
increase the expression of proinflammatory factors, cause
intestinal barrier damage, and eventually lead to the develop-
ment of intestinal inflammation [2–4]. Previous studies have
proven that probiotics are vital to prevent and treat cancer
[5], inflammatory bowel disease (IBD) [6], irritable bowel
syndrome [7], and other diseases. In addition, probiotics
can counteract the inflammation caused by ETEC [8, 9].
Most notably, probiotics are considered the only effective
feed additives that protect against pathogens. In view of the
injury and economic losses caused by intestinal inflamma-
tion such as diarrhea, colorectal cancer, and IBD, it is neces-

sary to study probiotics, which are used as feed additives to
inhibit pathogens and promote intestinal health.

Lactic acid bacteria, a kind of probiotic that exists in
human and animal intestines, can enhance the immune sys-
tem by inhibiting the expression of proinflammatory cyto-
kines or promoting that of anti-inflammatory cytokines
[10, 11]. Lactobacillus plantarum is a major species of lactic
acid bacteria, with a variety of probiotic characteristics, gas-
trointestinal transport tolerance, and anti-inflammatory
properties [12]. Previous studies have shown that the sup-
plementation of L. plantarum in the diet can promote the
gastrointestinal health of weaned piglets [13] and improve
the antioxidant status and growth performance of piglets
[14]. It is worth noting that studies on the effect of L. plan-
tarum on various cancers are also being actively carried
out [15, 16]. As a close relative of L. plantarum, L. brevis also
has a variety of probiotic characteristics, including tolerance
to acid and bile, adhesion to intestinal cells, and the ability to
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survive through the gastrointestinal tract [17, 18]. These
characteristics of L. brevis enable it to maintain the homeo-
stasis of the intestine, improve the barrier function of intes-
tinal epithelium under oxidative stress, and reduce intestinal
inflammation in the mouse model [19, 20].

In this study, ETEC was used to induce intestinal inflam-
mation in a mouse model. And we explored the protective
effects of L. plantarum and L. brevis on the injury induced
by ETEC in the murine model, observed the changes in the
amounts of cytokines and tight junction proteins, and deter-
mined the effects of these two probiotics on intestinal flora.

2. Materials and Methods

2.1. Bacteria. The strains Lactobacillus plantarum GL17,
Lactobacillus brevis AY858, and Enterotoxigenic Escherichia
coli used in this study were stored in Hunan Agricultural
University (Changsha, China). L. plantarum GL17 and L.
brevis AY858 were cultured in MRS broth at 37°C for 24
hours, while ETEC was cultured in a Luria-Bertani liquid
medium at 37°C for the same time. To quantify the colonies,
the cultured bacterial fluid was transferred to the corre-
sponding solid medium and incubated at 37°C for 24 hours.
Then, the bacterial samples of both probiotics and ETEC
were centrifuged and suspended in sterile normal saline
solution at 5 × 1010 CFU/mL and 1 × 108 CFU/mL,
respectively.

2.2. Animals and Experimental Design. The experiment was
approved by the Animal Care and Use Committee of Hunan
Agricultural University. Twenty-four eight-week-old ICR
mice from the Shanghai Laboratory Animal Central (Chang-
sha, China) were housed in a pathogen-free environment for
seven days of adaptation. Then, the mice were divided into
four groups randomly: the control group (CON), the ETEC
group (ETEC), the L. plantarum GL17 treatment group (LP-
ETEC), and the L. brevis AY858 treatment group (LB-
ETEC). There were six mice in each group, and the basic diet
and water for all mice were not limited. The experiment
lasted for 21 days (Figure 1(a)). During the first 14 days of
the experiment, the LP-ETEC group and the LB-ETEC
group were given L. plantarum GL17 and L. brevis AY858,
respectively, by gavage every day, while the control group
and the ETEC group were given sterile saline every day.
From the 15th day of the experiment, the ETEC group,
LP-ETEC group, and LB-ETEC group were given ETEC by
gavage until the end of the experiment. On the 21st day,
all mice were killed, and a part of the jejunum was fixed in
paraformaldehyde for histomorphological analysis, while
the contents of the colon were collected and frozen in liquid
nitrogen for the determination of microbial diversity.

2.3. Jejunum Histopathology. The jejunum samples fixed in
the paraformaldehyde were dehydrated using ethanol gradi-
ent and embedded in paraffin. The samples were then
stained with hematoxylin and eosin and observed under a
microscope. The specific process is in accordance with
methods used in previous research [21].

2.4. qPCR. The total RNA of frozen colonic tissue was
extracted by TRIzol (Invitrogen, USA) according to the
instruction. To determine the concentration of the extracted
RNA, DNase I was used to treat RNA, and then, the concen-
tration was determined by spectrophotometer at 260 nm.
The primers used in the experiment are shown in Table 1,
and the specific methods refer to a previous experiment
[22]. Finally, the amplification reaction was carried out,
and the calculation formula used to determine gene expres-
sion level refers to Ma et al. [23].

2.5. 16S Ribosomal RNA Amplicon Sequencing. To determine
the diversity of microorganisms in the colonic contents, the
microbial genomic DNA of colon contents was extracted by
using the QIAamp DNA Stool Mini Kit firstly. Then, the
concentration and purity of DNA were detected on 1% aga-
rose gel, and the primers 357F (5′-ACTCCTACGGRAGGC
AGCAG-3′) and 806R (5′-GGACTACHVGGGTWTCTA
AT-3′) were used to amplify the V3-V4 region of 16S rDNA.
After recovery and purification of PCR products, the library
was prepared for sequencing analysis. Finally, the quality of
off-machine data was controlled and optimized, and the
composition of microbial communities was determined by
OTU clustering. Moreover, the α diversity analysis was
performed by mothur (Version 1.33.3).

2.6. Data Analysis. All of the data in the experiment are
expressed as mean ± standard deviation (SD) and analyzed
by one-way ANOVA and Tukey’s multiple comparison test
to compare the differences between the four groups (SPSS
21 software). P value < 0.05 was regarded as a significant
difference.

3. Results

3.1. L. plantarum and L. brevis Inhibit the Weight Loss
Induced by ETEC. The results of weight are shown in
Figure 1(b). Compared with the CON group, ETEC reduced
the weight of mice significantly (P < 0:05). When treated
with L. plantarum GL17 and L. brevis AY858, the weight
of mice increased significantly (P < 0:05). The results
showed that these two probiotics reduced weight loss in
the mice.

3.2. L. plantarum and L. brevis Inhibit the Development of
Intestinal Injury Induced by ETEC. The results of histologic
examination (Figure 2) showed that the height of jejunal villi
decreased significantly (P < 0:05) and the crypt depth
increased significantly (P < 0:05) after ETEC attack. Com-
pared with the ETEC group, the mice in the LP-ETEC group
had increased villus heights and reduced crypt depth signif-
icantly (P < 0:05). Similar results were observed in the LB-
ETEC group, with a slight increase in villus heights and a
significant decrease in crypt depth (P < 0:05). These results
indicated that both of those two probiotics can reduce the
intestinal damage caused by ETEC, especially L. plantarum
GL17, which made the LP-ETEC group return to the same
level as the CON group.
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Figure 1: Impact of Lactobacillus plantarum and Lactobacillus brevis on body weight. The experimental process (a) and body weight (b).
Data are mean ± SD (n = 6). Without a common letter mark indicates significant differences (P < 0:05).

Table 1: The primers for this study.

Primer Name 5′→3′ sequence

IL-1β
IL-1β_F ATGAAAGACGGCACACCCAC

IL-1β_R GCTTGTGCTCTGCTTGTGAG

TNF-α
TNF-α_F ACCCTGGTATGAGCCCATATAC

TNF-α_R ACACCCATTCCCTTCACAGAG

IL-6
IL-6_F GAGGATACCACTCCCAACAGACC

IL-6_R AAGTGCATCATCGTTGTTCATACA

Claudin-1
Claudin-1_F GGGGACAACATCGTGACCG

Claudin-1_R AGGAGTCGAAGACTTTGCACT

Occludin
Occludin_F TTGAAAGTCCACCTCCTTACAGA

Occludin_R CCGGATAAAAAGAGTACGCTGG

ZO-1
ZO-1_F GATCCCTGTAAGTCACCCAGA

ZO-1_R CTCCCTGCTTGCACTCCTATC

Lysozyme
Lysozyme_F GCCAAGGTCTAACAATCGTTGTGAGTTG

Lysozyme_R CAGTCAGCCAGCTTGACACCACG

Cryptidin
Cryptidin_F TCAAGAGGCTGCAAAGGAAGAGAAC

Cryptidin_R TGGTCTCCATGTTCAGCGACAGC

A20
A20_F AAACCAATGGTGATGGAAACTG

A20_R GTTGTCCCATTCGTCATTCC
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3.3. L. plantarum and L. brevis Affect Inflammation and
Intestinal Barrier. The expressions of cytokines in the
colonic tissues were measured (Figures 3(a)–3(f)). Com-
pared with the CON group, lysozyme and cryptidin in the
ETEC group decreased significantly (P < 0:05), while no sig-
nificant difference was observed in that of IL-1β, TNF-α, IL-
6, and A20. When treated with L. plantarum GL17, lyso-
zyme and cryptidin increased significantly (P < 0:05). Simi-
larly, after the treatment of L. brevis AY858, a significant
increase in lysozyme and cryptidin (P < 0:05) and a signifi-
cant decrease in IL-6 (P < 0:05) were observed.

The expression of tight junction proteins is shown in
Figures 3(g)–3(i). When attacked by ETEC, claudin-1 and
occludin decreased significantly (P < 0:05), while ZO-1
remained almost unchanged. L. plantarum GL17 increased
claudin-1 and occludin slightly, but there was no significant
difference compared with the ETEC group. Similarly, no sig-
nificant difference was observed in occludin between the LB-
ETEC group and the ETEC group. However, compared with
the ETEC group, claudin-1 in the LB-ETEC group increased
significantly (P < 0:05).

3.4. L. plantarum and L. brevis Regulate Intestinal Microbes
in Mice. The results of intestinal microorganism diversity
are shown in Figure 4. After the ETEC challenge, the Sobs
index, Shannon index, Simpson index, and PD-whole-tree
index decreased significantly (P < 0:05). After the treatment
of L. plantarum GL17 and L. brevis AY858, these indexes
increased and returned to normal level, especially the Sobs
index and Simpson index, which were significantly different
from those of the ETEC group (P < 0:05). Furthermore, the
Shannon index in the LB-ETEC group and the PD-whole-
tree index in the LP-ETEC group were significantly different
from those in the ETEC group (P < 0:05). Therefore, both of
these two probiotics have obvious protective effects on

ETEC-induced decline of intestinal microbial diversity in
mice.

At the phylum level, there are nine kinds of microorgan-
isms in each of four groups, of which Bacteroidetes, Firmi-
cutes, and Proteobacteria accounted for more than 86% of
all microorganisms (Figure 5(a)). The abundance of Bacter-
oidetes in the CON, ETEC, LP-ETEC, and LB-ETEC groups
was 62.1485%, 42.3336%, 43.6535%, and 53.8593%, respec-
tively. Firmicutes accounted for 26.6949%, 40.0591%,
46.6572%, and 33.6746%, respectively. The Proteobacteria
abundance was 8.4628%, 14.4314%, 6.6691%, and 8.7466%,
respectively. After being challenged by ETEC, Bacteroidetes
in mice decreased significantly (P < 0:05). In contrast, the
abundance of Proteobacteria showed the opposite trend,
which was significantly higher than that of the CON group
(P < 0:05) (Figures 5(b) and 5(c)). However, when treated
with L. plantarum GL17 and L. brevis AY858, Proteobacteria
in mice decreased significantly (P < 0:05).

The abundance of Bacteroidia, Clostridia, and Bacilli
accounted for more than 80% of all microorganisms in the
class level (Figure 6(a)). The abundance of Bacteroidia in
the CON, ETEC, LP-ETEC, and LB-ETEC groups was
52.562%, 49.0004%, 52.9771%, and 51.7049%, respectively.
Clostridia accounted for 16.7878%, 23.7975%, 14.2299%,
and 14.7012%, respectively. The Bacilli abundance was
11.3105%, 10.0499%, 17.1775%, and 16.7497%, respectively.
After being attacked by ETEC, the abundance of Clostridia
and Epsilonproteobacteria increased, especially Epsilonpro-
teobacteria, which increased significantly (P < 0:05)
(Figures 6(b) and 6(c)). However, both L. plantarum GL17
and L. brevis AY858 significantly reduced the abundance of
Clostridia and Epsilonproteobacteria (P < 0:05).

As for the order level, the abundance of Bacteroidales,
Clostridiales, and Lactobacillales was the highest in the
CON, LP-ETEC, and LB-ETEC groups (Figure 7(a)). The
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Figure 2: Impact of Lactobacillus plantarum and Lactobacillus brevis on jejunum tissue damage induced by ETEC. Images of jejunal tissue
in the CON (a), ETEC (b), LP-ETEC (c), and LB-ETEC (d) groups; villus height (e); and crypt depth (f) in the four groups. Data are
mean ± SD (n = 6). Without a common letter mark indicates significant differences (P < 0:05).
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abundance of Bacteroidales in the CON, LP-ETEC, and LB-
ETEC groups was 50.562%, 39.1805%, and 39.7049%,
respectively. Clostridiales accounted for 17.1168%,
14.2299%, and 16.8516%, respectively. The abundance of
Lactobacillales was 17.2176%, 22.0299%, and 21.248%,
respectively. However, the top three most abundant micro-
organisms at the order level in ETEC group were Bacteroi-
dales, Clostridiales, and Campylobacterales, accounting for
49.0004%, 25.221%, and 7.6303%, respectively. Clostridiales
in the ETEC group increased significantly (P < 0:05) and
Lactobacillales in the ETEC group decreased significantly
(P < 0:05) compared with those in the CON group
(Figures 7(b) and 7(c)). After the treatment of L. plantarum
GL17 and L. brevis AY858, the abundance of Clostridiales
and Lactobacillales had changed significantly (P < 0:05).

Eight representative microbial genera in the four groups
were selected and analyzed (Figure 8(a)). In the genus of

microorganisms that have been classified, Lactobacillus, Bac-
teroides, and Helicobacter were the three main microorgan-
isms among the groups of CON, LP-ETEC, and LB-ETEC.
The abundance of Lactobacillus in the CON, LP-ETEC, and
LB-ETEC groups was 26.08%, 33.5332%, and 27.7802%,
respectively. Bacteroides accounted for 7.4573%, 23.1571%,
and 9.449%, respectively. The abundance of Helicobacter was
1.486%, 2.9112%, and 3.2437%, respectively. However, the
top three most abundant microbial genera in the ETEC group
were Bacteroides, Helicobacter, and Alloprevotella, accounting
for 5.9428%, 8.0295%, and 4.6711%, respectively. After being
challenged by ETEC, the abundance of Lactobacillus reduced
significantly (P < 0:05), while that of Helicobacter increased
significantly (P < 0:05) (Figures 8(b) and 8(c)). However,
when treated with L. plantarum GL17 and L. brevis AY858,
the abundance of Lactobacillus and Helicobacter changed
significantly (P < 0:05) and returned to the normal level.
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Figure 3: Impact of Lactobacillus plantarum and Lactobacillus brevis treatment on the expressions of cytokines and tight junction protein.
1The relative gene expression level determined by qPCR of (a) IL-1β, (b) TNF-α, (c) IL-6, (d) A20, (e) lysozyme, (f) cryptidin, (g) claudin-1,
(h) occludin, and (i) ZO-1. Data are mean ± SD (n = 6). Without a common letter mark indicates significant differences (P < 0:05).
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4. Discussion

The protective effects of L. plantarum GL17 and L. brevis
AY858 on the injury induced by ETEC were explored in this
study. The results showed that both probiotics reduced the
weight loss and morphological damage of the jejunum sig-
nificantly. The expression of cytokines decreased, while that
of the tight junction protein increased in mice treated with L.
plantarum GL17 and L. brevis AY858. Meanwhile, L. plan-
tarum GL17 and L. brevis AY858 restored the colonic micro-
bial diversity to the normal level in mice challenged by
ETEC and increased the relative abundance of Lactobacillus.
In contrast, L. plantarum GL17 and L. brevis AY858 reduced
the relative abundance of Proteobacteria, Clostridia, Epsilon-
proteobacteria, and Helicobacter in the colon after ETEC
challenge.

The surface of intestinal mucosa, which is the largest
surface of the human body, contacts with the external envi-
ronment continuously [24]. Columnar epithelial cells are
arranged into the intestinal epithelium and folded into
crypts or concave [25]. These fully differentiated epithelial
cells protect the body from potentially harmful microorgan-
isms and viruses in the intestinal microenvironment [26].
Intestinal villi are critical components of the intestine that
can increase the absorption area and promote the absorption
of nutrients [27]. Endotoxin produced by ETEC can cause a
variety of morphological changes of the intestinal tract, such
as the increase of mucosal crypt depth, decrease of villus
height, and submucosal edema [28]. Probiotics can reduce

the morphological damage caused by the endotoxin, which
can increase the height of villi and promote the growth of
piglets [29, 30]. A previous study has shown that piglets
fed with L. plantarum displayed higher villus height and
lower crypt depth in the jejunum [1]. The same results were
obtained in this experiment. L. plantarum and L. brevis pro-
tected the structural integrity of the jejunum, as well as the
ability of absorbing nutrients. However, the protective effect
of these two probiotics on villi is slightly different; L. plan-
tarum is better than L. brevis at restoring the height of intes-
tinal villi.

ETEC produces heat-labile enterotoxin (LT), and the
LTA subunit of it, together with ADP-ribosylation factor,
can induce the ribosylation of Gsα [31]. At that time, the
adenylate cyclase of the target cell is uncontrolled, convert-
ing ATP to cAMP continuously. The increase of cAMP will
not only activate the NF-κB signaling pathway and produce
a large number of inflammatory factors [32] but also activate
the MAPK signaling pathway, resulting in the dislocation of
tight junction proteins and impairment of intestinal barrier
function [33]. The increase of proinflammatory factors,
including IL-1β, TNF-α, and IL-6, will aggravate intestinal
inflammation and promote the occurrence of colorectal can-
cer. In this experiment, although the difference was insignif-
icant, the proinflammatory factors showed an upward trend
after ETEC challenge, which indicated that ETEC increased
intestinal inflammation in mice. Probiotics can reduce the
inflammatory response by reducing the level of cytokines
[12, 34, 35], which is also proven by our research. Although
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Figure 4: Impact of Lactobacillus plantarum and Lactobacillus brevis treatment on intestinal microbial diversity. (a) Sobs index; (b)
Shannon index; (c) Simpson index; (d) PD-whole-tree index. Data are mean ± SD (n = 6). Without a common letter mark indicates
significant differences (P < 0:05).
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the difference was not significant, the proinflammatory fac-
tors in mice treated with L. plantarum and L. brevis showed
a decreasing trend. Previous researches conducted in vitro
have shown that ETEC can reduce the amounts of occludin
in Small Intestinal Epithelial Cell Line- (IPEC-) 1 entero-

cytes of piglets [36], the permeability of tight junctions in
IPEC-J2 enterocytes of piglets [37], and dislocation of ZO-
1 Caco-2 cells of human [38]. However, probiotics increased
the expression of tight junction proteins such as ZO-1, cau-
din-1, and occludin to protect cells [36, 39]. In this
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Figure 5: Impact of Lactobacillus plantarum and Lactobacillus brevis treatment on the microorganisms at the phylum level. (a) Relative
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abundance of Proteobacteria in each of four groups. Data are mean ± SD (n = 6). Without a common letter mark indicates significant
differences (P < 0:05).
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Figure 6: Impact of Lactobacillus plantarum and Lactobacillus brevis treatment on the microorganisms at the class level. (a) Relative abundance
of microorganisms in the four groups at the class level; (b) abundance ofClostridia in each of four groups; (c) abundance of Epsilonproteobacteria
in each of four groups. Data are mean ± SD (n = 6). Without a common letter mark indicates significant differences (P < 0:05).

7Oxidative Medicine and Cellular Longevity



experiment, claudin-1 and occludin decreased significantly
after ETEC challenge, while ZO-1 also showed a decreasing
trend in mice, indicating that ETEC destroyed the intestinal
barrier in mice. In contrast, L. plantarum and L. brevis
increased the expression of the tight junction protein in mice
challenged by ETEC. And the protective effect of L. brevis on
the barrier function of mice was slightly higher than that of

L. plantarum. Lysozyme is a critical bacteriostatic protein
that strongly inhibits gram-positive bacteria [40], and cryp-
tidin has a significant therapeutic effect on mice infected
with Salmonella Typhimurium [41]. Therefore, the increase
of these two substances in mice treated with L. plantarum
and L. brevis may inhibit the growth of pathogenic bacteria
and protect the health of mice.
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Figure 7: Impact of Lactobacillus plantarum and Lactobacillus brevis treatment on the microorganisms at the order level. (a) Relative
abundance of microorganisms in the four groups at the order level; (b) abundance of Clostridiales in each of four groups; (c) abundance
of Lactobacillales in each of four groups. Data are mean ± SD (n = 6). Without a common letter mark indicates significant differences
(P < 0:05).
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Figure 8: Impact of Lactobacillus plantarum and Lactobacillus brevis treatment on the microorganisms at the genus level. (a) Relative
abundance of microorganism in the four groups at the genus level; (b) abundance of Lactobacillus in each of four groups; (c) abundance
of Helicobacter in each of four groups. Data are mean ± SD (n = 6). Without a common letter mark indicates significant differences
(P < 0:05).
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There are lots of microbiota in the intestinal ecosystem,
which play a significant role in host immunity and disease
prevention. Therefore, unstable intestinal ecology may cause
many diseases, such as ulcerative colitis and chronic diarrhea
[42, 43]. ETEC reduced the intestinal microbial diversity of
mice, while L. plantarum and L. brevis restored it to the nor-
mal level. The PD-whole-tree index of mice treated with L.
plantarum was significantly higher than that of mice only
challenged by ETEC, but there was no significant difference
in the Shannon index. However, the results of mice treated
with L. brevis showed the opposite results. This indicates
that these two probiotics have almost the same effect on
the recovery of intestinal microbial diversity in mice.

Proteobacteria is known to be the most disease-related
intestinal microorganism, causing metabolic diseases and
intestinal inflammation [44–46]. In this phylum, most
microorganisms are human pathogens. Our study found
that both L. plantarum and L. brevis inhibited the increase
of Proteobacteria caused by ETEC significantly and made it
return to the normal level, thus reducing the risk of intesti-
nal inflammation in mice. Both Clostridia and Epsilonpro-
teobacteria are pernicious bacteria that can cause digestive
tract diseases in children. Tissue infection and intestinal dis-
eases are often caused when those two bacteria enter the
body of humans and other animals [47, 48]. Clostridia is
involved in the development of necrotizing enterocolitis,
which is a digestive tract disease that can threaten the life
of preterm neonates [47]. In this study, mice treated with
L. plantarum and L. brevis decreased the abundance of Clos-
tridia and Epsilonproteobacteria, as well as a lower risk of
digestive tract disease. As we all know, Lactobacillus is a pro-
biotic with the function of preventing infection, reducing
incidences of diarrhea, and improving production perfor-
mance [49]. Some microorganisms of this genus, such as
Lactobacillus rhamnosus and Lactobacillus reuteri, can pro-
tect the tight junctional protein after infection and contrib-
ute to the gut barrier function [50, 51]. In this experiment,
both L. plantarum and L. brevis increased the abundance
of Lactobacillus significantly, which may contribute to the
gut barrier function and protection against inflammation.
Helicobacter is the most common source of infection in the
world, and it is the main risk factor of gastric cancer. Due
to the ability to adapt to extreme acidic environment, Helico-
bacter can establish persistent infection and relieve the regu-
latory function of the host, leading to the pathogenesis and
cancer of the digestive tract [52]. L. plantarum and L. brevis
inhibited the growth of such pathogenic bacteria signifi-
cantly and reduced the risk of canceration in tissue. It can
be seen from the results that there is no significant difference
between L. plantarum and L. brevis in promoting the abun-
dance of probiotics and inhibiting that of pathogenic bacte-
ria, indicating that they have almost the same effects on
inhibiting intestinal inflammation and canceration.

5. Conclusion

The results in this experiment showed that L. plantarum and
L. brevis can prevent the weight loss and intestinal injury
caused by ETEC effectively, reduce the production of inflam-

matory factors, and strengthen the intestinal barrier func-
tion. Moreover, both of these two probiotics can stabilize
the microbial community structure of intestine in mice,
increase the abundance of probiotics such as Lactobacillus,
and reduce the abundance of pathogenic bacteria such as
Proteobacteria, Clostridia, Epsilonproteobacteria, and Helico-
bacter. Therefore, L. plantarum and L. brevis showed simi-
larly effective inhibition on intestinal injury induced by
ETEC and the ability to improve immune function. In sum-
mary, the feasibility and effectiveness of L. plantarum and L.
brevis in the treatment of intestinal inflammation are dem-
onstrated in our study, which provides a basis for further
study of these two probiotics and their impact on intestinal
inflammation such as diarrhea and colon cancer.
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