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Abstract. Immune checkpoint inhibitor (ICI) therapy has revo-
lutionized the treatment of numerous types of cancer, including 
colorectal cancer (CRC). Patients with CRC and deficient 
mismatch repair or high microsatellite instability could benefit 
from ICI treatment, although the response rate of most patients 
is low. Therefore, the immune subtyping of patients with CRC 
is required in order to determine the subtypes suitable for ICI 
treatment. The present study used a cohort of patients with 
CRC from The Cancer Genome Atlas (TCGA) to perform 
molecular subtyping, with results validated in three CRC 
cohorts from the Gene Expression Omnibus. Non-negative 
matrix factorization was used to achieve consensus molecular 
subtyping. The tumor immune dysfunction and exclusion 
algorithm was used to predict potential ICI therapy responses 
and gene set enrichment analysis was performed to define 
different pathways associated with the immune response. Two 
distinct subtypes of CRC were finally identified in TCGA 
cohorts, which were characterized as significantly different 
prognostic subtypes (low-risk and high-risk subtypes). Higher 
expression of programmed death-ligand 1, higher proportion 
of tumor‑infiltrating lymphocytes and tumor mutation burden 
were significantly enriched in the low‑risk subtype. Further 
pathway analysis revealed that the low-risk subtype was associ-
ated with immune response activation and signaling pathways 

involved in ‘antigen processing and presentation’. Three inde-
pendent CRC cohorts were used to validate the above findings. 
In summary, two clinical CRC subtypes were identified, which 
are characterized by significantly different survival outcomes 
and immune infiltration patterns. The findings of the present 
study suggest that ICI treatment may be more effective in the 
low-risk CRC subtype.

Introduction

Colorectal cancer (CRC) is the third most frequently diag-
nosed tumor, with the second highest mortality rate globally 
in 2018 (1). Due to its distinct molecular characteristics and 
genetic heterogeneity, patients with CRC often have different 
natural processes and clinical outcomes. Therefore, there is an 
urgent requirement to explore the molecular subtypes of CRC 
for precise therapy. Recently, several studies have reported 
some distinct subtypes of CRC. However, the subclasses gener-
ated from these studies either lack in the analysis of different 
molecular mechanisms (2,3) or have insufficient independent 
samples for validation (4,5). Thus, a more effective and cred-
ible subgroup is required for the treatment of patients with 
CRC.

In recent years, owing to the further understanding of 
the interactions between the immune system and tumor cell 
environment, immunotherapies such as anti-programmed cell 
death protein 1 (PD-1), anti-programmed cell death 1 ligand 1 
(PD-L1) and anti-cytotoxic T-lymphocyte protein 4 (CTLA-4) 
have markedly revolutionized the therapeutic approaches 
in several cancer types, including lung cancer (6,7), mela-
noma (8,9), head and neck cancer (10), bladder cancer (11), 
kidney cancer (12) and CRC with deficient mismatch 
repair (13,14). An ~50% elevated response rate was found, 
which is a noteworthy improvement in patients who received 
ICI treatment due to the reversion of an immunosuppressive 
microenvironment (15,16). However, only a small number of 
CRC patients exhibit a clinical response to ICI treatment, with 
the majority of patients not benefiting from the therapy (17). 
The therapeutic effect of ICI agents is ascribed to several 
important factors, such as expression of PD-L1, proportion 
of tumor‑infiltrating lymphocytes (TILs) and tumor mutation 
burden (TMB). High PD-L1 expression is an essential factor 
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in the use of pembrolizumab, which is approved by the Food 
and Drug Administration (FDA) for patients with non‑small 
cell lung cancer (NSCLC) (18). Several studies have also 
reported the vital roles of TIL and TMB in the response to 
ICI agents (19-21). In summary, the exploration of the CRC 
subtype that is suitable to receive ICI therapy is important and 
urgently required.

In the present study, immune-related gene expression 
profiles of four independent CRC cohorts were used to identify 
the potential subtype which may be sensitive to immune check-
point blockade. Findings of the present study have implications 
for guiding clinical immunotherapy for patients with CRC.

Materials and methods

Acquisition of genomic data. Gene expression data of 662 
CRC samples with overall survival time and status from 
TCGA cohort (https://gdc.cancer.gov) and 619 samples of three 
datasets (GSE103479, GSE38832 and GSE87211) (22-24) from 
the Gene Expression Omnibus (https://www.ncbi.nlm.nih.
gov/geo/) were retrospectively acquired. TCGA cohort (mean 
age, 66.33; age range: 31-90; sex distribution: 355 male and 
307 female patients); GSE103479 dataset (mean age: 64.26; age 
range: 35-88; sex distribution: 83 male and 72 female patients); 
GSE8832 dataset (mean age: 59.63; age range: 32-89; sex 
distribution: 69 male and 53 female patients) and GSE87211 
dataset (mean age: 63.16; age range: 38-88; sex distribution: 
182 male and 160 female patients). Clinical characteristics of 
these four cohorts are presented in Table SI. Finally, a total 
of 1,281 CRC samples with gene expression data and survival 
information from four independent datasets were obtained 
(Table SII). Complete clinical data were available for all 
patients included in the present study. Gene expression profiles 
were consistently normalized to reduce variance. Expression 
levels of genes with multiple probes were presented as the 
mean expression of all probes.

Immune‑related prognostic signature used for molecular 
subtyping. A prognostic signature was established based on 
a previously conducted immune-related genes study (25). The 
aforementioned previous study comprehensively described the 
immune landscape of >10,000 samples, comprising 33 different 
cancer types, and integrated 160 immune-related signatures 
containing 2,995 immune genes. Univariate Cox proportional 
hazards model was used to evaluate the association between 
the expression of these genes and the overall survival of 
patients with CRC. Genes with P<0.01 were included in the 
signature to perform molecular subtyping.

NMF clustering analysis. Molecular subtyping was performed 
applying non‑negative matrix factorization (NMF) (26,27). A 
binary matrix (A) describing the expression of immune-related 
genes (rows) across CRC samples (columns) was established. 
Subsequently, the expression matrix A was factorized into 
two non-negative matrices (W and H; A≈WH). Matrix H was 
applied to cluster samples into distinct subtypes. The values 
of cophenetic, dispersion and silhouette coefficients were 
used to select the optimal number of subtypes. The NMF 
clustering analysis was performed with the R package ‘NMF’ 
v.0.21.0 (28).

Prediction of response to ICI treatment. The tumor immune 
dysfunction and exclusion (TIDE) algorithm (29) was applied to 
predict potential distinct responses to ICI therapy. TIDE is a gene 
expression biomarker for predicting the response to immune 
checkpoint blockade in patients. A low TIDE prediction score 
represents weak potential immune escape, and therefore these 
patients would potentially exhibit a greater immune therapy 
response. TIL proportion was analyzed using the CIBERSORT 
algorithm (30), which is a useful analytical tool to provide an 
evaluation of the abundances of 22 immune cell types in a 
mixed cell population, using gene expression data.

Gene set enrichment analysis (GSEA). Patients with CRC were 
partitioned into two groups, according to the subtyping results 
clustered with the molecular expression features. ‘DEseq2’ 
v.1.26.0 (31) and ‘limma’ v.3.34.8 (32) packages were applied 
to calculate the differential t statistics of the RNA sequencing 
and microarray data. The t statistic was used as the input to R 
function in the ‘fgsea’ v.1.12.0 package (http://bioconductor.
org/packages/release/bioc/html/fgsea.html) to perform 
GSEA. The pathway annotation signatures from the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) and Gene 
Ontology (GO) databases in Molecular Signatures Database 
(MSigDB) (33) were used.

Normalization of gene expression data. In the present study, 
the molecular subtyping of CRC samples was conducted using 
the NMF algorithm. The essential condition for performing 
the NMF approach was non‑negative values, therefore, the 
gene expression data was compressed into the range from 0-1 
in all distinct platforms to achieve data normalization.

Statistical analyses. Statistical analyses were conducted with 
R software 3.6.1 (https://cran.r-project.org). The difference in 
clinical characteristics between two subtypes were compared 
using the χ2 test, and differences of TIDE score, PD‑L1 expres-
sion and TMB were compared using the Wilcoxon rank-sum 
test. Survivals plot were drawn using the Kaplan-Meier 
method and log-rank test for comparison. The association 
between CRC subtypes and prognosis was analyzed with 
univariate and multivariate Cox proportional hazards model 
in the R ‘survival’ package (v.2.41-3) (https://gitub.com/ther-
neau/survival). P<0.05 was considered to indicate a statistically 
significant difference.

Results

Identification of two CRC subtypes with distinct prognoses. 
Using the univariate Cox proportional hazard model, the associa-
tion between the expression of 2,995 immune-related genes and 
the prognosis of patients with CRC in TCGA cohort was deter-
mined. Finally, 53 genes with P<0.01 (Table SIII) were included 
in the prognostic signature for molecular subtyping. NMF 
unsupervised clustering analysis of these 53 immune genes was 
performed and the results showed that the cophenetic, disper-
sion and silhouette coefficients harbored the maximum value 
for the factorization rank of two subtypes (Figs. 1A and S1). The 
survival analysis of these two subtypes indicated that the overall 
survival rate of patients in the high-risk subtype was lower 
compared with that of patients in the low-risk subtype (HR, 1.93; 
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95% CI, 1.32‑2.87; log‑rank P<0.001; Fig. 1B). Multivariate Cox 
regression analysis adjusted for age, gender, stage and histology 
remained statistically significant (HR, 1.56; 95% CI, 1.08‑2.27; 
P=0.018; Fig. 1C).

In order to verify whether the aforementioned subtyping 
approach would discover the same subtypes in other CRC 
cohorts, the same clustering approach was applied to analyze 
3 independent CRC cohorts, including GSE103479 (n=155), 
GSE38832 (n=122) and GSE87211 (n=342). Consistently, two 
different subtypes were identified in all 3 additional cohorts 
and the high‑risk subtype also exhibited a significantly poorer 
prognosis [GSE103479: HR, 2.09 (95% CI, 1.47-3.53; log-rank 
P=0.005); GSE38832: HR, 1.78 (95% CI, 1.25-3.16; log-rank 
P<0.001) and GSE87211: HR, 1.78 (95% CI, 1.25-3.16; log-rank 
P<0.001); Fig. 2].

Prediction of response to ICB therapy in the two CRC subtypes. 
Since the two CRC subtypes were identified by the application 
of 53 immune-related genes, it was hypothesized that these 
two subtypes may have distinct responses to ICB therapy. 
Thus, the TIDE algorithm was used to predict the potentially 
different responses to ICB therapy. In TCGA cohort, the TIDE 
prediction score was significantly lower in the low‑risk subtype 
compared with that in the high‑risk group (P<0.001; Fig. 3A), 
which was further validated in the three other independent 

cohorts (GSE103479, GSE38832 and GSE87211; all P<0.01; 
Fig. 3B‑D). These findings revealed that the patients of the 
low-risk subtype may be more sensitive to ICB treatment.

Differences in ICI response markers between the two CRC 
subtypes. PD-L1 expression, TIL and TMB are highly impor-
tant clinical factors, due to their vital roles in immunotherapy 
responses. Therefore, the differences in these 3 factors were 
compared between the two CRC subtypes. PD-L1 expression 
was significantly higher in the low‑risk subtype compared 
with that in the high-risk subtype in TCGA cohort (P<0.001), 
which was further validated in three other independent cohorts 
(GSE103479, GSE38832 and GSE87211; all P<0.05; Fig. 4A).

Results showed that the TIL proportion was significantly 
higher in the patients of the low-risk subtype compared with 
that in the high-risk group in TCGA cohort (P=0.003). This 
association was also corroborated in the three additional 
validation cohorts (GSE103479, GSE38832 and GSE87211; 
all P<0.05; Fig. 4B). The differences in the infiltration of 
22 immune cells between the two identified CRC subtypes in 
the TCGA cohort are shown in Fig. S2. The results demon-
strated that the low-risk subtype has significantly higher 
specific immune cells infiltration (e.g., CD4 T cells, plasma 
cells, natural killer cells and dendritic cells), which was 
consistent with the aforementioned results.

Figure 1. Identification of two distinct subtypes of CRC with significant prognostic differences. (A) Association of cophenetic, dispersion and silhouette 
coefficients with the number of subtypes. (B) Kaplan‑Meier plot of the two identified CRC subtypes (low‑risk vs. high‑risk). (C) Forest plot of multivariate Cox 
regression model of low-risk vs. high-risk subtypes with confounding clinical factors taken into consideration. CRC, colorectal cancer; COAD, colon cancer; 
READ, rectal cancer.
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Patients with higher TMB often have a higher number of 
neoantigen; therefore, these patients could obtain a stronger 
immune response (34,35). It was found that patients in the 
low‑risk subgroup had significantly higher TMB compared 
with patients in the high‑risk group (P<0.001; Fig. 4C). TMB 
is closely associated with genomic instability. DNA damage 
repair (DDR)-related genes, such as BRCA1/2, TP53 and 

POLE, and clinical factors were therefore considered in the 
multivariate logistic regression model. Following adjustment 
of these confounding factors, the association between the 
low‑risk subtype and higher TMB remained notably significant 
(OR, 2.95; 95% CI, 1.89‑4.67; P<0.001; Fig. S3). Neoantigens 
are generated mainly owing to non-synonymous mutations. It 
was found that the low‑risk subtype harbored a significantly 

Figure 3. Differences in TIDE prediction score between the two CRC subtypes in (A) The Cancer Genome Atlas and (B‑D) three validation CRC cohorts. CRC, 
colorectal cancer; TIDE, tumor immune dysfunction and exclusion.

Figure 2. Kaplan‑Meier survival plots of low‑risk and high‑risk colorectal cancer subtypes in (A) GSE103479, (B) GSE38832 and (C) GSE87211 datasets.
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higher non-synonymous mutation load compared with the 
high‑risk group (P<0.001; Fig. 4D).

Functional annotation of the low‑risk subtype. In order to 
verify whether the two CRC subtypes had distinct function-
alities, differential analysis and GSEA pathway analysis of 
genome-wide gene expression data were performed on the 
two CRC subtypes in TCGA CRC cohort. Analysis of differ-
entially expressed genes in the KEGG pathway demonstrated 
that signaling pathways associated with immune response acti-
vation, such as ‘allograft rejection’, ‘graft versus host disease’, 
and ‘antigen processing and presentation’ were significantly 
enriched in the low‑risk subtype (Fig. 5A). GO analysis also 
revealed the enrichment of ‘antigen processing and presenta-

tion’ signaling in the low-risk subtype. Both the ‘adaptive 
immune response’ and ‘immune system process’ pathways 
were also significantly enriched in low‑risk patients (Fig. 5B). 
These results suggested that patients in the low-risk subgroup 
had a better immune response.

Discussion

The present study identified two clinically distinct subtypes of 
CRC, with markedly different clinical outcomes and immune 
infiltration patterns, by using immune‑related signatures on 
TCGA cohort. For responses to ICI therapy in the two CRC 
subtypes, the TIDE algorithm demonstrated a low score in 
patients of the low-risk subtype compared with that in patients 

Figure 4. Differences in PD‑L1 expression, TIL proportion and TMB in low‑risk vs. high‑risk CRC subtypes. Differences in (A) PD‑L1 expression and (B) TIL 
proportion in TCGA and three independent validation cohorts, stratified by the two CRC subtypes. (C and D) Association of TMB with low‑risk and high‑risk 
CRC subtypes. CRC, colorectal cancer; TCGA, The Cancer Genome Atlas; PD‑L1, programmed death‑ligand 1; TIL, tumor‑infiltrating lymphocyte; TMB, 
tumor mutation burden.
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of the high‑risk subtype. Furthermore, higher PD‑L1 expres-
sion, TIL proportion and TMB were remarkably enriched in 
the low‑risk subtype. Finally, GSEA pathway analysis indi-
cated immune response activation-, and ‘antigen processing 
and presentation’‑related pathways to be significantly enriched 
in the low-risk subtype. Overall, the present study suggests 
that patients in the low-risk group have the potential to respond 
better to ICI treatment.

The NMF algorithm is a useful tool to perform clustering 
or subtyping, and extract genomic signatures; previous 
studies have shown its utility in distinct research directions, 
such as identification of image pattern, signal processing and 
text mining (36-38). The TIDE prediction score is a better 
predictor of ICI therapy compared with PD-L1 expression and 
TMB. The algorithm uses gene expression signatures to model 
two major mechanisms of tumor immune evasion: The induc-
tion of T‑cell dysfunction in tumors with high infiltration of 
cytotoxic T lymphocytes (CTLs) and the prevention of T-cell 
infiltration in tumors with a low CTL level (25). In the present 
study, patients of the low‑risk subtype harbored a significantly 
lower TIDE prediction score compared with patients of the 

high-risk subtype in TCGA and validation cohorts, suggesting 
that this subtype has potential for an improved response to ICI.

To date, only PD-L1 expression is confirmed by the 
FDA as an official criterion for ICI therapy (18). Based on 
the results from the KEYNOTE-001 clinical trial (18), high 
PD-L1 expression is now an essential condition for the use of 
pembrolizumab in NSCLC. The present study also demon-
strated markedly higher PD-L1 expression in the low-risk 
CRC subtype compared with that in the high-risk subtype in 
TCGA and validation cohorts. TMB is emerging as a potential 
biomarker to predict the response to ICI therapy. Three clinical 
trials, including KEYNOTE-001, CHECKMATE-026 and 
CHECKMATE-227, demonstrated that patients with higher 
TMB responded more effectively to ICI (39,40). A recent 
study reported that high TMB was positively associated with 
the response to PD-1/PD-L1 inhibitors (such as pembroli-
zumab) in metastatic CRC, and may serve as a biomarker to 
predict associated immune therapy effects (41). The present 
study discovered that TMB in the low-risk CRC subtype 
was significantly higher compared with that in the high‑risk 
subtype in TCGA cohort. Meanwhile, the non-synonymous 

Figure 5. Pathway analysis of the low‑risk colorectal cancer subtype, with signaling pathway annotations from (A) KEGG and (B) GO. KEGG, Kyoto 
Encyclopedia of Genes and Genomes; GO, Gene Ontology; NES, normalized enrichment score; FDR, false discovery rate.
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mutation load was also markedly enriched in the low-risk CRC 
subgroup. Studies have reported that mutations of BRCA1/2, 
POLE and TP53 genes also indicate high TMB, due to the loss 
of DDR (42-44). Thus, multivariate analysis was conducted 
following the adjustment of these factors (i.e., mutations of 
BRCA1/2, POLE and TP53), and the association of low-risk 
subtype with higher TMB remained statistically significant. 
Several studies have revealed that TILs play crucial roles in 
the tumor-immune microenvironment, immune response and 
prognosis of CRC (44-47). In the present study, results from the 
CIBERSORT algorithm showed that the low-risk CRC subtype 
harbored a significantly higher TIL proportion compared with 
the high-risk group in TCGA and independent validation 
cohorts. Thus, TMB, TIL proportion and non-synonymous 
mutations load may contribute to the response to ICI in patients 
of the low-risk CRC subtype.

The present study has several limitations. Firstly, the gene 
expression data from the four validation cohorts were from 
different platforms, which may create bias in the analyses. 
Secondly, the results associated with the CRC mutation data 
derived from TCGA cohort were not sufficiently validated, 
owing to the unavailability of mutation data from the other 
cohorts. Thirdly, the number of CRC samples with a gene 
expression profile is currently insufficient to perform molec-
ular subtyping, and thus the results could not be validated 
using biological experiments such as histochemical staining.

In summary, two clinically distinct CRC subtypes were 
identified that have significantly different survival outcomes 
and immune microenvironments. The low-risk CRC subtype 
may indicate improved response to ICI therapy, due to higher 
PD-L1 expression, TIL proportion and TMB. Thus, this molec-
ular classification study and integrated multi‑omic analysis of 
CRC may lead to a novel therapeutic approach for improving 
the prognosis of patients in the low-risk CRC subtype.
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