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ENDORSE: a prognostic model for endocrine
therapy in estrogen-receptor-positive
breast cancers
Aritro Nath1 , Adam L Cohen2 & Andrea H Bild1,*

Abstract

Advanced and metastatic estrogen receptor-positive (ER+) breast
cancers are often endocrine resistant. However, endocrine therapy
remains the primary treatment for all advanced ER+ breast
cancers. Treatment options that may benefit resistant cancers,
such as add-on drugs that target resistance pathways or switching
to chemotherapy, are only available after progression on endocrine
therapy. Here we developed an endocrine therapy prognostic
model for early and advanced ER+ breast cancers. The endocrine
resistance (ENDORSE) model is composed of two components, each
based on the empirical cumulative distribution function of ranked
expression of gene signatures. These signatures include a feature
set associated with long-term survival outcomes on endocrine
therapy selected using lasso-regularized Cox regression and a
pathway-based curated set of genes expressed in response to
estrogen. We extensively validated ENDORSE in multiple ER+ clini-
cal trial datasets and demonstrated superior and consistent
performance of the model over clinical covariates, proliferation
markers, and multiple published signatures. Finally, genomic and
pathway analyses in patient data revealed possible mechanisms
that may help develop rational stratification strategies for
endocrine-resistant ER+ breast cancer patients.
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Introduction

Breast cancer is the most common form of cancer globally, with

more than two million cases diagnosed in 2020 (Sung et al, 2021).

Pathogenesis and classification of breast cancer is based on the pres-

ence or absence of estrogen receptor alpha (ER), progesterone recep-

tor (PR), and human growth factor-neu receptor (HER2). These

subtypes guide the selection of systemic therapy for breast cancer

patients. More than 70% of breast cancers express ER and are nega-

tive for HER2 (ER+/HER2−) (Harvey et al, 1999; Kohler et al, 2015).

The primary systemic therapy for ER+/HER2− breast cancer is endo-

crine therapy, which counters the growth of tumors by targeting

their dependency on estrogen signaling (Waks & Winer, 2019).

These therapies include selective estrogen receptor modulators

(SERMs) such as tamoxifen and selective estrogen receptor degra-

ders (SERDs) such as fulvestrant that directly prevent ER activation,

or aromatase inhibitors like exemestane and anastrozole that reduce

circulating levels of estrogen in the body (Smith & Dowsett, 2003;

McDonnell & Wardell, 2010). Endocrine therapy substantially

reduces the risk of recurrence within 5 years, although chemother-

apy may be recommended for some patients with a high risk of

recurrence. While clinicopathological features are not reliable

predictors of recurrence risk, gene expression-based genomic tests

that predict the risk of recurrence can aid in deciding whether the

benefit of adding chemotherapy outweighs its side effects in certain

patients (Cardoso et al, 2016; Sparano et al, 2018). These biomark-

ers have been validated and recommended for clinical use only in

early stage, node-negative cancers based on guidelines from the

American Society of Clinical Oncology and European Group on

Tumor Markers (Duffy et al, 2017; Krop et al, 2017).

Locally advanced and metastatic ER+ breast cancers often

develop resistance to endocrine therapy with significantly higher

rates of recurrence and death compared to early-stage disease.

Despite these challenges, single-agent endocrine therapy or in

combination with CDK4/6 inhibitors remains the primary systemic

therapy recommended for locally advanced and metastatic breast

cancers (McAndrew & Finn, 2020). Patients may benefit from the

addition of a targeted inhibitor against the MTOR or PI3K pathways

(Baselga et al, 2012; Andr�e et al, 2019) or switching to chemother-

apy (McAndrew & Finn, 2020). However, these treatment options

are recommended for consideration only upon progression on endo-

crine therapy, according to the American Society for Clinical Oncol-

ogy (Rugo et al, 2016), National Comprehensive Cancer Network

(Gradishar et al, 2017, 2020) and European Society for Medical

Oncology (Cardoso et al, 2020) clinical practice guidelines. There-

fore, the ability to predict the potential benefit from first-line
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endocrine therapy may be crucial for locally advanced and meta-

static ER+ breast cancers that may benefit from continued endocrine

therapy, a combination treatment or chemotherapy as the primary

treatment strategy.

Unlike early stage, node-negative disease, genomic tests for

endocrine therapy response are not available for advanced and

metastatic ER+ breast cancers. To address this limitation, a few stud-

ies have assessed the genomic signature of endocrine response in

ER+ metastatic breast cancers (ER+ MBC) (Jeselsohn et al, 2016;

Sinn et al, 2019). The TransCONFIRM trial evaluated the transcrip-

tomes of 112 ER+/HER2− MBCs and identified a set of 37 genes that

were associated with progression-free survival (PFS) of patients

receiving fulvestrant (Jeselsohn et al, 2016). Another study

analyzed the transcriptomes of 140 ER+/HER2− MBC on endocrine

therapy to develop SET ER/PR, an 18-gene predictive score for endo-

crine therapy sensitivity (Sinn et al, 2019). While both the Trans-

CONFIRM and SET ER/PR biomarkers predicted endocrine response

in their respective training datasets, neither study performed

systematic validation of their predictive signatures to demonstrate

the reproducibility and accuracy in independent clinical datasets.

This issue highlights a critical flaw in biomarker development

pipelines and is one important reason why genomic biomarkers are

infrequently translated into clinical practice (Boutros, 2015).

Another pervasive issue hindering clinical translation arises from

the reliance on a large number of predictive features in complex

models that are difficult to interpret and often perform poorly in

independent validation due to overfitting (Taylor et al, 2008; Witten

& Tibshirani, 2010).

Here we developed ENDORSE: a low-dimensional gene

expression-based prognostic model for endocrine therapy, and

systemically tested its performance and predictive ability in multiple

clinical trial datasets. ENDORSE was developed using the tumor

transcriptomes and overall survival (OS) of more than 800 ER+

breast cancers on endocrine therapy (Curtis et al, 2012; Pereira

et al, 2016). We evaluated the performance of ENDORSE compared

to clinical covariates, proliferation markers, and other published

signatures. We validated the ENDORSE model in multiple indepen-

dent clinical trial datasets, including the TransCONFIRM and SET

ER/PR trials for endocrine therapy in metastatic ER+ breast cancer.

Our results show that ENDORSE consistently identified high-risk

patients and outperformed all other prognostic models in ER+

breast cancers.

Results

Developing a prognostic model for endocrine therapy

The objective of this study is to develop a prognostic model for all

ER+ cancers on endocrine therapy regardless of tumor stage, grade

or node status. We developed a two-component prognostic model

for endocrine therapy response using the tumor transcriptomes and

long-term survival outcomes of 833 ER+/HER2− tumors that

received endocrine therapy (Curtis et al, 2012; Pereira et al, 2016;

Table 1, Fig 1A). About 2 in 5 tumors in this training cohort were

node-positive, while more than a third of the tumors were poorly dif-

ferentiated, grade 3 tumors (Table 1). The two components included

an empirical gene signature modeled on OS (median = 10 years)

and a curated gene signature defining response to estrogen (Liber-

zon et al, 2015). Figure 1A outlines the inclusion criteria for the

training dataset, method for developing the empirical gene signa-

ture and the final ENDORSE model based on the gene set enrich-

ments scores (GES) of the two signatures. The empirical signature

was developed by first performing a feature selection on the train-

ing dataset using a repeated cross-validation analysis of a lasso-

regularized proportional hazards model. Each iteration yielded a

core set of predictive features that were expanded to a correlation

network. The final gene signature was derived from the consensus

correlation network, defined as genes appearing in at least 50% of

the iterations (Fig EV1, Dataset EV1). In a bivariate Cox propor-

tional hazards model of the training data, the empirical signature

was associated with a reduction in survival probability, while the

estrogen response signature was associated with improved survival

(Fig 1B). The coefficients for the ENDORSE model were calculated

using the training cohort, resulting in ENDORSE = 1.54 × (empirical

signature GES) – (2.72 × estrogen response GES). The ENDORSE

model could also be used to stratify the tumors based on predicted

risk. For example, a threshold of ≥ 2-fold relative risk of death

as “high-risk” and ≤ 1 risk as “low-risk” resulted in significant

difference between the strata in Kaplan–Meier analysis (log-rank test

P = 3 × 10−14; medium-risk P = 5.43 × 10−12, high-risk P = 5.99 ×
10−9; Fig 1C).

ENDORSE model performance evaluation with clinical covariates
and published signatures in METABRIC

To evaluate the performance of the ENDORSE model against clinical

factors, proliferation index, and published signatures, we created a

training and a hold-out test (validation) subset by performing a

Table 1. Training data patient characteristics

Variable Mean 95% CI N available

Time to event (in months) 135 130–140 833

Events (death due to disease) 0.409 0.376–0.443 833

Age at diagnosis 61.5 60.7–62.3 833

Mutation count 5.55 5.31–5.79 809

Tumor size 24.3 23.4–25.1 828

Tumor stage 1.64 1.59–1.69 634

Stage 0–1 (n = 270)

Stage 2 (n = 324)

Stage > 3 (n = 40)

Tumor Grade 2.29 2.18–2.27 808

Grade 1 (n = 103)

Grade 2 (n = 417)

Grade 3 (n = 288)

Number of positive lymph
nodes detected

1.56 1.32–1.79 833

0 (n = 491)

1–3 (n = 228)

4–9 (n = 85)

> 10 (n = 29)
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50/50 randomized data split, recalculating the empirical signature

using only the training subset and obtaining the ENDORSE model

coefficients (Fig 2A). The training and validation subsets had no

significant differences in key pathological features, including tumor

stage, grade, size and mutation count (Fig 2A). We predicted risk in

the held-out validation subset using the training subset ENDORSE

model for performance evaluation. Kaplan–Meier analyses of the

validation subset showed a significant difference between the risk

strata predicted using the ENDORSE training subset model (log-rank

test P = 3 × 10−9; medium risk P = 6.04 × 10−8, high risk

P = 9.47 × 10−8) (Fig 2B).

We performed bootstrap resampling analyses to validate the

model in the held-out dataset and compared with other univariate

prognostic models (Fig 2C). First, we compared ENDORSE with clin-

ical factors, such as tumor grade and mutation burden. The

ENDORSE model (Somer’s D or Dxy = 0.351) performed better than

both tumor grade (Dxy = 0.129) and mutation count (Dxy = −0.027).
We also compared the model with a “meta-PCNA” proliferation

index that was reported to capture the prognostic ability of most

published signatures of breast cancer (Venet et al, 2011; Ramaker

et al, 2017). Again, the ENDORSE model outperformed the

proliferation index (Dxy = 0.265), P = 4.42 × 10−5), indicating its

utility over measures of proliferation as a prognostic tool.

Next, we evaluated published prognostic signatures for breast

cancers and compared their performance with ENDORSE. These

signatures included PAM50, a 50-gene signature that was previously

reported to be a better prognostic tool for ER+ breast cancers on

endocrine therapy than clinical factors, such as histopathological

classification and tumor grade (Nielsen et al, 2010). A genomic clas-

sifier, IntClust, that was developed by the METABRIC consortium

authors and trained on the same training dataset was also included

in this comparison (Dawson et al, 2013). Both the PAM50 model

(Dxy = 0.237) and IntClust (Dxy = 0.246) models were surpassed by

ENDORSE.

Two previous clinical trials evaluating endocrine therapy

response in metastatic ER+ breast cancers developed prognostic

signatures using tumor transcriptomes. The first signature devel-

oped in the TransCONFIRM trial included 37 genes that were associ-

ated with PFS of advanced ER+ breast cancers on fulvestrant

(Jeselsohn et al, 2016). We replicated the approach described in the

study by performing hierarchical clustering of the samples based on

the expression levels of the 37 genes and cutting the tree to obtain

A B

C

Figure 1. ENDORSE model development in METABRIC.

A Inclusion criteria and schematic of ENDORSE model development. Training samples were selected based on ER status and excluded from the analysis if they were
either HER2+, received chemotherapy, died due to other causes besides breast cancer, or were missing transcriptomic or survival data. The empirical signature was
developed using a repeated cross-validation analysis framework. Each iteration of the lasso-regularized proportional hazards model generated a feature set (seed
genes) predictive of OS. The seed genes were expanded to a network of intercorrelated genes, and the final empirical signature was defined by identifying a consensus
set across all iterations. The two-feature ENDORSE model was then constructed using the gene set enrichment scores of the empirical signature and estrogen
response signature.

B Predicted 10-year survival probabilities of the ER+/HER2− METABRIC breast cancers (n = 833) based on a Cox proportional hazards model of gene signature enrich-
ment scores of the empirical and estrogen response signatures as predictor variables. Grey shaded area indicates 95% confidence intervals of the Cox model predic-
tions.

C Kaplan–Meier curves and risk tables of METABRIC ER+/HER2− tumors stratified by ENDORSE. Dashed lines indicate median survival. P-value were obtained using the
log-rank test for survival curves. The tumors were stratified according to an ENDORSE risk score (hazard ratio) threshold of ≥ 2 to define high-risk, ≤ 1 as low risk
and all other intermediate values as medium risk.
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two clusters. We referred to resultant clusters as the “TransCONFIRM”

score. The TransCONFIRM score applied to the METABRIC dataset

performed poorly (Dxy = −0.023). The second signature (SET ER/

PR) was developed using tumor transcriptomes of metastatic ER+

breast cancers on endocrine therapy (Sinn et al, 2019). This signa-

ture included 18 predictive genes that were correlated with ESR1 or

PGR expression and normalized using 10 reference transcripts. We

implemented the methods described in the original study and

referred to the resultant score as “SET.” The SET score (Dxy =
0.108) performed better than TransCONFIRM; however, it was also

easily outperformed by ENDORSE. Finally, we calculated a surro-

gate biomarker based on the published formula for the 21-gene

prognostic signature approved for early-stage, node-negative ER+

breast cancers (Paik et al, 2004). We referred to this score as ODX.

We also compared a classifier that stratified samples based on the

25th percentile of ODX score as a proxy for the latest risk stratifi-

cation threshold for this signature (Sparano et al, 2018) and referred

to this score as ODX25. We found that the ODX model (Dxy = 0.127)

was comparable to other published signatures like the SET score,

but the stratified ODX25 score performed poorly (Dxy = 0.021). In

addition to the comparisons in the independent validation subset,

we also performed similar comparisons between models fitted on

the complete METABRIC dataset (Fig EV2A). Using partial likeli-

hood ratio tests, we confirmed the superior performance of the

A

C

B

Figure 2. Model evaluation and comparison with other predictors in METABRIC.

A Schematic of validation strategy (top) and boxplots (bottom) comparing key pathological variables between the training and test subsets. The METABRIC cohort was
split into a training subset (n = 416) and test or validation subset (n = 417), with each sample representing an independent biological replicate. The empirical
signature was derived using the training split. Then, the ENDORSE model was trained only using the training subset. The coefficients from the training model were
used to predict risk in the test subset. The colored boxes in the boxplots display interquartile range with median, while the whiskers show 1.5 × interquartile range.
P-values indicate significance of difference in mean from two-tailed Welch’s T-test.

B Kaplan–Meier curves and risk tables of the validation subset (n = 417) tumors stratified using ENDORSE risk predicted using the training subset model. P-values were
obtained using log-rank test.

C Lollipop plots displaying corrected Somer’s Dxy indices of ENDORSE and various other univariate Cox proportional hazards models in the validation subset (n = 417).
The corrected Dxy indices were calculated using 150-fold bootstrap resampling of the validation subset.
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ENDORSE model compared to its components and all other clinical

factors and prognostic signatures fitted on the complete dataset (Fig

EV2B). These results demonstrate that ENDORSE is a significantly

better prognostic model.

We also applied the ENDORSE risk estimates to stratify 133

METABRIC ER+ tumors that received a combination of endocrine

therapy and chemotherapy and found a significant difference in the

predicted strata (P = 3.7 × 10−7) (Fig EV3A). On the other hand,

applying the ENDORSE model to 429 ER-negative METABRIC breast

cancers as negative control showed no significant difference

between the strata (P = 0.09, Fig EV3B). These data suggest that the

ENDORSE model is specific to the ER+ breast cancers and not a

general prognostic model to identify aggressive tumors.

Validation and performance evaluation in independent clinical
trial datasets

To test the reproducibility and validate the performance of

ENDORSE, we applied the model to the baseline transcriptomes of

ER+ tumors from four independent clinical trials and compared the

ENDORSE-predicted risk or strata with the outcomes reported in

each trial. These independent trials also included the TransCONFIRM

and SET ER/PR studies discussed earlier. So, we also compared the

performance of TransCONFIRM and SET scores in their respective

training datasets and across other independent datasets.

First, we evaluated the performance of ENDORSE in the Oxford

cohort, an independent validation dataset with similar key

histopathological features as the METABRIC dataset. This cohort

included 134 ER+ breast cancers and about 31% of the tumors were

grade III, comparable to the 35% grade III tumors in the METABRIC

cohort. The Oxford study reported 10-year recurrence-free survival

data of the patients. We evaluated the performance of the ENDORSE

model and compared it against the SET and TransCONFIRM scores

in stratifying the patients. Kaplan–Meier analyses using ENDORSE

predicted risk show significant difference in the strata (log-rank test

P = 2 × 10−9; medium-risk P = 5.23 × 10−8, high-risk P = 2.38 ×

10−3) (Fig 3A). In comparison, both the SET scores (P = 0.5) (Fig 3

B) and TransCONFIRM scores (P = 0.3) (Fig 3C) failed to meaning-

fully stratify the tumors. Thus, only the ENDORSE model could

successfully stratify tumors in a comparable independent dataset.

The TransCONFIRM trial evaluated fulvestrant response in 112

advanced metastatic ER+ breast cancers previously treated with an

anti-estrogen (Jeselsohn et al, 2016). While the original study devel-

oped and evaluated the performance of their 37-gene signature

based on PFS, this survival data was not made available with the

publication (the authors did not respond to our requests for this

data). However, the study reported the post-therapy resistant or

sensitive states of the tumors based on histopathological staining

(Ki67 staining). Therefore, we compared the percentage of cells

positive for Ki67 staining reported by in study with risk predictions

from ENDORSE and other signatures (Fig 4). The percentage of cells

positive of Ki67 was significantly correlated with the ENDORSE esti-

mated risk (P = 2.5 × 10−5) (Fig 4A), while stratification of the

patients based on the risk thresholds also showed a significant dif-

ference in Ki67 staining percentage between the strata (ANOVA

P = 1.2 × 10−3; medium-risk vs. low-risk P = 0.04; high-risk vs.

low-risk P = 1.753 × 10−4) (Fig 4B). However, the SET score was

not correlated with Ki67 staining (P = 0.3) (Fig 4C). The TransCON-

FIRM score that was developed on this dataset was significant

(P = 0.05) but performed worse than the ENDORSE score trained on

an independent dataset (Fig 4D).

Next, we evaluated the performance of the signatures in the SET

ER/PR cohort. This clinical trial reported the PFS and OS of 140

stage IV ER+ metastatic breast cancers on endocrine therapy. We

compared the survival curves of the patients by stratifying them

based on the ENDORSE predicted risk, median SET scores, as

described in the original study, and the TransCONFIRM score. The

stratification based on ENDORSE (log-rank test P = 2 × 10−4;

medium-risk P = 0.016, high-risk P = 1.88 × 10−4) (Fig 5A) and

SET (P = 3 × 10−3) (Fig 5B) scores both resulted in significant dif-

ferences in the survival curves. (However, the TransCONFIRM score

(Fig 5C) was not significant; P = 0.9.) Similarly, we observed that

A B C

Figure 3. Model validation in Oxford cohort.

A–C Kaplan-Meir recurrence-free survival curves and risk tables of Oxford cohort ER+ patients (n = 134). Dashed lines indicate median survival. The patients were strati-
fied according to (A) ENDORSE (B) SET and (C) TransCONFIRM predicted scores. P-values were obtained using log-rank test.
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ENDORSE (log-rank test P = 1 × 10−6; medium-risk P = 0.004,

high-risk P = 2.35 × 10−6) (Fig 5D) and SET (P = 5 × 10−3) (Fig 5E)

scores both resulted in significant differences in the PFS curves,

while TransCONFIRM was not significant (P = 0.2) (Fig 5F). Addi-

tionally, we compared the model fits using partial likelihood ratio

tests (Fig 5G). The SET model that was trained using the same

A B

C D

Figure 4. Model validation in TransCONFIRM cohort.

A Scatter plot comparing ENDORSE scores (X-axis) with TransCONFIRM trial-reported (n = 112) percentage of cells stained positive for Ki67 (Y-axis). Linear fit is shown
as a grey line with shaded region showing 95% confidence intervals (C.I.). P-value indicates significance of the linear fit.

B Boxplot comparing Ki67% across ENDORSE-guided patient strata. The colored boxes display interquartile range with median, while the whiskers show 1.5 × in-
terquartile range. P-value indicates significance of the ANOVA model and the horizontal dotted line at 10% indicates threshold of resistance.

C Scatter plot comparing SET scores (X-axis) Ki67% (Y-axis). Linear fit is shown as a grey line with shaded region showing 95% confidence intervals (C.I.). P-value indi-
cates significance of the linear fit.

D Boxplot comparing Ki67% across TransCONFIRM predicted patient strata. The colored boxes display interquartile range with median, while the whiskers show
1.5 × interquartile range. P-value indicates significance of the ANOVA model and the horizontal dotted line at 10% indicates threshold of resistance.
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dataset was not a better fit than the ENDORSE model (OS P = 0.667,

PFS P = 0.258). The ENDORSE model was a better fit than the

TransCONFIRM model in each case (OS P = 0.046, PFS P = 0.038).

In addition to the two metastatic ER+ breast cancer trials, we also

evaluated the performance of the signatures in the ACOSOG Z1031B

clinical trial which evaluated neoadjuvant aromatase inhibitor (AI)

treatment in Stage II or III ER+ breast cancers (Ellis et al, 2017). This

study reported percentage of Ki67 staining both at the study baseline

and at the end of treatment (2–4 weeks). We compared the percent-

age of Ki67 positive cells across cancers stratified by the ENDORSE

score and found significant difference across the classes at both the

baseline (ANOVA P = 4.9 × 10−9; medium risk vs. low risk

P = 8.58 × 10−5, high risk vs. low risk P = 0) and at the end of

treatment (ANOVA P = 3 × 10−18; medium risk vs. low risk

P = 1.6 × 10−6, high risk vs. low risk P = 0) (Fig 6A). Similarly, the

continuous ENDORSE scores were significantly correlated with both

A B C

D

G

E F

Figure 5. Model validation in SET ER/PR cohort.

A–C OS Kaplan-Meir curves and risk tables of SET ER/PR patients (n = 140). Dashed lines indicate median survival. The patients were stratified according to (A)
ENDORSE (B) SET and (C) TransCONFIRM predicted scores. P-values were obtained using log-rank tests.

D–F PFS Kaplan-Meir curves and risk tables of SET ER/PR patients. Dashed lines indicate median survival The patients were stratified according to (A) ENDORSE (B) SET
and (C) TransCONFIRM scores. P-values were obtained using log-rank tests.

G Table comparing the ENDORSE overall and PFS models with SET and TransCONFIRM models using partial likelihood ratio tests for non-nested Cox
models.
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the baseline (P = 3.3 × 10−15) and end of treatment (P = 1.1 × 10−17)

Ki67 percentage (Fig 6B). The ENDORSE scores were also signifi-

cantly higher in the tumors that were classified as resistant based on

clinical response (P = 4.6 × 10−6) (Fig 6C). In this cohort, the SET

score was also significantly correlated with Ki67 percentage at the

baseline (P = 2.8 × 10−5) and end of treatment (P = 2.2 × 10−4)

(Fig 6D), with a significant difference in the SET scores between the

resistant and sensitive tumors (P = 0.05) (Fig 6E). The transCON-

FIRM scores were not significant at the baseline (P = 0.5) and end

of treatment (P = 0.9) (Fig 6F) or between resistant and sensitive

tumors (P = 0.7) (Fig 6G).

Common pathway phenotypes and somatic alterations enriched
in high-risk tumors

We analyzed the pathway phenotypes enriched in each dataset to

identify potential mechanisms that defined the high-risk tumors.

First, we calculated the GES for 50 hallmark, 4,690 curated, and 189

oncogenic signatures from the METABRIC transcriptomes and fitted

a generalized additive model for ENDORSE scores with each signa-

ture as the predictor (Datasets EV2–EV4). We found multiple hall-

mark signatures and oncogenic pathways to be significantly

associated with the ENDORSE scores (Datasets EV2–EV4). Key

enriched hallmark signatures included MTOR signaling

(P = 1.03 × 10−72) and MYC targets (v2, P = 2.66 × 10-83), while

key oncogenic signatures included gain in E2F1 target expression

(P = 8.06 × 10−302) and loss of RB1 activity via p107 and p130

(P = 9.51 × 10−137, 1.31 × 10−67) (Datasets EV2 and EV4). Next, we

calculated the GES for the hallmark and oncogenic signatures in the

three validation datasets (Datasets EV5–EV10). We observed that

pathways associated with cell-cycle progression and proliferation,

along with signatures for the loss of RB1 activity and activation of

the PI3K/AKT/MTOR signaling pathways, were generally enriched

across the METABRIC and all the three validation datasets (Fig 6A).

Similar to the training dataset, we also found gain in cell cycle

progression along with MTOR signaling and E2F1 target expression

to be associated with high ENDORSE scores across all datasets

(Fig 7A, Datasets EV5–EV10). The commonality of the signatures

enriched across different datasets suggested that similar underlying

phenotypes were acquired by the high-risk tumors.

We also analyzed the association between gene-level somatic

mutations, including non-synonymous single-nucleotide variants

(SNV) and copy number alterations, with the ENDORSE scores of

the METABRIC ER+ tumors. We found a statistically significant

association (FDR < 0.05) between the ENDORSE scores and SNVs

of only five genes (Fig 7B, Dataset EV11). While PIK3CA mutations

were found in ~50% of all tumors, we found that ENDORSE scores

were not significantly higher in tumors with non-synonymous

PIK3CA variants or activating PIK3CA variants that guide the use of

PI3K inhibitors (Fig EV4). Of the five significant genes, only tumors

with TP53 mutations showed a significantly higher ENDORSE score

(Fig 7B). We then performed bootstrap analyses with the univari-

ate Cox models of the significant genes and found that none of

the SNV Cox models performed better than the ENDORSE model

(Fig 7B).

Several gene-level amplifications were also associated with

significant differences in ENDORSE scores (Figs 7C and EV5). Inter-

estingly, the significant amplifications were localized at chromo-

some 1q, 8p, 8q, or 11q, suggesting that different genetic alterations

affecting a recurring set of loci may be correlated with the emer-

gence of resistance in the high-risk tumors (Fig 7C, Dataset EV12).

Like the univariate SNV models above, the univariate copy number

alteration models also performed poorly when compared to the

ENDORSE model in bootstrap resampling analyses (Fig 7D).

Finally, we evaluated whether the ENDORSE model reflects dif-

ferent key phenotypes associated with early (within 5 years) vs. late

(beyond 5 years) mortality. For patients with an ENDORSE risk > 1,

we found that tumors associated with late mortality showed

elevated estrogen response signatures, whereas tumors linked with

early mortality showed enrichment of epithelial to mesenchymal

transition, stemness, angiogenesis, and related signaling pathways

that are known to contribute to these phenotypes including TGFB,

YAP, MEK, and AKT pathways (Datasets EV13–EV15).

Discussion

Breast cancers are classified as ER+ based on a broad criterion of

positive immunohistochemical staining of 1–100% of cell nuclei

for the estrogen receptor (Rugo et al, 2016; Allison et al, 2020).

◀ Figure 6. Model validation in ACOSOG Z1031B cohort.

A Boxplots comparing Ki67% at the baseline (left panel) and end of treatment (right panel) across ENDORSE-predicted patient strata in the ACOSOG Z1031B cohort. The
colored boxes display interquartile range with median, while the whiskers show 1.5 × interquartile range. The boxplots represent 109 biological replicates at the base-
line (low-risk n = 35, medium-risk n = 67 and high-risk n = 7) or at the end of treatment (low-risk n = 76, medium-risk n = 29 and high-risk n = 4). P-value indicates
significance of the ANOVA model and the horizontal dotted line at 10% indicates threshold of resistance.

B Scatter plot comparing ENDORSE scores (X-axis) and Ki67% (Y-axis) at the baseline (left panel) and end of treatment (right panel). Linear fit is shown as a grey line
with shaded region showing 95% confidence intervals (C.I.). P-value indicates significance of the linear fit.

C Boxplots comparing ENDORSE scores between patients grouped by clinical response with 32 resistant and 77 sensitive biological replicates. The colored boxes display
interquartile range with median, while the whiskers show 1.5 × interquartile range. P-value indicates significance of the ANOVA model.

D Scatter plot comparing SET scores (X-axis) and Ki67% (Y-axis) at the baseline (left panel) and end of treatment (right panel). Linear fit is shown as a grey line with
shaded region showing 95% confidence intervals (C.I.). P-value indicates significance of the linear fit.

E Boxplots comparing SET scores between patients grouped by clinical response with 32 resistant and 77 sensitive biological replicates. The colored boxes display
interquartile range with median, while the whiskers show 1.5 × interquartile range. P-value indicates significance of ANOVA model.

F Boxplots comparing Ki67% at the baseline (left panel) and end of treatment (right panel) across TransCONFIRM-predicted patient strata. The colored boxes display
interquartile range with median, while the whiskers show 1.5 × interquartile range. The boxplots represent 109 biological replicates at the baseline (cluster 1 n = 97,
cluster 2 n = 12) or at the end of treatment (cluster 1 n = 103, cluster 2 n = 6). P-value indicates significance of the ANOVA model and the horizontal dotted line at
10% indicates threshold of resistance.

G Jitter plot comparing TransCONFIRM predictions between patients grouped by clinical response including 32 resistant and 77 sensitive biological replicates with
horizontal bars indicating median. P-value indicates significance of the ANOVA model.
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However, ER+ tumors are heterogeneous, both in terms of depen-

dence on estrogen signaling for growth and survival and intrinsic or

acquired resistance to endocrine therapy (Musgrove & Sutherland,

2009; Spoerke et al, 2016). Therefore, optimal clinical management

of each ER+ breast cancer depends on accurate prediction of

response to endocrine therapy and selection of companions for

endocrine therapy. Several genomic tests are available for classify-

ing breast cancers into molecular subtypes (Parker et al, 2009) or

assessing the likelihood of benefit from chemotherapy in early-

stage, node-negative ER+ breast cancers (Paik et al, 2004; Cardoso

et al, 2016). Results from the MINDACT and TAILORx studies

(Cardoso et al, 2016; Sparano et al, 2018) show that it is possible

A

B

C

D

Figure 7.
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for node-negative, early-stage breast cancers to safely waive addi-

tional chemotherapy if they are predicted to be at a low risk of

recurrence based on genomic signatures. However, these tests have

not been proved to be useful in the advanced and metastatic ER+

breast cancer setting. The default primary treatment for advanced

ER+ breast cancer remains endocrine therapy, despite proven bene-

fits from add-on targeted therapy or potential switch to chemother-

apy. Therefore, the key challenge in advanced ER+ breast cancer is

to stratify patients that will likely benefit from continued endocrine

therapy and patients that are likely resistant to single-agent endo-

crine therapy and will benefit from selecting a different treatment

strategy (Hart et al, 2015).

To address this challenge, we have developed a new prognostic

model to predict endocrine response in advanced ER+ breast

cancers. We developed our model using invasive tumors from the

METABRIC study that were ER+ and included node-positive, high-

grade tumors. Our model addressed several challenges associated

with the development of genomic biomarkers. Since the number of

available features to train the genomic models tend to be much

larger than the number of available samples (P >> n), it is quite

easy to create complex prediction models that contain many predic-

tor variables. Often, such models perform very well in the training

datasets, but the performance cannot be replicated in independent

test datasets due to overfitting. Several approaches have been

proposed to address this issue. Broadly, these can be classified into

unsupervised and supervised approaches. The unsupervised

approach typically relies on grouping or clustering the samples

based on the similarity of gene expression profiles, followed by

analysis of association with survival outcomes (Sotiriou et al,

2003). Alternatively, a supervised approach is to perform dimen-

sionality reduction prior to modeling the survival outcome or drug

response using univariate or multivariate models (Paul et al, 2008).

Our model utilized the later strategy by using a regularized Cox

model for feature selection, effectively reducing the dimensionality

of the gene expression data. We further collapsed the genes into a

signature and parameterized the final Cox model on the GES of the

signatures. The rank-based approach to calculate GES also helped

mitigate issues associated with batch effects and differences in

methods for transcriptome profiling. We performed an extensive

performance evaluation of our model against other published signa-

tures and clinical factors. Consistently, we found that the ENDORSE

model was a better predictor than all other models in the training

dataset (Fig 2). Moreover, ENDORSE clearly outperformed all other

published signatures when they were applied to external validation

datasets (Figs 3–6). Our results show that ENDORSE is a highly

accurate and reproducible model that outperforms current

approaches to predict endocrine response in metastatic ER+ breast

cancer.

We also explored the biology of the ER+ tumors to identify possi-

ble mechanisms that are commonly shared by high-risk tumors. We

found that high-risk tumors showed a consistent enrichment of

pathways-associated cell cycle progression and gain of PI3K/MTOR

signaling pathways (Fig 7A). In addition, we observed consistent

gain of the E2F1 signature, which may be associated with metastatic

progression of breast cancers (Hollern et al, 2014, 2019). We also

observed a loss of Rb1 activity, which has been associated with

therapeutic resistance in ER+ breast cancers (Bosco et al, 2007;

Witkiewicz & Knudsen, 2014). In the METABRIC cohort, tumors

with early mortality (within 5 years of sample collection) showed

consistent enrichment of pathways that are known to contribute to

epithelial to mesenchymal transition, angiogenesis, and stemness.

Enriched pathways, including TGF-beta (Band & Laiho, 2011) and

YAP (Ma et al, 2022), have been suggested to directly crosstalk and

repress the estrogen receptor signaling pathway. Concurrently,

MEK (Fujii et al, 2011) and PI3K/AKT/MTOR (Ciruelos Gil, 2014)

have been implicated as key primary resistance mechanisms in

endocrine-resistant ER+ breast cancers. In contrast, tumors with late

mortality did not show enrichment of specific signaling pathways,

suggesting that diverse resistance mechanisms may evolve long

term and contribute to the late relapse of these tumors. Characteriz-

ing the heterogeneity in late relapse tumors would be necessary to

understand the diverse mechanisms that lead to the evolution of

resistance in these tumors (Zardavas et al, 2015).

In addition to common pathway phenotypes shared across high-

risk tumors, mutations in the TP53 tumor suppressor genes were

also significant (Fig 7B). Loss-of-function TP53 variants have long

been associated with aggressiveness and chemotherapeutic resis-

tance in hormone-receptor-negative breast cancers (Cattoretti et al,

1988; Elledge et al, 1993). However, recent studies show that even

though TP53 mutations are infrequent in ER+ breast cancers, they

have similar negative impact on patient outcome as hormone-

receptor-negative breast cancers (Ungerleider et al, 2018). We also

found recurrent copy number gains at chromosomes 8 and 11 to be

associated with high-risk tumors (Fig 7C). Amplifications at these

loci have been previously associated with aggressive and drug-

resistant cancers and included several oncogenes such as MYC,

CCND1, and multiple fibroblast growth factors (Lundgren et al,

2008; Baslan et al, 2020). The survival models based on genomic

alterations were clearly outperformed by ENDORSE; however, the

recurrent nature of these alterations in high-risk tumors suggests

◀ Figure 7. Biology of the high-risk tumors.

A Scatter plots displaying gene set enrichment scores (GES) of key pathways (X-axis) and ENDORSE scores (Y-axis) in the METABRIC ER+ cohort (n = 833). The cell cycle
progression panel represents the hallmark G2 M checkpoint signature, the E2F1 upregulation panel represents E2F1_UP.V1_UP oncogenic (C6) signature and the
MTOR upregulation panel represents MTOR_UP.V1_UP oncogenic (C6) signature. Blue lines with shading indicate generalized additive model fits with 95% C.I., with
R2 and P-values of the significant of the fit annotated on the panels.

B Bar plots showing false discovery rate-adjusted P-values from the ANOVA analysis of ENDORSE scores with mutation status as the grouping variable. The boxplot on
the right shows difference in the ENDORSE scores between TP53 mutant (n = 159) and wild type tumors (n = 674). The colored boxes display interquartile range with
median, while the whiskers show 1.5 × interquartile range, with each sample representing a biological replicate. The lollipop plot below shows Somer’s Dxy of the uni-
variate Cox models for the SNVs, with the vertical dotted line indicating Dxy of the ENDORSE model.

C Ideograms showing mapped regions with copy number gains that are significant in ANOVA analysis of ENDORSE scores with copy number gain status as the
grouping variables. Bar plots on the right show false discovery rate-adjusted P-values from the ANOVA analysis.

D Lollipop plot showing Somer’s Dxy of the univariate Cox models for the copy number gains, with the vertical dotted line indicating Dxy of the ENDORSE model.
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that further studies to investigate their role in promoting endocrine

resistance are warranted.

Drugs that target CDK4/6 to inhibit cell cycle activation (Horto-

bagyi et al, 2016), PI3K-inhibitors that target tumor with activating

PIK3CA mutations (Andr�e et al, 2019), and MTOR-inhibitors that

prevent the activation of MTOR signaling and cell proliferation

(Baselga et al, 2012) have been studied and approved for the treat-

ment of advanced ER+ breast cancers in combination with endocrine

therapy. However, patients first advance on primary endocrine ther-

apy, with or without additional CDK4/6 inhibitors before they are

stratified in a different treatment arm. Therefore, identifying high-

risk tumors with the ENDORSE model prior to first-line administra-

tion of single-agent endocrine therapy could help identify which

cancers may be better suited for an add-on regimen or switching to

chemotherapy. Thus, future clinical trials applying the ENDORSE

model may benefit from early and accurate prediction of endocrine

response in advanced, metastatic ER+ breast cancers. This could

ultimately help prolong the survival of patients by stratifying into

more appropriate treatment groups.

Materials and Methods

Data retrieval and pre-processing

METABRIC microarray gene expression, mutations, copy number

alterations, and clinical annotations survival data were retrieved

using cBioPortal for cancer genomics (https://www.cbioportal.org/

study/summary?id=brca_metabric) (Gao et al, 2013; Data ref: Gao

et al, 2013). Independent validation datasets used in this study

were: SET ER/PR microarray gene expression: Gene Expression

Omnibus, accession number: GSE124647 (https://www.ncbi.nlm.

nih.gov/geo/query/acc.cgi?acc=GSE124647). (Sinn et al, 2019;

Data ref: Sinn et al, 2019), TransCONFIRM microarray gene expres-

sion: Gene Expression Omnibus: accession number: GSE76040

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE76040).

(Jeselsohn et al, 2016; Data ref: Jeselsohn et al, 2016), ACOSOG

Z1031B microarray gene expression: Gene Expression Omnibus, acces-

sion number: GSE87411 (https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE87411). (Ellis et al, 2017; Data ref: Ellis et al, 2017),

and Oxford cohort microarray gene expression: Gene Expression

Omnibus, accession number: GSE22219 (https://www.ncbi.nlm.nih.

gov/geo/query/acc.cgi?acc=GSE22219). (Buffa et al, 2011; Data ref:

Buffa et al, 2011).

To ensure that gene expression datasets generated using diverse

platforms are comparable and appropriate for predictive analyses,

we uniformly applied the following pre-processing steps on all data-

sets. First, we removed genes with zero variance from each dataset

and summarized genes with multiple probes by mean expression.

Next, we log2 transformed the expression levels, unless the data

was already provided as log-transformed values. Finally, we scaled

and standardized the expression levels such that each gene had a

mean expression level of zero and a standard deviation of one.

Inclusion criteria for METABRIC training cohort

The METABRIC cohort contained a total of 2,509 samples. Samples

that met all of the following criteria were included in the training

cohort: patients that were ER-positive and HER2-negative based on

immunohistochemistry, patients that received hormone therapy but

did not receive additional chemotherapy, patients that were either

alive or died due to the disease and no other causes, and patients

with complete survival and transcriptomic data. After filtering, 833

samples were retained for model construction.

Empirical signature and ENDORSE model construction

The empirical gene signature was developed using a LASSO-regularized

Cox proportional hazards models, with OS as the outcome variable

(Tibshirani, 1996). The hazard function in the Cox model is defined as:

hi tð Þ ¼ h0 tð Þexp βxTi
� �

where X is a set of predictive gene expression features and h0 is an

arbitrary baseline hazard function. The coefficient (β) for each

predictor in the model can be estimated by maximizing the partial

likelihood function L(β), defined as:

L βð Þ ¼
Y
i

exp βxTj ið Þ
� �

P
I2Ri

exp βxTj
� �

where Ri is the set of indices of observations failing (events) at

time ti. In the LASSO Cox model, the regularized coefficient is

obtained by adding a penalty parameter λ to the log of the likeli-

hood function.

bβ ¼ min � 1

N
l βð Þ þ λ βj jj j1

where l(β) = log L(β). The λ penalty parameter was determined

using 10-fold cross-validation implemented in R package glmnet

(Friedman et al, 2010; Simon et al, 2011). The optimal λ mini-

mized model deviance.

We applied the model in a repeated (50 × 10-fold) cross-

validation framework. In each iteration, a set of “seed genes” or

features with positive coefficients in the regularized Cox model at

a λ equal to one standard error from the minimum model deviance

were identified. The seed genes were expanded to a redundant

correlation network by adding all genes in the training transcrip-

tome dataset that had Pearson’s correlation > 0.75 with any of the

seed genes. Across all iterations, we identified the common set of

features that were present in at least 50% of the correla-

tion networks and defined this set of features as the empirical

signature.

The ENDORSE model was defined as the hazard’s ratio of the

Cox proportional hazards model fitted on OS data of the training

cohort with two components: GES for the empirical gene signature

and GES for the hallmark estrogen early response signature.

h tð Þ ¼ h0 tð Þ � exp βempGESemp þ βerGESer
� �

:

where emp represents the empirical signature and er represents the

estrogen response signature.

For each signature, the GES were calculated for individual

samples using the GSVA package for R (H€anzelmann et al, 2013)

using the ssGSEA method (Barbie et al, 2009). The ssGSEA method
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is especially well suited for calculating GES from data from diverse

platforms, as the method uses empirical cumulative distribution

functions of the ranked values of probe or gene expression to calcu-

late enrichment scores. By using ranked expression values, this

method mitigates challenges encountered with applying predictive

models on datasets with vastly different distribution profiles than

the training data. The final parameters for the ENDORSE model

were obtained by fitting the model to the full training cohort of 833

samples, resulting in βemp = 1.54 and βer = −2.72.

Models based on external signatures and clinical factors

Clinical features such as tumor grade and mutation count, along

with scores from PAM50 and IntClust analyses, were obtained

directly from the METABRIC clinical annotations accompanying the

transcriptome data and were directly utilized in univariate Cox

models. Proliferation index based on the metaPCNA signature was

calculated using the R-package ProliferativeIndex (Ramaker et al,

2017). We replicated the signatures and algorithms developed in the

TransCONFIRM, SET ER/PR, and 21-gene prognostic signature stud-

ies by following the methods described in the respective studies.

The TransCONFIRM signature composed of 37 genes was imple-

mented by performing hierarchical clustering of the gene expression

data using these genes and cutting the tree (k = 2) to stratify

samples in high or low TransCONFIRM score categories. The SET

signature was implemented by calculating (the average expression

of the 18-genes in the signature) − (the expression of 10 house-

keeping genes) + 2. The 21-gene signature (ODX) score was calcu-

lated by following the unscaled risk score calculation reported by

the study. BAG1 transcript was missing from the METABRIC cohort

and was not included in the unscaled score calculation. Since this

transcript was uniformly missing on all samples, the relative risk

scores could be compared across the samples.

ENDORSE model performance evaluation in METABRIC

The predictive ability of ENDORSE and various other models were

evaluated in the METABRIC training dataset using two approaches.

In the first approach, we split the METABRIC cohort (50/50) into a

training and hold-out test or validation subset. We applied the

LASSO-regularized Cox proportional hazards model on only the train-

ing subset to obtain an empirical signature using 10-fold cross-

validation. Next, we calculated GES of the training subset-derived

empirical signature and the estrogen response signature and fit a Cox

proportional hazards model on the OS data of the training subset.

Using this model, we predicted the OS of the held-out test subset. To

compare the performance of the model against other independent

signatures and clinical features associated with each sample, we

performed a bootstrap resampling analysis of the Cox regression

models. The resampling was repeated 150 times for each model and

a Somer’s Dxy rank correlation was calculated in each repeat. A final

bias-corrected index of Somer’s Dxy was obtained as a measure of the

model’s predictive ability. The bootstrap resampling and calculations

of the Somer’s Dxy were performed using the R package “rms.”

Models based on SNVs and CNAs significantly associated with

ENDORSE scores were also evaluated by obtaining Somer’s Dxy rank

correlation metric of the univariate Cox model. In the second

approach, we calculated the ENDORSE scores of the full cohort and

compared each of the external signatures and clinical feature models

using Vuong’s (Vuong, 1989) partial likelihood ratio test for non-

nested Cox regression models. The non-nested partial likelihood

ration tests were implemented using the R package “nonnestcox”

(https://github.com/thomashielscher/nonnestcox/). The individual

components of the ENDORSE model were compared to the full model

using likelihood ratio tests for nested Cox models.

Model validation in independent datasets

We compared the predictive performance of ENDORSE in multiple

independent datasets. First, we integrated the training (METABRIC)

and test (independent validation) datasets to perform batch correc-

tion using the ComBat function of the R package “sva” (Leek et al,

2012). Next, we calculated the GES for the ENDORSE signatures in

the batch corrected METABRIC and independent validation gene

expression datasets. Then, the parameters of the ENDORSE Cox

model were calculated on the batch-corrected training dataset with

the OS information as the response variable. Finally, the parameter-

ized Cox model was applied to the independent validation dataset to

obtain a predicted risk score.

In case of the Oxford and SET ER/PR cohort, we used the

predicted ENDORSE risk scores to stratify the patients into risk

categories, with an ENDORSE score ≥ 2 representing the high-risk

group, ≤ 1 representing the low-risk group, and other intermediate

values representing the medium risk group. We compared the

significance of stratification of recurrence-free survival curves in

the Oxford cohort and both OS and PFS curves in the SET ER/PR

cohort based on ENDORSE, SET, and TransCONFIRM scores using

log-rank tests. Further, we compared individual strata using Cox

models and partial likelihood ratio tests to compare non-nested

Cox models.

For the TransCONFIRM and ACOSOG cohorts, we compared the

ENDORSE (with an ENDORSE score ≥ 2 representing the high-risk

group, ≤ 1 representing the low-risk group and other intermediate

values representing the medium risk group), SET, and TransCON-

FIRM predictions with reported clinical variables, such as percent-

age of cells positive for Ki67 at the end of treatment and clinical

outcomes using generalized linear models for continuous outcome

variables or one-way ANOVA analysis for categorical outcomes.

Post-hoc analyses comparing significance of difference in means

between different ENDORSE risk groups were obtained using

Tukey’s HSD test.

Biological features associated with ENDORSE scores

To determine the possible biological mechanisms associated with

the emergence of endocrine resistance and high ENDORSE risk

scores, we evaluated the enrichment scores of various biological

pathway and oncogenic signatures across the training and indepen-

dent validation cohorts. We used the ssGSEA method to obtain GES

for hallmark, curated (C2), and oncogenic signature (C6) gene sets

from the molecular signatures database (Liberzon et al, 2011). For

each signature, we fitted a generalized additive model against the

predicted ENDORSE score to obtain significance of the fit, R2, and

proportion of variance explained by the model. None of the curated

signatures were significant in the METABRIC analyses and were

excluded from further consideration in the independent validation
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datasets. Pathways enriched in early mortality (< 5 years OS) vs.

late mortality (> 5 years OS) ER+ METABRIC tumors with an

ENDORSE risk score > 1 were determined using Welch’s t-test.

Gene-level somatic SNV and CNV analyses were performed using

data reported by the METABRIC study. SNVs were retained based

on a mutation frequency of ≥ 5 across all samples and limited to

genes that are known cancer-related genes, obtained from the Cata-

logue of Somatic Mutations in Cancer (COSMIC) cancer gene census

(Sondka et al, 2018; Tate et al, 2019). Pathogenic PIK3CA variants

associated with PI3K inhibitor sensitivity were obtained from the

drug labels for alpelisib based on the SOLAR1 clinical trial (Andr�e

et al, 2019). Significant SNVs and CNVs were obtained using a one-

way ANOVA analysis of the ENDORSE scores with mutation status

as the factor.

Data availability

Scripts for developing ENDORSE, validation using METABRIC and

other independent clinical trials datasets, and analysis to determine

significant pathways and somatic variants associated with high

ENDORSE score tumors are available on GitHub: https://github.

com/aritronath/ENDORSE. The gene set components of the

ENDORSE model and training datasets are also available on the

GitHub repository under releases.

Expanded View for this article is available online.
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