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Mathematical models are now routinely used to inform public

health policies. In addition to being useful for theoretical

simulations of disease pathogenesis, models can be used to

estimate the impact of approaches to control epidemic diseases

like pandemic influenza or HIV, as well the health impact and

cost-effectiveness of interventions ranging from knee surgeries to

new pharmaceuticals [1,2].

General medical and public health readers face a dilemma

when presented with increasingly complex models used for public

health policy questions: how do we know whether to trust the

results of a model-based analysis, and potentially alter health

policies on the basis of those results? Models are valuable for

planning interventions that cannot be tested through randomized

controlled trials (ethically or practically), simulating the implica-

tions of alternative theories about disease pathogenesis or control

strategies, and estimating population-wide costs and consequences

of public health programs. Since every public health policy

decision implicitly involves assumptions, simply avoiding models

because they have assumptions is not a logical approach to health

policy. For example, even a ‘‘simple’’ policy to vaccinate children

against pertussis makes several implicit assumptions: that the

vaccine supply will be sufficient to generate herd immunity in the

inoculated population, that the human and physical resources

needed to administer the vaccine to the needy population are

available and affordable, and these resources are distributed in the

population in a manner that maximizes benefits while minimizing

costs. Modeling forces us to make these assumptions explicit, and

to compare how outcomes of interest might change if these

assumptions were altered (e.g., How much more might it cost to

reach populations that are currently far from health clinics?).

Hence, models are highly useful precisely because they make

explicit the dilemmas inherent to the public health policy process,

helping us to systematically refine our thinking about policies,

potentially even before they have been implemented in the real

world.

While models are therefore useful for addressing public health

policy questions, few consumers of models will be able to comb

through all of a model’s detailed equations to fully analyze the

complex relationships embedded in a given model. Here, we

address one specific, common dilemma faced by readers: the

question of model choice. How does a modeler choose to represent

a disease or public health program in a model, and how do we

know whether to trust this representation? As we will illustrate,

simply determining whether a model structure appears ‘‘realistic’’

can be misleading. Furthermore, looking at the list of assumptions

that went into a given model is also insufficient to answer this

model choice question. Counter-intuitively, some models with

many simplifying assumptions may actually be more helpful to

answer key policy questions than more complex models, as we will

illustrate.

Models Are Becoming More Complex, Presenting
New Challenges to Readers

It is rarely the case that one model is obviously ‘‘superior’’ to

others for modeling a given policy problem. There are many ways

to represent the pathogenesis of a given disease, even one that is

well characterized. Alternative models have been constructed to

simulate the same policy problem, using the same information; for

example, very different models were recently used to simulate the

reduction of transmission of HIV due to antiretroviral treatment,

as well as the cholera epidemic in Haiti, with differing results [3–

7]. How can readers compare and contrast the results of these

models?

Most readers will recognize that reviewing a model’s assump-

tions is an essential component to answering whether a model

might apply to a given scientific question—especially if assump-

tions strongly contradict available data, or if the assumptions

render the model inapplicable to a given policy environment. But

a drive to make models more ‘‘realistic’’ has led to increasingly

complex models with high levels of detail [8].

This trend toward increasing complexity may allow scientists to

address increasingly subtle or complex dimensions of a policy

problem, but also poses several potential challenges. First, readers

should be aware that increasing the number of variables, or

parameters, in a model can produce unintended effects. As shown

in Figure 3, the number of factors that are included in a model

does not determine how well it will forecast a particular outcome,

such as a disease prevalence rate or a cost-effectiveness ratio.

Rather, every additional parameter in the model introduces new

sources of uncertainty and potential to affect results in non-

intuitive ways that may either be useful (the model helps identify a
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critical issue) or deceptive (the model produces strange behavior

that reflects the model structure, not a true aspect of disease

pathogenesis).

Figure 2 illustrates the concern graphically, depicting two

alternative models of human papillomavirus infection and its

progression to cervical cancer. One of the models includes

multiple latent states of illness (multiple stages of pre-cancerous

lesions), which can progress or regress at rates that are poorly

characterized. This more complex model may seem more

‘‘realistic,’’ but the parameters defining the rates of disease

progression and regression are so poorly characterized that some

choices of the parameter values lead to harmonic oscillations in

predicted pre-cancerous disease prevalence that are not true of the

disease itself, but simply occur when certain choices of model

parameters produce a non-linear interaction that causes strange

behavior. This does not mean that all non-linear relationships

should be avoided (as most simulation models will involve non-

linearity), but rather that complex models must be well-charac-

terized in terms of their behavior before they are used for

forecasting or the simulation of disease interventions.

Dilemmas of Model ‘‘Calibration’’ and
‘‘Validation’’

While Figure 2 illustrates the irony that adding more variables

to a model may actually make a model less ‘‘realistic’’ if its

parameters’ values or behavior are not well understood, it would

seem that ensuring that a model ‘‘fits’’ external data should be a

sufficient check on the model’s validity. ‘‘Calibration’’ algorithms

have been devised to fit large models to data, often allowing

modelers to infer the value of parameters that are difficult, if not

impossible, to observe in real-world studies [9].

However, there are important limitations to model fitting that

readers should be aware of. By varying more parameters to fit

data, a more complex model can ‘‘overfit’’ the data—as illustrated

in Figure 3; the more complex model in the figure fits the early

prevalence data more tightly, but ‘‘misses the forest for the trees’’

by failing to capture just the key aspects of disease pathogenesis

that are most relevant to determining the overall prevalence of

disease. This occurs because so many parameters can be varied

over their range of uncertainty that their inferred or ‘‘fitted’’ values

can become overly influenced by noise in the dataset, as illustrated

graphically in Figure 3.

Rather than proving that a model is ‘‘valid,’’ fitting a model to

data should be thought of as a way to ‘‘screen out’’ a model. That

is, if the model can’t be fit to data using any reasonable ranges for

the parameters, then either the model structure is a poor

representation of the actual disease process, or the range of

parameter values is far from their real-world values. But fitting is

not ‘‘proof’’ that a model is the ‘‘correct’’ one, since there are

many models that can reasonably fit the same set of external data

[10].

A more difficult problem with fitting models is the issue of

‘‘identifiability’’: when a large number of model parameters are

being fit to a small number of data points, multiple different values

can be assigned to each variable. More complex models will

almost always fit external data more closely; more variables mean

more degrees of freedom—more ‘‘wiggle room’’ among parameter

values—to fit external data. Far from improving a model,

calibrating too many parameters to too little data can produce

several inaccuracies (Box 1).

Even computationally intensive ‘‘calibration’’ algorithms that

search for millions of possible parameter values to fit a dataset

can’t overcome the identifiability problem. Because there is not

sufficient information to tell which parameter values are more

likely to be accurate than others, averaging the results of multiple

fits will not work, and sensitivity analyses will be sampling from

an infinite range of possibilities (an uninformative result). Many

parameters’ values can all be fit to data reasonably well, but the

mean (or median) of the results will typically be a poor descriptor

of the actual parameter space [11]. The recommended

approaches to remedy a failure of identifiability are to: (a) return

to the field and gather more data to inform the parameter values

in the model, (b) use a simpler model that requires fewer

parameters if possible, or (c) conduct a theoretical analysis that

explores various alternative parameter sets and their potentially

different outcomes.

Sensitivity, Uncertainty, and Model Selection
Approaches

When faced with so many uncertainties about the values of

parameters and even the structure of models being used to

simulate disease, it is common for modeling papers to include

sensitivity analyses in which the value of each parameter is

varied across its range of possible values. This helps to examine

how raising or lowering a parameter’s value may raise or lower

the value of a model’s outcome variable. Similarly, ‘‘uncertainty

analysis’’ involves generating error bars around the model’s

results by sampling from the probability distributions describing

the parameter values, examining how variations in the

parameter values result in uncertainty around the model’s

results [12].

However, a common mistake is to assume that sensitivity and

uncertainty analyses capture the possible range of results that

might occur in the real world. Typical sensitivity and uncertainty

analyses involve varying a model’s parameter values, not varying

the underlying model structure (i.e., the way of representing a

disease). Hence, ‘‘parameter uncertainty’’ is captured, but not

‘‘structural uncertainty.’’ Differences in how models are structured

Summary Points

N Mathematical models are increasingly used to inform
public health policy, but a major dilemma faced by
readers is how to evaluate the quality of models.

N All models require simplifying assumptions, and there
are tradeoffs between creating models that are more
‘‘realistic’’ versus those that are grounded in more well-
characterized data on the behavior of disease processes.

N Complex models are not necessarily more accurate or
reliable simply because they can more easily fit real-
world data than simpler models; complex models can
suffer parameter estimation problems that can be
difficult to detect and often cannot be fixed by
‘‘calibrating’’ models to external data. Conversely,
complexity can be important to include when uncertain
factors are central to a disease process or research
question.

N In many cases, alternative model structures can appear
reasonable for the same policy problem. Sensitivity
analyses not only around parameter values but also
using alternative model structures can help determine
which factors are particularly important to disease
outcomes of interest. Explicit methods are now available
to transparently and objectively compare different
model structures.

PLOS Medicine | www.plosmedicine.org 2 October 2013 | Volume 10 | Issue 10 | e1001540



can have a greater impact on model projections than differences in

parameter values [13]. Variations in the value of a given

parameter value could result in a markedly different range of

results when that same parameter is input into a different model

structure [14].

To address this dilemma, a number of new strategies have been

created to perform explicit ‘‘model selection’’—that is, to generate

several alternative model structures and use objective criteria to

evaluate which models can best balance complexity and uncer-

tainty (maximizing fit with the fewest parameters, to minimize

error). These range from likelihood-based methods that express

the probability of the observed data under a particular model, to

Bayesian methods that can avoid the complexities of computing a

likelihood function for a complex model (such as Markov Chain

Monte Carlo methods that select not only parameter values but

also ‘‘jump’’ between alternative model structures) [15–18]. The

strategies all follow one basic principle: that data should inform the

level of complexity in a model. If a particular model structure is

too simple to address the research question under consideration,

then critical variables can be added or alternative model structures

chosen so that the disease can be simulated with an appropriately

higher degree of complexity. Conversely, if a proposed model is

too complex to properly estimate its unknown parameters as

relevant to the dataset being used, then the selection method

identifies that model as problematic and favors a simpler model. In

some instances, a modeler may choose the more complex model

because of strong a priori beliefs about the necessity of capturing a

certain disease or policy process or the finding that a complexity

can alter the results in critically informative ways (i.e., the

complexity is critical to the question being asked—e.g., in the case

of a sexually transmitted disease, the sexual network structure may

be critical to ask questions about how heterogeneous contact

patterns may influence transmission). In such instances, it should

be possible to justify why a more complex model is being utilized.

Recent reviews, however, have found that several models can

often be employed for the same policy question, using the same

data [13,19]; hence an obviously ‘‘optimal’’ model for a given

policy problem may be a rare finding. To date, selection

Figure 1. An illustration of the identifiability problem, using an example from HIV policy. Both a 1-month duration of acute infection with
six secondary infections per month (top graph) and a 3-month duration of acute infection with two secondary infections per month (bottom graph)
produce the same result of six infections per person during the acute infectious period. But the implications of the two different parameter sets are
very different, as early treatment (red dashed line) would be effective in preventing secondary infections only in the latter case.
doi:10.1371/journal.pmed.1001540.g001
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Figure 3. An illustration of the danger of overfitting a model to data in a theoretical demonstration. We first generated data describing
the prevalence of all cervical intraepithelial neoplasia (CIN) lesions over a 30-year period among a fictional cohort of young women. To do so, we used
the more ‘‘realistic’’ (complex) model in Figure 2 and assigned typical parameter values for the rates of progression and regression between states (a
5% rate of progression to the next state and 50% rate of regression per year to the prior state), then added noise to the data by drawing randomly
from a normal distribution with mean equal to average prevalence and standard deviation corresponding to the prevalence rate’s standard deviation.
We performed a common model ‘‘calibration’’ approach in which both the simple and complex model shown in Figure 2 were fitted to the first 20
years of the data (solid red dots), starting from standard parameter uncertainty ranges for progression and regression of disease [29]. Despite being
the ‘‘real’’ model, the more complex model had numerous alternative parameter values fit the data, since there are so many uncertainties about the
progression and regression rates that many combinations of parameters were able to produce reasonable fits. As shown, one of these fits (green)
produced a pattern that poorly forecast future prevalence (hollow red dots) despite fitting the earlier prevalence data (solid red dots). The more
complex model (in green) actually has a better ‘‘fit’’ to the early prevalence data when judged by standard reduced chi-squared criteria than does the
simpler model (in blue); but as illustrated here, it has substantially poorer performance in forecasting prevalence in future years. The more complex
model did not perform poorly simply by chance; it did so because there was insufficient prior knowledge to inform the parameter values describing
the process of progression and regression through pre-cancerous states, hence the model was susceptible to fitting too tightly to the noisy
prevalence data (overfitting).
doi:10.1371/journal.pmed.1001540.g003

Figure 2. Two alternative models of human papillomavirus and cervical cancer. Pre-cancerous states are designated as cervical
intraepithelial neoplasia (CIN) stages 1, 2, and 3.
doi:10.1371/journal.pmed.1001540.g002
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algorithms have not commonly been used in the medical and

public health literature [10], and have not been incorporated into

guidelines for model reporting [20,21], even though the

approaches have been extensively researched and in some cases

automated [10,16,22]. While it is much faster to generate one

model structure than to undertake the task of comparing

alternative models formally, performing explicit model compari-

sons and selection may be critical to assessing the ‘‘robustness’’ of

public health policy modeling results in the future. This would be

analogous to the selection of individuals in clinical trials: we

require pre-specified, objective criteria for investigators to choose

study participants, hence pre-specified, objective criteria can

similarly be applied to policy model selection.

Conclusions

Modelers are usually asked by reviewers and readers to defend

simplifying assumptions in models; it would also be reasonable,

given the issues discussed here, for reviewers and readers to ask

modelers to justify ‘‘nonessential complexity’’ with equal vigor.

Models can be treated like computational versions of laboratory

experiments—they are meant to explicitly highlight the assump-

tions that are implicit in health policy proposals, setting up a

‘‘clean’’ analysis to characterize and understand the relationships

between key factors affecting health outcomes. Models should, as

with laboratory experiments, be sufficiently transparent that their

results can be replicated. Models serve as useful tools even when

they are simple representations of the real world; new techniques

can help us find the right balance between parsimony and realism

in an objective manner, using data to build the model from the

best available information for any given policy question. As Albert

Einstein stated: ‘‘Everything should be made as simple as possible,

but not simpler.’’
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