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Abstract: N-Sulfonyl amidines are developed from a Cu-catalyzed three-component reaction from
sulfonyl hydrazines, terminal alkynes and sulfonyl azides in toluene at room temperature. Particu-
larly, the intermediate N-sulfonylketenimines was generated via a CuAAC/ring-opening procedure
and took a nucleophilic addition with the weak nucleophile sulfonyl hydrazines. In addition, the
stability of the product was tested by a HNMR spectrometer.
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1. Introduction

Amidine derivatives are important privileged scaffolds in medicinal chemistry [1–3],
synthetic chemistry [4] and an important pharmacophore in drug discovery [5,6]. One
subset of such compounds is N-sulfonyl amidine derivatives that show a prolific set of
biological activities, including antifungal (I) [7], anticancer (II) [8], antiresorptive (III and
IV) [9–11], antiproliferative (V) [12], dopamine transporter inhibitors (VI) [13] (Figure 1),
etc. [14,15]. Therefore, the establishment of robust synthetic approaches for the preparation
of N-sulfonyl amidines and their functionalizations is highly required.
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1. Introduction 
Amidine derivatives are important privileged scaffolds in medicinal chemistry [1–3], 

synthetic chemistry [4] and an important pharmacophore in drug discovery [5,6]. One 
subset of such compounds is N-sulfonyl amidine derivatives that show a prolific set of 
biological activities, including antifungal (I) [7], anticancer (II) [8], antiresorptive (III and 
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N

N

HO

Me

Me

S O
O

Me

N

N

S
O
O

Me

Me

Me

ClAntifungal (I) Antiresorptive (III)

N

NH2

SO
O Me

Anticancer (II)

N

Ph

Ph

S
O NH2

N
S MeO
O

Antiresorptive (IV)

O

O

Br

N
H

N

NH

S
O O

Me

NO2

Antiproliferative (V)

NN
SO
O MeMe Me

Me

Me

Transporter inhibitors (VI)

Me
Me

Me

 
Figure 1. Part of the sulfonyl amidine drug candidates. 
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Classical types of reactions have focused on the preparation of N-sulfonyl amidines
involved in the reaction of cyclic thioamides and thioacetamide derivatives with sul-
fonyl azides [14,16–18], the phosphite-mediated Beckmann-like coupling of oximes and
p-toluenesulfonyl azide [19], sulfonamide derivatives condensation with DMF–DMA [20],
the sulfonamide reaction with formamide [21] and the sulfonyl ynamide rearrangement [22].
The most efficient method is the Cu-catalyzed multicomponent reaction of terminal alkynes,
sulfonyl azides and amines, which has been applied to synthesize numerous oxygen-
containing and nitrogen-containing heterocyclic compounds [23–31]. The ketenimine inter-
mediate generated by Cu-catalyzed alkynes and sulfonyl azides [31–33] could take a nucle-
ophilic addition reaction with most amines, as show in Scheme 1, including aliphatic pri-
mary amines [34–36], aliphatic secondary amines [37,38], aliphatic tertiary amines [39,40],
quaternary amine salts [41], imines [27], nitrogenous heterocyclic compounds [42–45],
urea derivatives [46], oximes [47], sulfoximines [48] and enyl amine [49,50]. However, to
our knowledge, there are few previous works that used the weak nucleophile sulfonyl
hydrazines for this method. Herein, the Cu-catalyzed one-pot synthesis of N-sulfonyl
amidines from sulfonyl hydrazine, terminal alkynes and sulfonyl azides was reported.

Molecules 2021, 26, x FOR PEER REVIEW 2 of 11 
 

 

Classical types of reactions have focused on the preparation of N-sulfonyl amidines 
involved in the reaction of cyclic thioamides and thioacetamide derivatives with sulfonyl 
azides [14,16–18], the phosphite-mediated Beckmann-like coupling of oximes and p-tol-
uenesulfonyl azide [19], sulfonamide derivatives condensation with DMF–DMA [20], the 
sulfonamide reaction with formamide [21] and the sulfonyl ynamide rearrangement [22]. 
The most efficient method is the Cu-catalyzed multicomponent reaction of terminal al-
kynes, sulfonyl azides and amines, which has been applied to synthesize numerous oxy-
gen-containing and nitrogen-containing heterocyclic compounds [23–31]. The ketenimine 
intermediate generated by Cu-catalyzed alkynes and sulfonyl azides [31–33] could take a 
nucleophilic addition reaction with most amines, as show in Scheme 1, including aliphatic 
primary amines [34–36], aliphatic secondary amines [37,38], aliphatic tertiary amines 
[39,40], quaternary amine salts [41], imines [27], nitrogenous heterocyclic compounds [42–
45], urea derivatives [46], oximes [47], sulfoximines [48] and enyl amine [49,50]. However, 
to our knowledge, there are few previous works that used the weak nucleophile sulfonyl 
hydrazines for this method. Herein, the Cu-catalyzed one-pot synthesis of N-sulfonyl am-
idines from sulfonyl hydrazine, terminal alkynes and sulfonyl azides was reported. 

 
Scheme 1. Copper-catalyzed tandem reactions of the terminal alkynes, sulfonyl azides and amines. 

2. Results 
We began our investigation by examining the synthesis of 4-methyl-N-(2-phenyl-1-

(2-(1-phenylethylidene)-1-tosylhydrazinyl) ethylidene)benzenesulfonamide 4a via 4-me-
thyl-N′-(1-phenylethylidene)benzenesulfonohydrazide 1a, ethynylbenzene 2a and p-tosyl 
azide 3a. The reaction was carried out in the presence of CuI and Et3N in CH2Cl2 at room 
temperature for 1 h, and 4a was isolated in a 78% yield (Table 1, entry 1). Based on this 
finding, the reaction conditions were screened. First, several catalysts were screened, and 
most Cu-catalysts exhibited a high catalytic reactivity in this reaction, whether CuI-cata-
lysts or CuII-catalysts (Table 1, entries 2−6). Other catalysts such as AgTFA failed to pro-
duce the desired product (Table 1, entries 7). Then, the effects of different bases were eval-
uated, and the screening results revealed that the use of Et3N achieved a superior result 
compared to DMAP, DIPEA, pyridine and the other bases (Table 1, entries 8–12). Finally, 
the solvents were screened, and a lower or comparable yield was obtained when CHCl3, 
DCE, MeCN, THF, DMSO and DMF were used as solvents, while toluene gave 4a the 
highest yield of 84% (Table 1, entry 13–19). Encouraged by this promising result, we 

Scheme 1. Copper-catalyzed tandem reactions of the terminal alkynes, sulfonyl azides and amines.

2. Results

We began our investigation by examining the synthesis of 4-methyl-N-(2-phenyl-1-(2-
(1-phenylethylidene)-1-tosylhydrazinyl) ethylidene)benzenesulfonamide 4a via 4-methyl-
N′-(1-phenylethylidene)benzenesulfonohydrazide 1a, ethynylbenzene 2a and p-tosyl azide
3a. The reaction was carried out in the presence of CuI and Et3N in CH2Cl2 at room
temperature for 1 h, and 4a was isolated in a 78% yield (Table 1, entry 1). Based on this
finding, the reaction conditions were screened. First, several catalysts were screened, and
most Cu-catalysts exhibited a high catalytic reactivity in this reaction, whether CuI-catalysts
or CuII-catalysts (Table 1, entries 2–6). Other catalysts such as AgTFA failed to produce the
desired product (Table 1, entries 7). Then, the effects of different bases were evaluated, and
the screening results revealed that the use of Et3N achieved a superior result compared to
DMAP, DIPEA, pyridine and the other bases (Table 1, entries 8–12). Finally, the solvents
were screened, and a lower or comparable yield was obtained when CHCl3, DCE, MeCN,
THF, DMSO and DMF were used as solvents, while toluene gave 4a the highest yield of
84% (Table 1, entry 13–19). Encouraged by this promising result, we tracked the reaction
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by TLC and found that it could be completed in less than an hour at room temperature
(Table 1, entry 20–23).

Table 1. Optimization of the catalytic conditions a.

Molecules 2021, 26, x FOR PEER REVIEW 3 of 11 
 

 

tracked the reaction by TLC and found that it could be completed in less than an hour at 
room temperature (Table 1, entry 20–23). 

Table 1. Optimization of the catalytic conditions a. 

 

Entry 
Cat. 

(10 mol%) 

Base 

(10 mol%) 

Solvent 

(10 mol%) 

Temp. 

(°C) 

Time 

(h) 

Yield 

(%) b 

entry 1 CuI Et3N CH2Cl2 rt 1.0 78 
entry 2 CuBr Et3N CH2Cl2 rt 1.0 76 
entry 3 CuCl Et3N CH2Cl2 rt 1.0 72 
entry 4 CuBr2 Et3N CH2Cl2 rt 1.0 64 
entry 5 Cu(OAc)2 Et3N CH2Cl2 rt 1.0 52 
entry 6 Cu(OTf)2 Et3N CH2Cl2 rt 1.0 21 
entry 7 AgTFA Et3N CH2Cl2 rt 1.0 0 
entry 8 CuI DMAP CH2Cl2 rt 1.0 26 
entry 9 CuI DIPEA CH2Cl2 rt 1.0 75 

entry 10 CuI Pyridine CH2Cl2 rt 1.0 32 
entry 11 CuI t-BuONa CH2Cl2 rt 1.0 10 
entry 12 CuI K2CO3 CH2Cl2 rt 1.0 8 
entry 13 CuI Et3N CHCl3 rt 1.0 76 
entry 14 CuI Et3N DCE rt 1.0 75 
entry 15 CuI Et3N Toluene rt 1.0 84 
entry 16 CuI Et3N MeCN rt 1.0 52 
entry 17 CuI Et3N THF rt 1.0 80 
entry 18 CuI Et3N DMSO rt 1.0 10 
entry 19 CuI Et3N DMF rt 1.0 6 
entry 20 CuI Et3N Toluene 40 1.0 75 
entry 21 CuI Et3N Toluene rt 0.5 80 
entry 22 CuI Et3N Toluene rt 2.0 84 
entry 23 CuI Et3N Toluene rt 3.0 84 

a Reaction conditions: To 1a (0.5 mmol), Cat. 10 mol%, base 1.2 eq. in the solvent (3 mL) was added 
2a (1.2 eq.) and 3a (1.2 eq.), stirred at specified temperatures and times. b Isolated yields. 

With the optimized reaction conditions obtained, the substrate diversity with the sul-
fonyl hydrazines 1 was tested first. As shown in Scheme 2, the R1 electron effects of the 
substituents 1 had slight influences. For example, substrates bearing 4-OMe-C6H4, 4–Me-
C6H4, 2-naphthyl and 2-tetra-hydronaphthalyl were examined, and the 72–88% yields of 
4a–4e were isolated. The R2 of substrates 1 bearing the 2,4,6-trimethylphenyl group also 
can obtain 4f in a good yield of 80%. However, when changing the substrates 1 to other 
sulfonyl hydrazines, such as 1g–1k, it could not obtain the desired products and give de-
composed or complex compounds. Next, the scopes and limitations of terminal alkynes 2 
and sulfonyl azides 3 were examined. An aryl-substituted, aliphatic or 2-thienyl terminal 
alkynes and aryl-substituted or aliphatic sulfonyl azides can smoothly obtain the corre-
sponding products 4g–4m with yields of 73–89% and 4n–4q with yields of 78–86%, in 
which both the substituents led to high yields and were influenced slightly. 

Entry Cat.
(10 mol%)

Base
(10 mol%)

Solvent
(10 mol%)

Temp.
(◦C)

Time
(h)

Yield
(%) b

entry 1 CuI Et3N CH2Cl2 rt 1.0 78
entry 2 CuBr Et3N CH2Cl2 rt 1.0 76
entry 3 CuCl Et3N CH2Cl2 rt 1.0 72
entry 4 CuBr2 Et3N CH2Cl2 rt 1.0 64
entry 5 Cu(OAc)2 Et3N CH2Cl2 rt 1.0 52
entry 6 Cu(OTf)2 Et3N CH2Cl2 rt 1.0 21
entry 7 AgTFA Et3N CH2Cl2 rt 1.0 0
entry 8 CuI DMAP CH2Cl2 rt 1.0 26
entry 9 CuI DIPEA CH2Cl2 rt 1.0 75
entry 10 CuI Pyridine CH2Cl2 rt 1.0 32
entry 11 CuI t-BuONa CH2Cl2 rt 1.0 10
entry 12 CuI K2CO3 CH2Cl2 rt 1.0 8
entry 13 CuI Et3N CHCl3 rt 1.0 76
entry 14 CuI Et3N DCE rt 1.0 75
entry 15 CuI Et3N Toluene rt 1.0 84
entry 16 CuI Et3N MeCN rt 1.0 52
entry 17 CuI Et3N THF rt 1.0 80
entry 18 CuI Et3N DMSO rt 1.0 10
entry 19 CuI Et3N DMF rt 1.0 6
entry 20 CuI Et3N Toluene 40 1.0 75
entry 21 CuI Et3N Toluene rt 0.5 80
entry 22 CuI Et3N Toluene rt 2.0 84
entry 23 CuI Et3N Toluene rt 3.0 84

a Reaction conditions: To 1a (0.5 mmol), Cat. 10 mol%, base 1.2 eq. in the solvent (3 mL) was added 2a (1.2 eq.)
and 3a (1.2 eq.), stirred at specified temperatures and times. b Isolated yields.

With the optimized reaction conditions obtained, the substrate diversity with the
sulfonyl hydrazines 1 was tested first. As shown in Scheme 2, the R1 electron effects of
the substituents 1 had slight influences. For example, substrates bearing 4-OMe-C6H4,
4–Me-C6H4, 2-naphthyl and 2-tetra-hydronaphthalyl were examined, and the 72–88%
yields of 4a–4e were isolated. The R2 of substrates 1 bearing the 2,4,6-trimethylphenyl
group also can obtain 4f in a good yield of 80%. However, when changing the substrates 1
to other sulfonyl hydrazines, such as 1g–1k, it could not obtain the desired products and
give decomposed or complex compounds. Next, the scopes and limitations of terminal
alkynes 2 and sulfonyl azides 3 were examined. An aryl-substituted, aliphatic or 2-thienyl
terminal alkynes and aryl-substituted or aliphatic sulfonyl azides can smoothly obtain the
corresponding products 4g–4m with yields of 73–89% and 4n–4q with yields of 78–86%, in
which both the substituents led to high yields and were influenced slightly.
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The structure of 4a was confirmed by X-ray crystallography (Figure 2, CCDC deposi-
tion number 2075031).
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Figure 2. X-ray crystal structure of compound 4a.

Curiously, we found that the separated products in the solvent were unstable and
would decompose. Thus, the stability of product 4a was tested by a HNMR spectrometer.
As shown in Figure 3, the products dissolved in DMSO were relatively stable in the first
four days, and the decomposition complex could be observed starting from the fifth day;
then, the concentration of byproducts became thicker day by day. After a month, the system
was relatively stable, and the decomposition was slow. Therefore, it is recommended that
products 4a–4q should be dried and stored at a low temperature.
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Figure 3. The stability of product 4a tested by a HNMR spectrometer.

3. Experimental
3.1. General Information

All melting points were determined on a Yanaco melting point apparatus and were
uncorrected. IR spectra were recorded as KBr pellets on a Nicolet FT-IR 5DX spectrometer.
All spectra of 1H NMR (400 MHz) and 13C NMR (100 MHz) were measured on a 400 MHz
Bruker spectrometer using DMSO-d6 or CDCl3 as the solvent, with tetramethylsilane (TMS)
as the internal standard, at room temperature. Chemical shifts are given in δ relative to
TMS, and the coupling constants J are given in Hz. HRMS were obtained on a Bruker
micrOTOF-Q II spectrometer. All commercially available reagents were purchased from
Sigma-Aldrich, Acros, Aladdin, TCI, Alfa, Innochem in China and were used without
further purification. All reactions were carried out in dried reaction tube (25 mL). The
original 1H and 13C NMR spectra are available in supplementary material.

3.2. Compound Characterizations and Preparations

4-methyl-N-((E)-2-phenyl-1-(2-((E)-1-phenylethylidene)-1-osylhydrazineyl) ethylidene) ben-
zenesulfonamide (4a). 4-methyl-N′-(1-phenylethylidene) benzenesulfonohydrazide (1a)
(0.114 mg, 0.50 mmol) was mixed with CuI (9.5 mg, 0.05 mmol) in 1-mL toluene. Then,
ethynylbenzene (2a) (76.5 mg, 0.75 mmol), TsN3 (147.8 mg, 0.75 mmol) and TEA (101 mg,
1.0 mmol) were mixed in toluene (2 mL). After stirring at room temperature for 1 h and con-
centrated under reduced pressure, the mix was purified a flash chromatography (petroleum
ether/ethyl acetate: 7:1) to give product 4a as a white solid, mp 143–144 ◦C. IR (KBr) ν
3063, 1564, 1492, 1442, 1309, 1145, 1082 cm−1; 1H NMR (400 MHz, DMSO-d6) δ 7.82 (d,
J = 8.0 Hz, 2H), 7.62 (t, J = 8.0 Hz, 3H), 7.53–7.46 (m, 6H), 7.28–7.21 (m, 5H), 7.01 (d, J = 6.8
Hz, 2H), 4.14 (s, 2H), 2.48 (s, 3H), 2.42 (s, 3H), 1.73 (s, 3H); 13C NMR (100 MHz, DMSO-d6)
δ 182.7, 165.2, 145.6, 143.6, 138.6, 135.0, 134.0, 133.1, 132.4, 129.7 (2C), 129.6 (2C), 128.9 (2C),
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128.8 (2C), 128.6, 128.5 (2C), 127.8 (2C), 127.2, 126.5 (3C), 21.3 (3C), 17.7; HRMS (ESI-TOF)
(m/z). Calcd for C30H29N3O4S2, [M + H]+ 560.1672; found 560.1675.

The products 4b–4q were prepared by a similar procedure.

4-methyl-N-((E)-2-phenyl-1-(2-((E)-1-(p-tolyl)ethylidene)-1-tosylhydrazineyl) ethylidene)
benzenesulfonamide (4b). White solid, mp 153–155 ◦C. IR (KBr) ν 3062, 1594, 1568, 1307,
1172, 1147, 1084 cm−1; 1H NMR (400 MHz, DMSO-d6) δ 7.72 (d, J = 8.0 Hz, 2H), 7.62 (d,
J = 8.0 Hz, 2H), 7.47 (t, J = 7.8 Hz, 4H), 7.31 (d, J = 8.0 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H),
7.24–7.19 (m, 3H), 7.00 (d, J = 6.8 Hz, 2H), 4.19 (s, 2H), 2.47 (s, 3H), 2.42 (s, 3H), 2.39 (s, 3H),
1.69 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ 182.3, 165.3, 145.5, 143.5, 142.6, 138.6, 134.0,
133.1, 132.3, 129.7 (2C), 129.6 (2C), 129.3 (2C), 128.9 (2C), 128.6 (2C), 128.5 (2C), 127.8 (2C),
127.1, 126.5 (3C), 21.2 (3C), 17.7; HRMS (ESI-TOF) (m/z). Calcd for C31H31N3O4S2, [M +
H]+ 574.1829; found 574.1831.

N-((E)-1-(2-((E)-1-(4-methoxyphenyl)ethylidene)-1-tosylhydrazineyl)-2-phenylethylidene)-
4-methylbenzenesulfonamide (4c). White solid, mp 141–143 ◦C. IR (KBr) ν 3063, 1590, 1494,
1289, 1173, 1141, 1085 cm−1; 1H NMR (400 MHz, DMSO-d6) δ 7.81 (d, J = 8.8 Hz, 2H),
7.62 (d, J = 8.0 Hz, 2H), 7.47 (t, J = 7.8 Hz, 4H), 7.27 (d, J = 8.0 Hz, 2H), 7.23–7.18 (m, 3H),
7.05–6.99 (m, 4H), 4.49 (s, 2H), 3.85 (s, 3H), 2.47 (s, 3H), 2.42 (s, 3H), 1.67 (s, 3H); 13C NMR
(100 MHz, DMSO-d6) δ 181.5, 165.3, 162.6, 145.5, 143.5, 138.7, 134.0, 133.1, 132.3, 129.7 (2C),
129.6 (2C), 129.5 (2C), 128.9 (2C), 128.6, 128.5 (2C), 127.3, 127.1, 126.5 (3C), 114.1, 55.6, 21.2
(3C), 17.2; HRMS (ESI-TOF) (m/z). Calcd for C31H31N3O5S2, [M + H]+ 590.1778; found
590.1782.

4-methyl-N-((E)-1-(2-((E)-1-(naphthalen-2-yl)ethylidene)-1-tosylhydrazineyl)-2-
phenylethylidene)benzenesulfonamide (4d). White solid, mp 172–173 ◦C. IR (KBr) ν 3056,
1590, 1574, 1494, 1359, 1305, 1144, 1084 cm−1; 1H NMR (400 MHz, DMSO-d6) δ 8.39 (s, 1H),
8.07 (d, J = 8.0 Hz, 1H), 8.02 (t, J = 7.2 Hz, 3H), 7.68–7.61 (m, 4H), 7.53–7.46 (m, 4H), 7.29
(d, J = 8.0 Hz, 2H), 7.25–7.17 (m, 3H), 7.02 (d, = 7.2, 2H), 4.34 (s, 2H), 2.48 (s, 3H), 2.43 (s,
3H), 1.87 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ 182.3, 165.3, 145.6, 143.6, 138.6, 134.7,
134.0, 133.1, 132.4 (2C), 129.6 (2C), 129.4 (2C), 129.3 (2C), 128.9 (2C), 128.6, 128.5 (2C), 128.3,
128.2, 127.7, 127.2, 127.0, 126.5 (3C), 123.7, 21.2 (3C), 17.6; HRMS (ESI-TOF) (m/z). Calcd for
C34H31N3O4S2, [M + H]+ 610.1829; found 610.1832.

4-methyl-N-((E)-2-phenyl-1-(2-((E)-1-(5,6,7,8-tetrahydronaphthalen-2-yl)ethylidene)-1-
tosylhydrazineyl)ethylidene)benzenesulfonamide (4e). White solid, mp 173–174 ◦C. IR
(KBr) ν 3062, 3030, 1590, 1494, 1370, 1176, 1145, 1083 cm−1; 1H NMR (400 MHz, DMSO-d6)
δ 7.61 (d, J = 8.0 Hz, 2H), 7.50 (d, J = 8.0 Hz, 1H), 7.46 (d, J = 6.4 Hz, 5H), 7.28–7.16 (m, 6H),
6.99 (d, J = 8.0, 2H), 4.02 (s, 2H), 2.78 (s, 4H), 2.47 (s, 3H), 2.42 (s, 3H), 1.76 (s, 4H), 1.69 (s,
3H); 13C NMR (100 MHz, DMSO-d6) δ 182.6, 165.3, 145.6, 143.6, 141.8, 138.6, 137.2, 134.0,
133.1, 132.4, 129.7 (2C), 129.6 (2C), 129.3, 128.9 (2C), 128.7 (2C), 128.6 (2C), 128.4, 127.2, 126.5
(2C), 124.9, 28.9 (2C), 22.6, 22.5, 21.3, 21.2, 17.6 (2C); HRMS (ESI-TOF) (m/z). Calcd for
C34H35N3O4S2, [M + H]+ 614.2142; found 614.2145.

N-(1-(1-(mesitylsulfonyl)-2-((E)-1-phenylethylidene)hydrazineyl)-2-phenylethylidene)-4-
methylbenzenesulfonamide (4f). White solid, mp 181–183 ◦C. IR (KBr) ν 3062, 1600, 1551,
1354, 1304, 1141, 1088 cm−1; 1H NMR (400 MHz, DMSO-d6) δ 7.77 (d, J = 7.6 Hz, 2H), 7.60
(d, J = 7.2 Hz, 1H), 7.50 (t, J = 7.8 Hz, 2H), 7.34–7.17 (m, 7H), 7.03 (d, J = 7.2 Hz, 2H), 6.93 (s,
2H), 4.58 (s, 2H), 2.43 (s, 6H), 2.34 (s, 3H), 2.32 (s, 3H), 1.82 (s, 3H); 13C NMR (100 MHz,
DMSO-d6) δ 181.3, 164.7, 143.9, 143.2, 140.3, 138.5, 135.0, 133.1, 132.4, 132.3, 132.0, 131.9,
129.4 (2C), 128.8, 128.7 (2C), 128.5 (2C), 127.9, 127.7 (2C), 127.1 (2C), 126.3 (2C), 21.8 (2C),
21.0 (2C), 20.7, 18.5; HRMS (ESI-TOF) (m/z). Calcd for C32H33N3O4S2, [M + H]+ 590.1985;
found 590.1988.

4-methyl-N-((E)-1-(2-((E)-1-phenylethylidene)-1-tosylhydrazineyl)-2-(p-tolyl)ethylidene)
benzenesulfonamide (4g). White solid, mp 159–160 ◦C. IR (KBr) ν 3062, 2920, 1596, 1566,
1367, 1174, 1142, 1085 cm−1; 1H NMR (400 MHz, DMSO-d6) δ 7.83 (d, J = 7.6 Hz, 2H), 7.61
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(d, J = 8.0 Hz, 3H), 7.54–7.45 (m, 6H), 7.26 (d, J = 8.0 Hz, 2H), 7.02 (d, J = 7.6 Hz, 2H), 6.90 (d,
J = 8.0 Hz, 2H), 4.19 (s, 2H), 2.47 (s, 3H), 2.41 (s, 3H), 2.26 (s, 3H), 1.74 (s, 3H); 13C NMR (100
MHz, DMSO-d6) δ 182.7, 165.4, 145.5, 143.5, 143.2, 138.6, 136.4, 135.1, 134.0, 132.3, 130.0,
129.6 (2C), 129.5 (2C), 129.1 (2C), 128.8 (2C), 128.5 (2C), 127.8 (2C), 126.5 (3C), 21.2 (2C), 20.7
(2C), 17.8; HRMS (ESI-TOF) (m/z). Calcd for C31H31N3O4S2, [M + H]+ 574.1829; found
574.1832.

4-methyl-N-((E)-1-(2-((E)-1-phenylethylidene)-1-tosylhydrazineyl)-2-(m-tolyl)ethylidene)
benzenesulfonamide (4h). White solid, mp 146–148 ◦C. IR (KBr) ν 3062, 2920, 1598, 1569,
1489, 1359, 1367, 1294, 1142, 1087 cm−1; 1H NMR (400 MHz, DMSO-d6) δ 7.84 (d, J = 7.6
Hz, 2H), 7.62 (d, J = 8.0 Hz, 3H), 7.53–7.45 (m, 6H), 7.28 (d, J = 8.0 Hz, 2H), 7.11 (t, J = 7.6
Hz, 1H), 7.02 (d, J = 7.6 Hz, 1H), 6.87 (d, J = 7.6 Hz, 1H), 6.66 (s, 1H), 4.21 (s, 2H), 2.47 (s,
3H), 2.42 (s, 3H), 1.99 (s, 3H), 1.74 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ 182.6, 165.2,
145.6, 138.6, 137.7, 134.9, 134.0, 133.0, 132.4, 130.5 (2C), 129.6 (2C), 129.5 (2C), 128.7 (2C),
128.5 (2C), 127.8 (2C), 127.6, 126.5 (3C), 125.7, 21.2 (3C), 20.7, 17.6; HRMS (ESI-TOF) (m/z).
Calcd for C31H31N3O4S2, [M + H]+ 574.1829; found574.1830.

N-((E)-2-(4-fluorophenyl)-1-(2-((E)-1-phenylethylidene)-1-tosylhydrazineyl) ethylidene)-4-
methylbenzenesulfonamide (4i). White solid, mp 157–159 ◦C. IR (KBr) ν 3062, 1595, 1564,
1375, 1308, 1190, 1083 cm−1; 1H NMR (400 MHz, DMSO-d6) δ 7.85 (d, J = 8.0 Hz, 2H), 7.62
(d, J = 8.0 Hz, 3H), 7.54–7.45 (m, 6H), 7.27 (d, J = 8.0 Hz, 2H), 7.09–7.05 (m, 4H), 4.20 (s, 2H),
2.47 (s, 3H), 2.42 (s, 3H), 1.86 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ 182.5, 165.0, 161.2
(d, J = 256.7 Hz), 145.7, 143.6, 138.5, 135.0, 133.9, 132.4, 130.7 (2C), 129.7 (2C), 129.6 (2C),
129.2 (d, J = 3.1 Hz), 128.8 (2C), 128.5 (2C), 127.8 (2C), 126.5 (3C), 115.5 (d, J = 21.8 Hz), 21.1
(2C), 21.1 (d, J = 7.7 Hz), 17.9; HRMS (ESI-TOF) (m/z). Calcd for C30H28FN3O4S2, [M + H]+

578.1578; found 578.1581.

N-((E)-2-(4-chlorophenyl)-1-(2-((E)-1-phenylethylidene)-1-tosylhydrazineyl) ethylidene)-4-
methylbenzenesulfonamide (4j). White solid, mp 153–155 ◦C. IR (KBr) ν 3064, 1593, 1562,
1444, 1345, 1272, 1122, 1081 cm−1; 1H NMR (400 MHz, DMSO-d6) δ 7.84 (d, J = 8.4 Hz, 2H),
7.62 (d, J = 8.0 Hz, 3H), 7.53–7.45 (m, 6H), 7.30–7.27 (m, 4H), 7.02 (d, J = 8.8 Hz, 2H), 4.24 (s,
2H), 2.47 (s, 3H), 2.42 (s, 3H), 1.90 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ 182.5, 164.8,
145.7, 143.7, 138.4, 135.0, 133.8, 132.4, 132.1, 132.0, 130.6 (2C), 129.7 (2C), 129.6 (2C), 128.8
(2C), 128.5 (2C), 127.8 (2C), 126.5 (3C), 38.0, 21.1 (2C), 21.1, 18.0; HRMS (ESI-TOF) (m/z).
Calcd for C30H28ClN3O4S2, [M + H]+ 594.1283; found 594.1285.

N-((E)-2-(4-bromophenyl)-1-(2-((E)-1-phenylethylidene)-1-tosylhydrazineyl) ethylidene)-4-
methylbenzenesulfonamide (4k). White solid, mp 158–160 ◦C. IR (KBr) ν 3062, 1592, 1560,
1486 1369, 1282, 1142, 1082 cm−1; 1H NMR (400 MHz, DMSO-d6) δ 7.83 (d, J = 7.2 Hz, 2H),
7.62 (d, J = 8.0 Hz, 3H), 7.53–7.41 (m, 8H), 7.28 (d, J = 8.0 Hz, 2H), 6.95 (d, J = 8.0 Hz, 2H),
4.21 (s, 2H), 2.47 (s, 3H), 2.42 (s, 3H), 1.91 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ 182.4,
164.7, 145.7, 143.6, 138.4, 135.0, 133.8, 132.5, 132.4, 131.5, 132.0, 130.8 (2C), 129.7 (2C), 129.6
(2C), 128.8 (2C), 128.5 (2C), 127.8 (2C), 126.5 (3C), 120.3, 21.1 (2C), 18.0; HRMS (ESI-TOF)
(m/z). Calcd for C30H28BrN3O4S2, [M + H]+ 638.0778; found 638.0779.

4-methyl-N-((E)-1-(2-((E)-1-phenylethylidene)-1-tosylhydrazineyl)octylidene) benzenesul-
fonamide (4l). White solid, mp 103–105 ◦C. IR (KBr) ν 3063, 2864, 1595, 1338, 1264, 1155,
1076 cm−1; 1H NMR (400 MHz, DMSO-d6) δ 8.00 (d, J = 7.2 Hz, 2H), 7.63 (t, J = 7.6 Hz, 1H),
7.57–7.53 (m, 6H), 7.40 (d, J = 8.4 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 2.75 (d, J = 7.6 Hz, 2H),
2.56 (s, 3H), 2.44 (s, 3H), 2.40 (s, 3H), 1.39 (s, 2H), 1.17–1.08 (m, 8H), 0.75 (t, J = 6.8Hz, 3H);
13C NMR (100 MHz, DMSO-d6) δ 181.5, 167.9, 145.6, 143.3, 138.9, 135.4, 134.1, 132.4, 129.7
(2C), 129.6 (2C), 128.9 (2C), 128.4 (2C), 127.8 (2C), 126.3 (2C), 32.5, 30.9, 28.8, 27.8, 24.9, 21.9,
21.3, 21.1, 18.7, 13.9; HRMS (ESI-TOF) (m/z). Calcd for C30H37N3O4S2, [M + H]+ 568.2298;
found 568.2231.

4-methyl-N-((E)-1-(2-((E)-1-phenylethylidene)-1-tosylhydrazineyl)-2-(thiophen-2-yl)
ethylidene)benzenesulfonamide (4m). Yellow solid, mp 67–69 ◦C. IR (KBr) ν 3062, 2927,
2866, 1590, 1369, 1307, 1153, 1087 cm−1; 1H NMR (400 MHz, DMSO-d6) δ 7.85 (t, J = 6.8 Hz,
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4H), 7.65 (d, J = 9.2 Hz, 3H), 7.48 (d, J = 7.8 Hz, 2H), 7.36 (d, J = 7.8 Hz, 2H), 7.11 (d, J =
7.8 Hz, 3H), 6.86–6.82 (m, 2H), 4.58 (s, 2H), 2.50 (s, 3H), 2.41 (s, 3H), 2.00 (s, 3H); 13C NMR
(100 MHz, DMSO-d6) δ 183.3, 163.9, 145.4, 143.4, 139.2, 135.8, 134.4, 134.2, 132.2, 129.4 (2C),
129.3 (2C), 129.2 (2C), 128.8 (2C), 128.1, 127.9 (2C), 127.1 (2C), 127.0, 125.4, 33.8, 21.9, 21.8,
18.2; HRMS (ESI-TOF) (m/z). Calcd for C28H27N3O4S3, [M + H]+ 565.1237; found 565.1239.

N-(2-phenyl-1-(2-((E)-1-phenylethylidene)-1-tosylhydrazineyl)ethylidene) benzenesulfon-
amide (4n). White solid, mp 149–151 ◦C. IR (KBr) ν 3062, 1589, 1561, 1494, 1365, 1282, 1140,
1085 cm−1; 1H NMR (400 MHz, DMSO-d6) δ 7.82 (d, J = 8.0 Hz, 2H), 7.76 (d, J = 6.8 Hz, 3H),
7.70–7.60 (m, 3H), 7.53–7.46 (m, 4H), 7.27–7.20 (m, 5H), 7.02 (d, J = 6.8 Hz, 2H), 4.23 (s, 2H),
2.41 (s, 3H), 1.74 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ 182.7, 165.7, 145.6, 141.3, 135.0,
133.9, 133.1, 133.0, 132.4, 129.6, 129.3 (2C), 128.9 (2C), 128.8 (2C), 128.6 (2C), 128.5 (2C), 127.8
(2C), 127.2, 126.4 (3C), 21.2 (2C), 17.7; HRMS (ESI-TOF) (m/z). Calcd for C29H27N3O4S2,
[M + H]+ 546.1516; found 546.1519.

4-chloro-N-(2-phenyl-1-(2-((E)-1-phenylethylidene)-1-tosylhydrazineyl) ethylidene)
benzenesulfonamide (4o). White solid, mp 141–143 ◦C. IR (KBr) ν 3067, 1592, 1554, 1493,
1341, 1308, 1146, 1081 cm−1; 1H NMR (400 MHz, DMSO-d6) δ 7.83 (d, J = 8.0 Hz, 2H), 7.75
(t, J = 9.6 Hz, 4H), 7.62 (t, J = 7.6 Hz, 1H), 7.51 (t, J = 8.0 Hz, 4H), 7.29–7.20 (m, 5H), 7.02 (t, J
= 6.8 Hz, 2H), 4.15 (s, 2H), 2.42 (s, 3H), 1.77 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ 182.8,
165.5, 145.7, 140.2, 138.0, 135.0, 134.0, 133.0, 132.4, 129.6 (2C), 129.4 (3C), 128.8, 128.7 (2C),
128.6 (2C), 128.4 (2C), 128.3 (2C), 127.8 (2C), 127.2, 21.2 (2C), 17.8; HRMS (ESI-TOF) (m/z).
Calcd for C29H26ClN3O4S2, [M + H]+ 580.1126; found 580.1128.

4-bromo-N-(2-phenyl-1-(2-((E)-1-phenylethylidene)-1-tosylhydrazineyl) ethylidene)
benzenesulfonamide (4p). White solid, mp 139–140 ◦C. IR (KBr) ν 3066, 1594, 1554, 1493,
1374, 1309, 1145, 1083 cm−1; 1H NMR (400 MHz, DMSO-d6) δ 7.89 (d, J = 8.4 Hz, 2H), 7.83
(t, J = 7.6 Hz, 2H), 7.68 (t, J = 7.6 Hz, 2H), 7.62 (t, J = 7.2 Hz, 1H), 7.53–7.49 (m, 4H), 7.29–7.20
(m, 5H), 7.01 (t, J = 7.2 Hz, 2H), 4.23 (s, 2H), 2.42 (s, 3H), 1.76 (s, 3H); 13C NMR (100 MHz,
DMSO-d6) δ 182.8, 165.5, 145.7, 140.6, 135.0, 134.0, 133.0, 132.4 (3C), 129.6 (2C), 128.8 (4C),
128.7 (2C), 128.4 (3C), 128.3 (2C), 127.2 (2C), 127.0, 21.2 (2C), 17.8; HRMS (ESI-TOF) (m/z).
Calcd for C29H26BrN3O4S2, [M + H]+ 624.0621; found 624.0622.

4-methoxy-N-(2-phenyl-1-(2-((E)-1-phenylethylidene)-1-tosylhydrazineyl) ethylidene)
benzenesulfonamide (4q). White solid, mp 143–145 ◦C. IR (KBr) ν 3010, 1592, 1561, 1492,
1367, 1296, 1144, 1082 cm−1; 1H NMR (400 MHz, DMSO-d6) δ 7.82 (d, J = 7.6 Hz, 2H), 7.69
(t, J = 8.4 Hz, 2H), 7.62 (t, J = 7.2 Hz, 1H), 7.51 (t, J = 8.0 Hz, 4H), 7.29 (d, J = 8.0 Hz, 2H),
7.24–7.17 (m, 5H), 7.01 (d, J = 6.8 Hz, 2H), 4.24 (s, 2H), 3.92 (s, 3H), 2.42 (s, 3H), 1.73 (s, 3H);
13C NMR (100 MHz, DMSO-d6) δ 183.0, 165.4, 163.1, 146.0, 135.5, 134.4, 133.6, 132.7, 130.0,
129.3 (2C), 129.2 (3C), 129.1 (4C), 129.0 (2C), 128.9 (2C), 128.2 (2C), 127.5, 114.8, 56.3, 21.7
(2C), 18.1; HRMS (ESI-TOF) (m/z). Calcd for C30H29N3O5S2, [M + H]+ 576.1622; found
576.1621.

1-phenyl-N-(2-phenyl-1-(2-((E)-1-phenylethylidene)-1-tosylhydrazineyl) ethylidene)
methanesulfonamide (4r). White solid, mp 125–127 ◦C. IR (KBr) ν 3063, 2972, 1590, 1576,
1493, 1365, 1293, 1173, 1086 cm−1; 1H NMR (400 MHz, DMSO-d6) δ 7.85–7.79 (m, 4H), 7.62
(t, J = 7.2 Hz, 1H), 7.56–7.50 (m, 4H), 7.21 (t, J = 6.8 Hz, 3H), 7.01 (d, J = 7.2 Hz, 2H), 4.18
(s, 2H), 3.04(t, J = 7.6 Hz, 2H), 2.46 (s, 3H), 1.75 (s, 3H), 1.69 (s, 2H), 1.02 (t, J = 7.6 Hz, 3H);
13C NMR (100 MHz, DMSO-d6) δ 182.5, 165.5, 145.7, 135.1, 134.6, 133.1, 132.3, 129.9 (3C),
128.9 (2C), 128.8 (3C), 128.6 (2C), 128.3 (3C), 127.8 (3C), 127.1, 56.0 (2C), 21.2, 17.6, 16.8, 12.6;
HRMS (ESI-TOF) (m/z). Calcd for C30H29N3O4S2, [M + H]+ 560.1672; found 560.1676.

4. Conclusions

We developed an effective copper-catalyzed three-component one-pot synthesis of
N-sulfonyl amidines from terminal alkynes, sulfonyl azides and weak nucleophilic sulfonyl
hydrazine. The synthetic pathway extended the applications of the CuAAC/ring-opening
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reaction, and we expect that this methodology and N-sulfonyl amidines products could be
applied to organic synthesis.
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