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The extent to which NG-2(+) cells form a distinct population separate from astrocytes is

central to understanding whether this important cell class is wholly an oligodendrocyte

precursor cell (OPC) or has additional functions akin to those classically ascribed to

astrocytes. Early immuno-staining studies indicate that NG-2(+) cells do not express

the astrocyte marker GFAP, but orthogonal reconstructions of double-labeled confocal

image stacks here reveal a significant degree of co-expression in individual cells within

post-natal day 10 (P10) and adult rat optic nerve (RON) and rat cortex. Extensive

scanning of various antibody/fixation/embedding approaches identified a protocol for

selective post-embedded immuno-gold labeling. This first ultrastructural characterization

of identified NG-2(+) cells revealed populations of both OPCs and astrocytes in P10

RON. NG-2(+) astrocytes had classic features including the presence of glial filaments

but low levels of glial filament expression were also found in OPCs and myelinating

oligodendrocytes. P0 RONs contained few OPCs but positively identified astrocytes

were observed to ensheath pre-myelinated axons in a fashion previously described as

a definitive marker of the oligodendrocyte lineage. Astrocyte ensheathment was also

apparent in P10 RONs, was absent from developing nodes of Ranvier and was never

associated with compact myelin. Astrocyte processes were also shown to encapsulate

some oligodendrocyte somata. The data indicate that common criteria for delineating

astrocytes and oligodendroglia are insufficiently robust and that astrocyte features

ascribed to OPCs may arise from misidentification.

Keywords: astrocyte, development, glia, oligodendrocyte, NG-2

Introduction

Glial cells expressing the NG-2 proteoglycan act as oligodendrocyte precursor cells (OPCs)
and are retained in the mature CNS where they form a reservoir of progenitors that may
be significant for the development of effective treatment strategies for common neurological
diseases (Nishiyama et al., 2009). NG-2(+) cells can receive synaptic input and therefore they
challenge the dogmatic separation of neural cells into either neuronal/excitable or glial/support
roles. Historically, cells with features of NG-2(+) cells have been variously described as “small
glioblasts” (Vaughn, 1969), “3rd glial element” cells (Vaughn and Peters, 1968), “β-astrocytes”
(Reyners et al., 1982),“oligodendrocyte/type 2 astrocytes” (O2A) (Raff et al., 1983), “smooth
protoplasmic astrocytes” (Levine and Card, 1987), “OPCs” (Ong and Levine, 1999), “astons”
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(Matthias et al., 2003), “polydendrocytes” (Nishiyama et al.,
2009) and “synantocytes” (Leoni et al., 2009). This diversity of
nomenclature reflects the degree of uncertainty regarding the
cells’ ontogeny and their physiological functions. In particular,
early studies noted the morphological similarity between NG-
2(+) cells and astrocytes, while subsequent reports have
documented astrocyte-type features such as process extension
into the node of Ranvier, synapses encapsulation (Levine and
Card, 1987; Ong and Levine, 1999; Wigley and Butt, 2009), and
reactive gliosis with features of astrocytosis (Greenwood and
Butt, 2003; Lytle et al., 2009). The degree to which these cells may
exhibit astrocyte-type behavior remains controversial, as does the
extent to which astrocytes and NG-2(+) cells share a common
cell fate.

Materials and Methods

UK home office regulations were followed for all experimental
work which was conducted in accordance with the Council
Directive 2010/63EU of the European Parliament and the
Council of 22 September 2010 on the protection of animals used
for scientific purposes. The animal welfare and ethics committee
of University of Leicester approved all the experimental
protocols. Rat optic nerves (RONs) were dissected from Lister-
hooded rats on post-natal day 0 (referred to as “P0”), P8-12
(“P10”), or >P80 (adult).

Immuno-Histochemistry
RONs were lightly fixed in 2% paraformaldehyde/0.1M PBS for
30min prior to incubation in 0.1M PBS plus 20% sucrose w/v for
5min and freeze-sectioning. Twenty micro meter sections were
subsequently blocked for 60min in 0.1M PBS+10% normal goat
serum+0.5% Triton-X 100 (PBST). Sections were then incubated
in this solution (plus primary antibody) overnight at 4◦C.
Antibodies were raised against NG-2 (1:100 Millipore MAB5384
and GFAP 1:200 Sigma G4546). Staining was detected using
appropriate Alexa-conjugated secondary antibodies (1:1000
Molecular probes). Primary antibody omission controls were
blank. Images were collected using an Olympus confocal
microscope and image stacks were analyzed using NIH Image-J.

Immuno-Electron Microscopy (I-EM)
After extensive testing using a variety of fixation protocols
(3% glutaraldehyde in Sorensen’s +1% osmium / 3%
glutaraldehyde +2% paraformaldehyde in Sorensen’s +1%
osmium), embedding (propylene oxide + Spurr’s resin /
propylene oxide + Agar low viscosity resin / ethanol + LR
White resin), etching and staining protocols, the following
technique produced acceptable results: RONs were dissected
in Sorenson’s buffer, washed in 0.1M sodium cacodylate buffer
(2mM CaCl2/pH 7.4) and post-fixed in 2% formaldehyde +3%
glutaraldehyde in cacodylate buffer overnight. Nerves were
then washed prior to secondary fixation (1% osmium tetroxide
/ 1.5% potassium ferricyanide) and washed again prior to
tertiary fixation (2% uranyl acetate). RONs were sequentially
dehydrated, washed in propylene oxide, and embedded using the
following steps: (a) 2:1 propylene oxide + modified Spurr’s low

viscosity resin for 90min; (b) 1:1 propylene oxide + modified
Spurr’s resin for 60min; (c) 1:2 propylene oxide + modified
Spurr’s resin for 60min; (d) 100% Spurr’s low viscosity resin
(30min, then overnight, then 180min); and (e) polymerization
for 16 h at 60◦C.

Post-embedded I-EM for NG-2 has not previously been
achieved. We tested five different antibodies and antibody
cocktails (4 h primary staining followed by washing and
secondary staining for 60min) in sections that had been
either etched (saturated sodium metaperiodate 30min), blocked
(PBST 30min), etched and blocked, or left untreated. The
primary antibodies tested were: (a) Rabbit polyclonal AB62341
from Abcam; (b) Rabbit polyclonal generously gifted from
William Stallcup; (c) Mouse monoclonal MAB5384 from
Millipore; (d) Mouse monoclonal cocktail generously gifted
from William Stallcup; and (e) Mouse monoclonal cocktail
(D120.43/D4.11/N143.8/N109.6 clones) 37-2700 from Zymed.
Staining using all five antibodies/cocktails was tested on ultrathin
sections at 1:200, 1:100, 1:50 and 1:20 and reactivity detected
using a goat anti-mouse or goat anti-rabbit 30 nm gold conjugate,
as appropriate (1:50; Sigma). Ultrathin sections were counter-
stained with uranyl acetate and lead citrate and examined with
a Jeol 100CX electron microscope.

Results

Double immuno-labeled P10 RON 10µm projections indicate
apparent regions of single and co-expression for GFAP/NG-
2 (Figures 1A–C). Ortho-projections revealed non-overlapping
regions of expression in individual cells (e.g., the dark blue
arrow in Figure 1C1 shows an NG-2(+)/GFAP(−) soma) and
regions of co-expression in both cell somata and processes
(e.g., Figures 1C1,C2, light blue arrows). The analysis indicates
a large population of cells express both proteins, but often
in separate structures. Cell counting of stack projections in P
10 RON showed 38.5 +/− 2.7% of cells were GFAP(+)/NG-
2(−), 28.5 +/− 2.6% were GFAP(−)/NG-2(+) and 33.0 +/−
5.3% were GFAP(+)/NG-2(+) (544 cells analyzed from 5
sections). Control staining with omission of one or both primary
antibodies showed no cross-labeling of secondary antibodies,
bleed through of channels, significant background fluorescence,
or non-specific staining (Figures 1D1–D6). All comparable
images were collected using identical image and acquisition
settings to allow direct comparison of test and controls.

Projections of GFAP and NG-2 immuno-staining in adult
RON (Figures 2A–D) show a mixture of single and double
labeling of cells and processes. Ortho-projections of the boxed
areas (Figures 2C1,C2) again revealed examples of single (e.g.,
dark blue arrows) and double (e.g., light blue arrows) staining.
Cell counting of stack projections showed 19.5+/− 1.4% of cells
were GFAP(+)/NG-2(−), 20.6 +/− 2.6% were GFAP(−)/NG-
2(+) and 59.9 +/−1.6% were GFAP(+)/NG-2(+) (369 cells
analyzed from 5 sections). This was a higher apparent proportion
of co-expressing cells than found in the P10 nerves.

A similar approach in adult cortical gray matter produces
comparable co-stained cells (Figure 3), with a population of
NG-2(+) cells having no apparent regions of GFAP expression
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FIGURE 1 | GFAP and NG-2 co-localization in P10 RON glial cells.

(A) GFAP immuno-reactivity (red). (B) NG-2 immuno-reactivity (green).

(C) Overlay with boxed areas shown at higher gain as 3-D projections

in (C1) and (C2). Note the NG-2 co-localization (red or orange regions

e.g., light blue arrows) in parts of cells that may also have regions that

are only GFAP(+) (green regions e.g., dark blue arrow). (D) Controls

showing GFAP staining (D1) and absence of NG-2 staining (D2) when

the NG-2 antibody was omitted from the otherwise identical protocol;

NG-2 staining (D3) and no GFAP staining (D4) when the GFAP

antibody was omitted, and the absence of any staining when both

primary antibodies were omitted (D5,D6). All images were collected and

displayed using identical settings. Bar = 10µm.

(Figure 3A1, dark blue arrow) and a population that co-expresses
both proteins (Figure 3A2, single blue arrows). Similar data were
observed in the adjacent sub-cortical white matter structures.
Cell counting of stack projections showed 68.9+/− 3.8% of cells
were GFAP(+)/NG-2(−), 10.8 +/−2.8% were GFAP(−)/NG-
2(+) and 20.3 +/−1.4% were GFAP(+)/NG-2(+) (384 cells
analyzed from 5 sections) in the gray matter. As in the examples
shown, it was often the case in cortical sections that GFAP
reactivity was localized individually to the processes of cells that
expressed NG-2 on the soma.

NG-2(+) cells and GFAP(+) cells may form close
morphological arrangements that are problematic to sufficiently
resolved using the immuno-fluorescent approach described
above. We therefore developed an immuno-gold post-embedded
methodology for the ultrastructural analysis of NG-2(+)
cells in P10 RON. Retaining antigenicity for NG-2 in tissue
prepared for I-EM proved difficult. A variety of polyclonal
and monoclonal antibodies (and cocktails) were tested over
a range of concentrations on P10 RONs collected under a

number of fixation and embedding protocols (see Materials and
Methods). Cell-specific staining was achieved with a polyclonal
antibody on nerves using an overnight primary fixation (3%
glutaraldehyde/2% formaldehyde) in cacodylate buffer followed
by two further fixation steps, gradual embedding in modified
Spurr’s resin, and sodium metaperiodate etching. Using this
protocol, staining levels were low but selective. Blinded counting
of gold particles in 10 grid sections each from three independent
nerves found 7.4% in axons (n = 11/1239 axons), 59.4% in glia
somata (n = 35/101 somata), 27.9% in glial processes and 6.1%
in glial nuclei (n = 9/101 nuclei; total n = 148 particles). 87.3%
of staining was therefore in the glial cell membrane or cytoplasm,
with the remaining gold particles showing a background level
of non-specific staining in axons and nuclei. This level of
background staining is consistent with a number of other studies
using I-EM in RON (e.g., Alix et al., 2008; Arranz et al., 2008;
Alix and Fern, 2009). In total, six fixation and embedding
protocols were attempted for all 5 antibody/cocktail mixtures
over 4 concentration ranges; only the one successful protocol was
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FIGURE 2 | GFAP and NG-2 co-localization in the adult RON. (A)

GFAP immuno-reactivity (red). (B) NG-2 immuno-reactivity (green). (C)

Overlay with boxed areas shown at higher gain as 3-D projections in

(C1) and (C2). Note the NG-2 co-localization (red or orange, e.g., light

blue arrows) in parts of cells that may express GFAP alone in other

regions, and in cells that are only GFAP(+) (e.g., dark blue arrow). (D)

Controls showing NG-2 staining (D1) and absence of GFAP staining

(D2) when the GFAP antibody was omitted from the otherwise identical

protocol; GFAP staining (D4) and no NG-2 staining (D3) when the

NG-2 antibody was omitted, and the absence of any staining when

both primary antibodies were omitted (D5,D6). All images were collected

and displayed using identical settings. Bar = 10µm.

identified, with non-selective staining and null-staining proving
to be the major shortfalls of the other fixation/embedding
staining combinations.

In P10 RON, gold particles were frequently detected in the
cell membrane or cytoplasm of glial somata (Figures 4A–D,
single arrows). Labeled cells most frequently had a wide-
bore endoplasmic reticulum (ER; Figures 4A–C, arrow heads)
and a granular chromatin that was often clustered under the
nuclear envelope. These cells occasionally exhibited stacked glial
filaments in the cytoplasm (Figures 4A–C, double arrows) and
have the classic features of astrocytes, which are the predominant
type of cell present in the nerve at this age (Vaughn and
Peters, 1967; Vaughn, 1969). NG-2 reactivity (gold particles)
was also present in glial processes that did not contain obvious
glial filaments and in some that did (Figure 4E), as well as
in oligodendrocyte processes that had initiated axon wrapping
and myelination (Figure 4F). Staining was rarely observed
in undifferentiated glioblasts which will include OPCs, but
such cells make up <10% of the glial population at this age
(Vaughn, 1969; Barres et al., 1992). The ultrastructural analysis
therefore aligns with the confocal immuno-fluorescent data
showing NG-2(+) GFAP(+) astrocytes in the neonatal optic
nerve.

Co-expression of the early oligodendroglial lineage marker
NG-2 and astrocyte marker GFAP in glial cells of the
optic nerve raises questions about how these two cell fates
are distinguished. We examined P0 RON, a developmental
point before the wide-spread arrival of OPC (Vaughn, 1969;
Small et al., 1987; Barres et al., 1992) and a point when
astrocyte production has peaked (Vaughn and Peters, 1967;
Vaughn, 1969; Skoff et al., 1976; Skoff, 1990). A population
of astrocytes can be unambiguously identified at this age, for
example by the radiating processes found in cross-sections that
contribute to the glial limitans, a wholly astrocytic structure
(Figure 5A, arrows). Such cells often expressed small bundles
of glial filaments in the somata and processes (Figure 5B,
arrow head) and have a wide-bore ER typical of astrocytes,
see (Vaughn and Peters, 1967; Vaughn, 1969; Federoff and
Vernadakis, 1986) (Figures 5B,D,F). Thick astrocytes processes
separate axons into fascicles (Figure 5A) and run parallel to
axons along the nerve (Figure 5F). “Finger processes” have
previously been described in these cells (Figure 5B) and
had been thought to represent process extension prior to
fasciculation but these structures exist in cells that appear to
have completed fasciculation (Figures 5A,B) and often wrap
around pre-myelinated axons of various diameters (Figure 5D).
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FIGURE 3 | GFAP and NG-2 co-localization in adult cortical gray

matter. (A) GFAP immuno-reactivity (red) and NG-2 immuno-reactivity

(green), with the two boxed areas shown at higher gain as 3-D

projections in (A1) and (A2). Note the NG-2 co-localization (e.g., light

blue arrows) in parts of cells that may also have regions that are only

GFAP(+), while other NG-2(+) cells are GFAP(–) (e.g., dark blue arrow).

(B) Controls showing GFAP staining (B1) and absence of NG-2 staining

(B2) when the NG-2 antibody was omitted from the otherwise identical

protocol; NG-2 staining (B4) and no GFAP staining (B3) when the

GFAP antibody was omitted, and the absence of any staining when

both primary antibodies were omitted (B5,B6). All images were collected

and displayed using identical settings. Bar = 10µm.

Transverse sections confirm the presence of ensheathing
processes (Figure 5C), which sometimes contain glial filaments
(Figure 5C, black arrows). Unlike ensheathing oligodendrocyte
processes, NG-2 reactivity was not observed on the ensheathing
astrocyte processes.

Numerous finger processes are also found in P10 RON and
are more likely to contain glial filaments than other regions of
the astrocyte (Figure 6A). Examples are present that bifurcate to
initiate ensheathment of small axons (Figures 6A,B) and double
finger processes erupting from large processes to flank axons
from either side (Figures 6A,D,E), while single finger processes
occasionally wrap the entire axon circumference (Figure 6C).
Multiple layers of ensheathment can be seen (Figures 6D,E)
but compact myelin cannot be unambiguously associated with
these processes (Figure 6F) and myelinating oligodendrocyte
processes never contain any of the features of astrocytes (e.g.,
stacked glial filaments, wide-bore ER), although single glial
filaments are apparent on occasion (Figure 6H). Fine processes
that lack classical astrocyte features are present and make
close connections with larger pre-myelinated axons (Figure 6G)
and may be oligodendroglial. Small axons are also sometimes
embedded in the surface of astrocyte somata that have prominent
glial filament expression and wide-bore ER (Figures 6I,J). In long
section, glial filament-containing processes are frequently found
in early nodes of Ranvier (Figure 6K) and at hemi-nodes sites
where one myelinating process has yet to arrive (Figure 6L), but
were not observed to wrap around the larger myelinating axon at
these points. If axons wrapping by astrocytes is a feature of early
node of Ranvier sites, it must, therefore, reverse as myelination
progresses.

Oligodendrocytes can sometimes be unambiguously identified
in P10 RON by the presence of myelinated sheaths contiguous
with the cell membrane (Figure 7). The general form and
distribution of organelles such as mitochondria and Golgi
apparatus were not distinguishing features of these cells but
nuclear morphology was generally spheroid and often contained
a nucleolus. The chromatin was less likely to be clustered
under the nuclear envelope than that found in astrocytes and
a narrow-bore ER was a clear distinguishing feature (Figure 7).
Oligodendrocytes in P10 nerves were a mixture of larger, more
differentiated cells (Figures 7A–C) and smaller, less mature
cells, which tended to have a more clustered chromatin and
often lacked large processes (Figures 7D–F,K,L). This distinction
has been made previously e.g., by (Vaughn and Peters, 1967;
Vaughn, 1969; Skoff et al., 1976; Skoff, 1990) but it should be
noted that these “immature” cells of the oligodendrocyte lineage
sometimes had ensheathed neighboring axons (Figures 7E,L,
double arrows) and may in fact be sections through cells
at a level close to the nuclear envelope. Positively identified
oligodendrocytes frequently expressed microtubules apparently
randomly arrayed throughout the cytoplasm (Figures 7B,C,E,
arrows) and in some cases contained loose bundles of glial
filaments (Figures 7E,F) and regions of stacked glial filaments
(Figures 7H,J,L).

Oligodendrocytes are readily identifiable in adult RON
due to their ensheathment of axons (e.g., Figure 8A, arrow)
and have features previously described for this cell type.
Glial filaments were not observed. A previously unremarked
close morphological relationship between oligodendrocyte
somata and astrocytes was often present, with oligodendrocytes
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FIGURE 4 | NG-2 immuno-gold labeling in P10 RON. (A,B) Two closely

apposed glial soma (“1” and “2”). Cell “1” has features typical of an early cell

of the oligodendroglial lineage including an ovoid nucleus and narrow bore

ER. Cell “2” has features that are typical of astrocytes in this preparation. The

boxed area is shown at higher gain in (B). Note the gold particles (some

indicated by arrows) which identify this cell as NG-2(+). A lobular nuclear

morphology with clustered chromatin under the nuclear envelope and a wide

bore ER (arrow heads) are astrocyte features. The cytoplasm also contains

microtubules (e.g., asterisk). Glial filaments cannot be positively identified in

this cell. (C,D) Another NG-2(+) cell with astrocyte features which does

express glial filaments (double arrows). Boxed area shown at higher gain in

(D). (E) High-gain micrograph of NG-2 staining in glial processes (arrows)

which contains glia filaments (arrowhead). (F) An example of NG-2(+)

(arrows) oligodendrocyte processes ensheathing an axon.

completely encased in glial filament expressing astrocyte
processes (Figures 8A–C, arrow heads). Astrocyte processes also
made very close contact with the outer layer of the myelin sheath
(Figure 8D) and with rare non-myelinated axon (Figure 8D).

Discussion

NG-2(+) cells are OPCs capable of receiving synaptic input
which may regulate their cell fate (Bergles et al., 2000, 2010;
Kukley et al., 2007; Ziskin et al., 2007). These cells may also
extend processes into the node of Ranvier and can transform into
reactive astrocytes under pathological and cell culture conditions
(Levine and Stallcup, 1987; Hirsch and Bahr, 1999; Leoni et al.,
2009; Honsa et al., 2012). There have been several prior attempts
to immuno-label NG2 protein for ultrastructural analysis of these
cells, utilizing peroxides DAB pre-embedded approaches that

do not preserve fine cellular characteristics (Levine and Card,
1987; Levine and Stallcup, 1987; Ong and Levine, 1999; Peters
and Sethares, 2004; Leoni et al., 2009). Prior studies have noted
that preservation of NG-2 reactivity requires light fixation and
that NG-2(+) cells are particularly poorly preserved compared
to other cell types (Peters and Sethares, 2004). This is consistent
with our observation that staining is highly sensitive to fixation
and embedding conditions. The current study is the first to
describe the cellular features of these NG-2(+) cells, which
constitute two distinct populations of cells in the P10 RON:
astrocytes and OPCs.

P10 RON Astrocytes can Express NG-2 and
Transiently Ensheath Axons
The results show that astrocytes in the developing RON identified
by unambiguous ultrastructural features or by the commonly
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FIGURE 5 | Astrocytes in P0 RON ensheath axons. (A) Low

magnification micrograph showing two neighboring astrocytes in

cross-section RON. The boxed area is shown at higher power in (B),

revealing the highly ramified nature of the many fine processes that

extend from the soma and main branches of the cell, which can be

identified as an astrocyte due to occasional glial filaments (arrow head)

and the contribution the cell makes to the glial limitans (A: arrows). (C)

Long-section of P0 RON at high gain, showing the close apposition of

pre-myelinated axons (“Ax”) and astrocyte processes (arrows).

Microtubules (white arrow heads) and neurofilaments are arranged

longitudinally in axons while glial filaments (black arrow heads) are

arranged generally transversely in astrocyte processes. (D) Montage

showing an astrocyte ensheathing a single axon (arrow) and extending a

finger process around two axons (double arrow). Boxed area shown at

higher gain in the inset. (E) An astrocyte shown in long-section extending

thick processes parallel to pre-myelinated axons.

used GFAP(+) criterion widely express the NG-2 proteoglycan.
We also observed co-expression in adult RON and in gray
matter, with orthogonal immuno-fluorescent confocal image
stacks indicating populations of GFAP/NG-2(+) cells in both
regions. This observation is consistent with studies using GFP
expression driven from the GFAP promoter, which reveal duel
populations of GFP bright/NG-2(−) andGFP dim/NG-2(+) cells
in several brain locations (Matthias et al., 2003; Grass et al., 2004;
Leoni et al., 2009). Common recombination systems employing
the GFAP promoter are inefficient and drive expression in only
a small proportion of astrocytes, suggesting under reporting of
NG-2 expression of cells with a GFAP(+) phenotype in these

animals (Casper and McCarthy, 2006). There is also convincing
evidence for NG-2/GFAP co-expression in astrocytes raised in
culture conditions (e.g., Levine and Stallcup, 1987; Hirsch and
Bahr, 1999), and for transformation of NG-2 expressing into
GFAP expressing cells in organotypic slices (Leoni et al., 2009).
Recent evidence implicates the Olig2 transcription factor in
regulating NG-2 cell fate switching between the astrocyte and
oligodendrocyte lineages (Zhu et al., 2012). NG-2 cells have been
documented as GFAP(+) in a variety of forms of injury and
disease models including in the area surrounding demyelination
in multiple sclerosis (Nair et al., 2008) while viral demyelination
evokes proliferation of O4(+)/GFAP(+) cells in the spinal
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FIGURE 6 | Ensheathing astrocytes in P10 RON. (A–I) Micrographs of

nerve cross-sections. (A) Two astrocyte processes identified by the

presence of glial filaments (dark arrow heads, typically oriented transversely)

also containing wide-bore ER (“*”) and extending finger-processes between

small diameter pre-myelinated axons (arrows). (B) An astrocyte processes

oriented radially (“*”) navigates between pre-myelinated axons. Ensheathing

processes either partially or completely surround several neighboring

small-diameter axons (arrows). (C) The top left section of (B) shown at higher

gain, reveals extensive glial filaments within the main astrocyte processes

(arrow heads) and cytoplasmic continuity with an ensheathing processes

(arrows). (D,E) Examples of double-wrapping of small diameter

pre-myelinated axons (dark arrows) by glial filament-containing (arrow heads)

processes. Note the presence of neighboring larger-diameter pre-myelinating

axons that are not ensheathed (e.g., “*”), and the “en-passent” nature of the

ensheathment, with processes continuing on to navigate between

neighboring axons (e.g., double-arrows). (F) Two glial processes. Process “1”

contains glial filaments (dark arrow head) and has partially ensheathed

several small axons (e.g., dark arrows). Process “2” appears to have

wrapped several layers around a larger axon (double arrows) and looks

similar to “1” except that it contains no obvious filaments. (G) A glial

processes containing neurofilaments, some oriented transversely (arrows) but

no glial filaments, navigates between small diameter axons and has initiated

wrapping of a large axon (arrow heads). (H) Oligodendrocyte processes

showing multiple layers of myelin (arrow head) contain neurofilaments

(arrows) but no glial filaments. Note the presence of glial filaments in

neighboring glial processes. (I) Astrocyte somata, note the wide-bore ER

(arrows) and the characteristic hetero-chromatin. The boxed area is shown at

higher gain in (J). (J) Note the glial filaments (arrow head) and the finger

processes originating directly from the soma ensheathing small diameter

axons (e.g., arrows). (K,L) Examples of long-section micrographs showing

early myelination of a node of Ranvier in (K) and a hemi-node in (L) (“*”).

Oligodendroglial processes navigate along the axon (arrows), and glial

filament-filled (arrow heads) astrocyte processes cluster adjacent to the

putative nodal membrane but do not wrap around it (double arrows).

cord (Godfraind et al., 1989), and anti-galactocerebroside (GC)
induced demyelination resulted in proliferation of GFAP(+)
GC(+) cells (Carroll et al., 1987). Numerous GFAP(+)/MBP(+)
cells are reported in a mouse model of phenylketonuria, which
is associated with central hypo-mylination (Dyer et al., 1996),
and there is strong evidence for astrocyte production from
NG-2 cells following traumatic injury (Carmen et al., 2007),
ischemia (Honsa et al., 2012) and spinal cord injury (Wu et al.,

2005). The picture is not straightforward however, since NG-
2 transformation into GFAP(+) astrocytes does not appear to
occur after neocortical stab injury (Komitova et al., 2011), while
NG-2 expressing cells derived from optic nerve explants do not
express GFAP (Merchan et al., 1965; Spassky et al., 2002).

While it is often stated that immuno-labeling studies show
no NG2/GFAP co-expression in the CNS, examples where
partial co-expression is apparent from published data include:

Frontiers in Neuroanatomy | www.frontiersin.org 8 May 2015 | Volume 9 | Article 49

http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org
http://www.frontiersin.org/Neuroanatomy/archive


Alghamdi and Fern Phenotype overlap in glia

FIGURE 7 | P10 RON: Oligodendrocytes. (A–C) Typical

oligodendrocyte (boxed areas in “A” shown at higher gain in “B” and

“C”). This cell contains numerous mitochondria (“m”), golgi-apparatus

(“g”), narrow-bore ER (“*”), and microtubules (arrows). A large process is

actively myelinating several large-diameter axons (double arrows). (D–F)

An oligodendrocyte with an immature phenotype (boxed areas in “C”

shown at higher gain in “D” and “E”). Mitochondria (“m”),

golgi-apparatus (“g”), and narrow-bore ER (“*”) are present throughout

the cytoplasm and several large diameter axons are in the early stages

of myelination (double arrows). Microtubules (arrows) and glial filaments

(arrow heads) are present in the cytoplasm. A large process is actively

myelinating several large-diameter axons (double arrows). (G,H) An

otherwise typical oligodendrocyte that is actively myelinated several

axons (double arrows) contains a small area of glial filaments (arrow

head). (I,J) Further example of a myelinating (double arrow)

oligodendrocyte (boxed area shown at higher gain in “J”) containing glial

filaments (arrow head). In both cases, note the typical narrow-bore ER

(“*”) and nuclear morphology. (K,L) A less mature oligodendrocyte (note

size and nuclear morphology) is starting to ensheath an axon (double

arrows) and contains a glial filament bundle (arrow heads).

(Redwine et al., 1997, Figure 2; Hamilton et al., 2009 Figure
4C; and Nishiyama et al., 1996 Figure 7C). Examples where
NG2 and GFAP co-staining appears too complex to meaningfully
distinguish include (Butt et al., 1999, Figure 2 and Polito and
Reynolds, 2005, Figure 1A). The current data provide strong
evidence that astrocyte-type functions ascribed to NG-2(+) cells
are in fact examples of NG-2(+) astrocytes. For example, the
extension of NG-2(+) glial processes into the node of Ranvier
is based on pre-embedded DAB I-EM that fails to preserve
sufficient ultrastructural detail to reveal the presence or absence
of glial filaments (Leoni et al., 2009). The presence of GFAP(+)
/ NG-2(+) astrocytes in the nerve and the well-documented
extension of astrocyte processes into the node of Ranvier suggest
that these NG-2(+) processes are astrocytic in nature.

In P0 and P10 RON, astrocyte finger processes were observed
to extend around axons, on occasion depositing several layers
of membrane. These processes differed from those extended by
oligodendroglia, in that they frequently contained glial filaments,
did not appear to discriminate in terms of axon diameter,
and never produced compact myelin. Axon encirclement by
astrocyte processes was not observed in adult RON or at nodes
of Ranvier and must therefore be a transient phenomenon.
Astrocyte finger processes have been described before (Vaughn
and Peters, 1967; Lord and Duncan, 1987; Wolff, 2007), but axon
wrapping of several membrane layers has not been recognized.
The functional significance is not clear and there were no specific
cellular inclusions within either axons or glial processes at these
specializations.
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FIGURE 8 | Ultrastructural features of glia in adult RON. (A,B) An

oligodendrocyte (shaded red), identified on the basis that it completely

encircles a myelinated axon in which the outer membrane is contiguous

with the cell (arrow) (boxed area in “A” is shown at higher gain in “B”).

Note the relatively uniform chromatin throughout the large nucleus and

the numerous mitochondria in the soma. The cell is completely

ensheathed by astrocyte processes, identified by the presence of glial

filaments (A: shaded blue; B: arrow heads). (C) A further example of an

astrocyte ensheathed oligodendrocyte, astrocyte processes indicated by

arrow heads. (D) High-gain cross-section micrograph showing a

non-myelinated section of an axon that may be a node of Ranvier

(arrow). Note the close apposition of an astrocyte process which

contains glial filaments in cross-section (arrow head) that are somewhat

smaller than neuro-filaments in neighboring axons (double arrows). Axon

microtubules (e.g., “*”) are indistinguishable from those in oligodendrocyte

outer tongue processes on the outer spiral of myelin sheaths (“**”).

Immature Oligodendroglia can Retain Glial
Filaments
In addition to NG-2 expression in astrocytes in neonatal white
matter, a number of immature oligodendrocytes were found to
contain glial filaments. Considering the GFAP(+) stem cell origin
of many oligodendrocytes (Malatesta et al., 2003; Casper and
McCarthy, 2006), and the exceptional stability of filamentous
GFAP [half-life ∼8 days (Chiu and Goldman, 1984)], the
presence of a low number of glial filaments is predicted in
immature oligodendroglia. There are prior reports of GFAP
expression in cells of the early oligodendroglial lineage. For
example, GFAP(+)/MBP(+) cells have been described in fetal
human and mouse spinal white matter (Choi and Kim, 1984,
1985; Choi, 1986) and GFAP(+)/myelin oligodendrocyte-specific
protein (MOSP)(+) cells in central white matter tracts (Dyer
et al., 2000). Clonal analysis indicates a shared cell fate for
some astrocytes and oligodendrocytes in the brain (Levison and
Goldman, 1993; Zerlin et al., 2004), while OPCs transplanted into
glial depleted CNS generate both oligodendrocytes and astrocytes
(Franklin et al., 1995;Windrem et al., 2004). However, the current
observation of glial filament-rich astrocyte encapsulation of
mature oligodendrocytes will make the spatial resolution of these
two glial elements difficult. Indeed, the coexistence of GFAP(+)

/ NG-2(+) and GFAP(+) / NG-2(−)astrocytes, the presence of
glial filaments in immature oligodendroglia, the multiple layer
wrapping of immature axons by astrocytes, and the encapsulation
of mature oligodendrocytes by astrocytes are all phenomena that
make the identification and differentiation of the two cell types
problematic.

Transgenic Studies of Oligodendroglial Origins
Studies using transgenic reporter targeting to glial specific
promoters paint a confused picture, with several lines of
evidence suggesting that some astrocytes share a lineage with
oligodendrocytes. NG-2 (Zhu et al., 2008; Komitova et al., 2009),
PLP (Guo et al., 2010; Michalski et al., 2011), and PLP/Olig2
(Chung et al., 2013) promoters report GFAP immuno-reactive
progeny variously in ventral brain, olfactory bulb, spinal cord,
optic nerve, and cerebellum. The Olig2 promoter shows reporter
expression in GFAP(+) cells throughout the brain (Dimou
et al., 2008), and MBP-lacZ mice show a similar pattern of
reporter/GFAP co-expression (Dyer et al., 2000). In addition to
these reports of GFAP(+) progeny in oligodendroglial-specific
promoter lineage cells, NG-2(+) cells have been reported in
the developing spinal cord that are negative for reporter in
oligodendrocyte lineage promoters such as CNP-GFP (Yuan
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et al., 2002; Lytle et al., 2009). (Lytle et al., 2009) suggest that these
cells are immature astrocytes because some express the astrocyte
marker S-100β. Similar results are reported in reporter expressing
cells throughout the brain at all post-natal points by Karram et al.
(2008) using an NG2 knock in.

Contradicting these reports suggesting a shared origin for
some populations of astrocytes and oligodendrocytes, PDGFαR-
CreER mice show no astrocyte progeny (Rivers et al., 2008; Kang
et al., 2010). PDGFαR(+) cells are also consistently found to be
NG-2(+) (Nishiyama et al., 1996; Rivers et al., 2008; He et al.,
2009). However, the reverse is not the case and the ratio of NG-
2(+) cells that express reporter in PDGFαR-GFP mice varies
between ∼30–90%, depending on location and post-natal age
(Clarke et al., 2012). There are also reports of NG-2(+) cells
that are PDGFαR(−) at particular points in development (Diers-
Fenger et al., 2001; Liu et al., 2002; Wilson et al., 2006; He et al.,
2009), although these data contrast with the work of (Rivers et al.,
2008) and (Kang et al., 2010), who found 100% co-expression of
both markers in the adult mouse.

The current findings of NG-2 expression in astrocytes
identified by ultrastructural and immuno-label approaches
confirm the non-selective nature of NG-2 expression with, as
a minimum, some populations of astrocytes expressing the
antigen (see Richardson et al., 2011). This observation and
the data showing the presence of glial filaments in immature
oligodendroglia, which may contribute to the prior reports
of GFAP(+) cells in transgenic mice with oligodendroglia-
specific reporter expression, emphasize the difficulty of positively
identifying either astrocytes or oligodendrocytes via transgenic or
immuno-labeling approaches alone.
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