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Abstract: Myeloid cells, including parenchymal microglia, perivascular and meningeal macrophages,
and dendritic cells (DCs), are present in the central nervous system (CNS) and establish an intricate
relationship with other cells, playing a crucial role both in health and in neurological diseases. In this
context, DCs are critical to orchestrating the immune response linking the innate and adaptive im-
mune systems. Under steady-state conditions, DCs patrol the CNS, sampling their local environment
and acting as sentinels. During neuroinflammation, the resulting activation of DCs is a critical step
that drives the inflammatory response or the resolution of inflammation with the participation of
different cell types of the immune system (macrophages, mast cells, T and B lymphocytes), resident
cells of the CNS and soluble factors. Although the importance of DCs is clearly recognized, their
exact function in CNS disease is still debated. In this review, we will discuss modern concepts of
DC biology in steady-state and during autoimmune neuroinflammation. Here, we will also address
some key aspects involving DCs in CNS patrolling, highlighting the neuroprotective nature of DCs
and emphasizing their therapeutic potential for the treatment of neurological conditions. Recently,
inhibition of the NAD+-dependent deac(et)ylase sirtuin 6 was demonstrated to delay the onset of
experimental autoimmune encephalomyelitis, by dampening DC trafficking towards inflamed LNs.
Thus, a special focus will be dedicated to sirtuins’ role in DCs functions.

Keywords: dendritic cells; multiple sclerosis; sirtuins; neuroinflammation; neuroprotection;
immunomodulation

1. Introduction

Inflammation is a physiological process concerning the vascularized connective tissue
and the immune system that can be triggered by a variety of factors, including pathogens,
genetic predisposition, apoptotic cells, and toxic compounds. These factors may induce
inflammatory responses in all the tissues, potentially leading to the development of inflam-
matory diseases. Inflammation can be divided into three types based on the timing of the
process in response to the injurious event: acute, which occurs immediately after injury
and lasts for a few days [1]; chronic, which may last for months or even years when acute
inflammation fails to resolve the problem [2]; subacute, which is a transformational period
from acute to chronic, lasting less than 8 weeks [1,3]. Usually, during acute inflammatory
responses, cellular and molecular events and interactions efficiently minimize impending
injury or infection. However, uncontrolled acute and subacute inflammation may become
chronic, contributing to a variety of chronic inflammatory diseases [4]. Recently, it has
become evident that the resolution of inflammation is a biosynthetically actively driven
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process, precisely regulated and controlled by specialized pro-resolving mediators. Coordi-
nated resolution programs initiate shortly after inflammatory responses begin. These fine
biological mechanisms drive the restoration of tissue homeostasis and resolution of acute
inflammation [5,6].

Neuroinflammation is an inflammatory reaction that takes place in the central nervous
system (CNS). However, neuroinflammation is a global process that often encompasses
the CNS and involves peripheral responses with cellular players, either resident in the
brain or traveling from the periphery, or even acting from the periphery. Many of these
cells interact either locally or from a distance through signaling molecules and nerve wire
connections [7,8].

The CNS-infiltrating cells in a neuroinflammatory disease such as multiple sclerosis
(MS) are mainly composed of encephalitogenic T cells, B cells, and activated macrophage/
microglial [9,10]. Various subsets of CD4+ T cells have an important role in MS im-
munopathogenesis, but T helper TH1 and TH17 cells have a crucial role in inflammatory
development and the effector response [11]. In this context, the presence of dendritic
cells (DCs) within the CNS has been suggested for years, but their derivation and their
functions during neuroinflammation are not clear yet. Under steady-state conditions, DCs
present in CNS act as sentinels, continually sampling their local environment [12–14]. They
share this function with macrophages derived from the same basic hematopoietic (bone
marrow-derived) precursors and with parenchymal microglia that arise from a unique
non-hematopoietic origin. While multiple cells may serve as antigen-presenting cells
(APCs), DCs present both foreign and self-proteins to naïve T cells that, in turn, carry
out effector, helper, and cytotoxic functions that serve as a defense against foreign insults.
Thus, DCs are the professional antigen-presenting cells that patrol all the tissues, recognize
foreign antigens and present them to T cells to either mount an immune response or induce
tolerance. Therefore, it is likely that studying one cell type will only provide a partial
view of the whole process. Keeping this in mind, we set this work to revise some of the
current knowledge on the participation of DCs in neuroinflammatory conditions, with a
special focus on multiple sclerosis: indeed, DCs are reported to be involved in various
neuroinflammatory and neurodegenerative disorders, but their actual role is less known
than that of other immune cells [15,16]. Given the recent evidence that inhibition of sirtuin
6 hampers DC migration and given the importance of DC migration to the lymph nodes to
initiate immune responses, we will also review the role of sirtuins in DCs’ functions and
neuroinflammation.

2. Dendritic Cells Classification

DCs are bone marrow-derived cells playing a major role in the activation of the im-
mune system and immunosurveillance for their ability to sample the environment, detect
the presence of antigens and induce T cell activation. A very old classification of DCs was
focused on their anatomical localization: the family of “migratory tissue DC” included all
the cells out of lymphoid organs, while “lymphoid resident DC” was restricted to all the
cells present in lymphoid organs. In this context, most DCs belong to the “conventional or
classical” type and are called cDCs. The other DCs, a rare subset, are called plasmacytoid
DCs (pDCs) and are present in blood and lymph nodes (LNs) [17,18]. Nowadays, DC
subsets have been classified in mice based on the presence of cell surface markers, i.e.,
defined by the expression of CD11c and MHC-II, in combination with CD4, CD8α, CD11b,
and CD205 [19–21]. Of note, CD8α is not expressed by human cDCs, while the expression
of CD11c, CD141, and CD16 are used to segregate three human cDC subsets [17,18,22,23].
Three main conventional subsets of CD11c+ MHC-II+ DCs are identified in physiologi-
cal condition, including CD4−CD8α+CD205+CD11b−, CD4+CD8α−CD205−CD11b+, and
CD4−CD8α−CD205−CD11b+ [24,25]. CD4−CD8αhighCD205+CD11b− lymphoid DCs are
predominantly present in the thymus, populate the T-cell area of the spleen, and are also
found in LNs [26]. It has already been shown that this subset may activate both CD4+ and
CD8+ T cells and concomitantly has a regulatory effect on T cells, eliciting both apoptosis
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in CD4+ T cells and a limited CD8+ T cell activation, resulting in the induction of cross-
tolerance. In contrast, CD4−CD8αhighCD205+CD11b− lymphoid DCs can not only activate
CD8+ T cells but also cross-present for the stimulation of cytotoxic T cells [27,28].

The CD11b-bearing DCs are thought to be involved in the antigen presentation via
MHC class II-restricted antigens to T helper (TH), to induce polarization toward TH17 and
TH2 subsets [27]. The CD8a expression on cDCs delineates a specific subset involved in the
activation of the cytotoxic response (mediated by CD8 T cells) and in the production of the
TH1-polarizing cytokine IL-12 [29].

CD4+CD8α−CD205−CD11b+ and CD4−CD8α−CD205−CD11b+ subsets are located in
the marginal zone between white and red pulp [28], and migrate to the T-cell area upon stim-
ulation [30]. The absence of CD8α expression identifies a subset considered as an efficient
stimulator of CD4+ and CD8+ T cells in in vitro settings and can direct a TH2-type immune
response in vivo. In addition, it can trigger the development of TH1 cells in vivo, consistent
with activated CD4−CD8αhighCD205+CD11b− lymphoid DCs being the major producers
of IL-12. Normally found in the spleen as well as in other secondary lymphoid organs
and the lymphatic system, two other additional DC subsets have been characterized. They
represent the mature form of interstitial tissue DCs which are CD4−CD8α−CD205+CD11b+

myeloid and CD4−CD8αlowCD205highCD11b+ myeloid subsets. They play a fundamental
role as efficient activators of CD4+ T cells to possibly generate TH1 cells [31,32]. More
recently, with the increased availability of multi-data analysis, comparative gene expression
analyses have highlighted differences in DCs resulting in a new classification based on the
differential expression of key transcription factors, such as interferon regulatory factors
8 and 4 (IRF8 and IRF4). Accordingly, the new classification of DCs could be defined by
exploring their surface markers and/or transcription factors (Table 1) [33].

Table 1. Classification of CD11c+MHCII+ dendritic cells.

Type Anatomical Sites
Surface Markers

Main Functions
CD4 CD8α CD205 CD11b

Lymphoid Thymus, spleen, lymph
nodes

− high + −

Induction of
cross-tolerance, antigen

cross preservation for the
stimulation of cytotoxic

response

+ − − + Lymphocyte polarization
toward T helper

− − − + Lymphocyte polarization
toward T helper

Myeloid Spleen, lymph nodes,
lymphatic system

− − + + CD4+ T cell activation
toward TH1 generation− low high −

pDCs are interferon (IFN)-producing cells, abundant in blood as immature cells,
defined by their plasma-cell-like morphology spherical shape, and pDCs play a crucial
role in antiviral immunity [34–37]. A plethora of reports indicates that pDCs are classified
as DCs because they can upregulate the expression of MHC-II, CD80, and CD86 upon
pro-inflammatory maturation and can induce T cell polarization [38]. Upon activation,
pDCs produce and release large amounts of IFN-α and induce CD123 translocation to
the plasma membrane, where it is involved in cell growth, proliferation, survival, and
differentiation [39].

3. Dendritic Cells Shape the Autoimmune Response in Neuroinflammation

As mentioned, DCs are highly specialized antigen-presenting cells (APC) with a crucial
role in immune system activation, regulation of immunological tolerance, and autoimmune
disorders. From a physiological point of view, DCs are immune cells that link the innate
to the adaptive immune systems, with a key role in activating, shaping, and preventing
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CNS immune-mediated damage that is characteristic of multiple sclerosis (MS) and Experi-
mental Autoimmune Encephalomyelitis (EAE), one of the animal models of MS [40,41]. In
the context of autoimmune disorders, such as MS, one of the strongest genetic associations
is a polymorphism of the human leukocyte antigen complex (HLA-DRB1*1501), which
is closely related to antigen presentation of APC [42], such as DCs; several other HLA
region variants are also strongly associated with MS [43]. While the triggering factors in
MS are still debated, the key role of T and B cells, activated by the pro-inflammatory form
(immunogenic) of DCs, is well established [44] and, in particular, the encephalitogenic trig-
gering of T-cell activation is mediated by professional DCs. In addition, DCs may, in turn,
activate the immune response, regulate immunological tolerance (tolerogenic DCs, tolDCs),
and regulate the maintenance of CNS immune surveillance [45]. Although their number
in physiological conditions is limited, it increases in MS and Myelin Oligodendrocyte
Glycoprotein MOG35-55-immunized EAE, suggesting a possible role in neuroinflammation
and neurodegeneration [46]. The fundamental role played by DCs is further supported
by the fact that many therapies, verified in EAE and approved for humans, lead to signif-
icant modifications of DC activation [47]. EAE recapitulates many aspects of the human
disease, such as the DC-mediated CNS inflammation, migration of DCs to the LNs, and
encephalitogenic T cell and B cell activation, resulting in an attack on oligodendrocytes
and demyelination. Although not perfect, EAE has allowed: (i) uncovering some of the
molecular pathways governing the trigger factor(s) of MS; (ii) elucidating the pathogenic
central role of DCs; (iii) understanding that the loss of immunological tolerance is one
of the main pathological mechanisms that lead to the autoimmune response toward the
CNS [41,48,49]. Experiments using MOG-immunized mice have also clarified that DCs, in
the guise of the different subsets, are present in the periphery and several other subsets
of bone marrow-derived MHC-II+ cells normally populating the CNS, where they play a
fundamental role as demyelinating lesion-initiating DCs [12,50]. Considering the mode
of action of DCs, it has already been shown that CD103+ cDC1 Langerhan cells, dermal
specialized DCs, encounter the relevant myelin antigen and migrate to the LNs where
they present it to T cells. Accordingly, DC-mediated presentation of self-neuroantigens is
sufficient to induce EAE in naïve mice [51]. However, the identity of the specific DC subset
that plays a role in the encephalitogenic activation of T cells in LNs has been challenged
when it was found that Batf3-deficient mice, which lack CD103, were susceptible to chronic
EAE induced by MOG injection [52]. DCs are found not only in non-lymphoid peripheral
tissues but also in most primary lymphoid organs, where Follicular DCs (FDCs) are a
specific tissue and specialized type of APC, with a stromal origin [53]. FDCs are largely
restricted to lymphoid follicles, in the central region of primary follicles, and in the light
zone of germinal centers where they form and maintain the follicular architecture [54,55].
FDCs play a fundamental role in capturing and retaining the native antigen by linking to
complementary and immune complexes and then presenting these antigens to germinal
center B cells that start the secondary immune response [56,57]. In the context of EAE and
MS, naïve B cells migrate to LNs, attracted by the chemokine CXCL13 produced by FDCs,
and in LNs the B cells meet the antigen, become activated, and participate in the formation
of B cell follicles with germinal centers, where they differentiate into antibody-producing
plasma cells [58–60]. Conversely, DCs that migrate in the lymphoid organs can origi-
nate both from precursor cells, continuously replenished by a mobile blood-derived pool,
present in non-lymphoid peripheral tissues, and from precursor cells originating in bone
marrow [61–63]. When the precursors of DCs encounter the antigen in the periphery, they
migrate towards the afferent lymphatic vessel and then in the draining lymph nodes, into
the T-cell-rich center. In physiological conditions, there is a continuous low level of traffic
from the periphery to LNs; however, in EAE-affected mice, the migration of DCs is greatly
increased after subcutaneous injection of myelin-relevant peptides in the peripheral tissue.
In LNs of EAE-affected mice, DCs play a key role in initiating T-cell responses [64–67].
Further characterization of DCs throughout the course of EAE has indicated that different
subsets of DCs serve distinct functions: cDCs are involved in disease development, whereas
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pDCs, which produce interferons, are important in the development of T-regulatory cells
and disease resolution [68–70].

Different protocols of EAE induction are available: EAE can be induced in susceptible
rodent strains by active immunization with myelin antigens, as well as it can be induced
by adoptive transfer antigen-specific myelin-reactive T cells. Studies exploiting these
EAE models demonstrated that auto-aggressive encephalitogenic T cells migrate into the
CNS, upon DC activation, where they recognize their cognate antigen and initiate the
neuroinflammatory response leading to axonal damage and neuronal cell death. Although
the molecular requirements for naïve T-cell priming and the formation of an immunologic
synapse between a naïve T cell and a competent antigen-specific DC are well characterized,
little is known regarding peripheral DCs or CNS-resident DCs’ role in the etiopathogenesis
of MS and EAE. Moreover, the potential role of DCs in MS and EAE pathogenesis is
complicated by the fact that DCs are heterogeneous, with a range of functional phenotypes,
being pro-inflammatory or tolerogenic under certain conditions [71]. Different subsets of
bone marrow-derived MHC-II+ cells’ professional DCs are present within the CNS in the
cerebrospinal fluid, choroid plexuses, meninges, and perivascular spaces, in both mice
and humans [50,72]. In addition, MHC-II+ cells with characteristics typical of DCs, i.e.,
based on cell surface marker expression, morphology, and/or ultrastructural characteristics,
are normal constituents of the choroid plexus, meninges, and perivascular spaces in the
uninjured CNS of both humans and rodents [14,45,72,73]. However, the rare DCs that
populate CNS in steady-state conditions, might be recruited to these sites as preDCs and
only differentiate into APC in the brain parenchyma [74].

A major role of CNS-resident DCs during neuroinflammation is to reinforce the
antigen presentation to T cells to license them to cross the blood-brain barrier and invade
the CNS parenchyma [75]. Specifically, CNS-resident DCs drive the polarization of T cells
toward a TH17 phenotype resulting in the secretion of IL-17 and GM-CSF to maintain their
pathogenic properties. In pathological conditions, the CNS-resident DCs not only support
the reactivation of antigen-experienced T cells but also promote the priming of naïve T
cells, which has been considered a potential mechanism of epitope spreading [67]. These
CNS-resident DCs are placed in ideal sites where they interact with infiltrating T cells, since
the choroid plexus and meninges, as well as CNS parenchymal blood vessels, are important
portals for leukocyte entry during EAE and MS [76,77]. It has already been demonstrated,
using transgenic mice in which the expression of MHC-II is restricted to CD11c+, a DCs
specific marker, that DCs are susceptible to EAE, suggesting that DCs alone are sufficient
to activate the T cells’ encephalitogenic response in vivo and, thereby, promote their local
polarization in effector cells. Hence, it is clear that DCs can activate self-antigen-specific
naïve T cells in peripheral LNs and subsequently promote their differentiation into effector
TH1 and TH17 cells: the interplay between DCs and encephalitogenic T cells is crucial in
triggering EAE and MS.

DCs are thought to be natural modulators because they are involved in the polarization
of naive T cells, providing all necessary signals for T cell activation or immunomodulation,
thereby defining the outcome of the immune response in health and disease [78,79]. In the
context of neuroinflammatory disorders, Yonghao Cao and coworkers identified a compa-
rable number of myelin-reactive T cells in MS patients and healthy controls. In contrast to
healthy controls, libraries derived from myelin-reactive T cells of MS patients exhibited
significantly enhanced production of pro-inflammatory cytokines and reduced produc-
tion of the anti-inflammatory cytokine IL-10. Altogether these data demonstrated that
antigen-specific T cells from MS patients functionally differ from healthy controls [80] and
thus, immunogenic activation of DCs in the periphery is a crucial step of the autoimmune
response mediated by the myelin-reactive T cells [81,82]. In addition, activated myelin-
reactive T cells are then reactivated after the engagement of CNS-resident DCs, which
present myelin-derived epitopes or reinforce T cell activation [83]. However, activation of
T helper cells and cytotoxic T cells differs between humans and mice. In fact, EAE models
are mainly based on auto-reactive T helper cells while in contrast, in MS, cytotoxic T cells
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and B cells are the main pathological player propagating inflammation and determining
demyelination [41,84,85].

Moreover, DCs also promote immune homeostasis by establishing and maintain-
ing peripheral T cell tolerance. In contrast to the naturally occurring regulatory T cells
(Treg), DCs play an eminent role in the generation of induced Treg in the periphery, where
DCs have been reported to control their development and maintenance by playing the
immunomodulatory role [86].

4. Immunomodulatory DCs in the Context of Neuroinflammation

While the triggering factors in MS are still debated, the key role of the immune sys-
tem and particularly the autoimmune attack toward myelin is well established [44,87].
Although the number of circulating CNS-reactive T cells present in MS patients and healthy
subjects is similar [88], T cells are a key mediator of disease activity in MS [87] and EAE [89].
Thus, the presence of CNS antigen-reactive T cells alone is not sufficient to induce the
disease and additional factors are involved. Since antigen presentation, most commonly by
DCs, is essential for most T-cell responses [90], it is reasonable to assume that regulation by
DCs will provide important checkpoints and balances for the T cell autoimmune response,
suggesting that DCs are key players in the immune-pathogenesis of MS and EAE. DCs drive
the immune system activation and play a fundamental role in inducing antigen-specific
immunity by presenting antigens to naïve T cells and differentiating the antigen-specific
T cells into effector T cells. On the other hand, DCs promote and drive self-tolerance
through their ability to present self-antigens to developing T cells directly in the thymus in
a biological process called central tolerance (negative selection). The mechanism of nega-
tive selection in the thymus selects autoreactive thymocytes, induces their apoptosis, and
promotes T cell polarization into Treg cells [91]; and this role is mainly ascribed to thymic
DCs [92,93]. Specialized DCs play a role in eliminating autoreactive thymocytes, through
the expression of MHC-II (IE) that is sufficient to induce apoptosis, via negative but not
positive selection, in thymocytes specific for self-antigens [94]. In autoimmune disorders,
central tolerance mediated by negative and positive selection is defective and incomplete,
and self-reactive T and B cells might drive pathological processes. To counteract this aber-
rant and potentially pathological mechanism, peripheral tolerance and immunomodulatory
biological processes have been evolved to limit the autoimmune reaction. In this context,
recent advances in peripheral tolDC biology have revealed their tolerogenic role and have
shown their immense therapeutic potential for treating a variety of immune disorders [95],
and this potential relies on their capacity to establish an intricate network of cell-to-cell
interactions with immune cells, via direct contact and the release of soluble factors in the
extracellular milieu. tolDCs expressing Immunoglobulin-like transcript 2 (ILT2), ILT3, and
ILT4 inhibitory receptors can play a critical role in immunomodulation and tolerance by
promoting inducible-Foxp3+ regulatory T cells (iTreg) induction. iTreg are generated in
the periphery by tolDCs and their generation appears to be dependent on indoleamine
2,3-dioxygenase (IDO), retinoic acid, Vitamin D3, and TGF-β [96]. Moreover, tolDCs secrete
higher levels of IL-10 and IL-4 and drive differentiation of naïve CD4+ T cells into IL-10
secreting Treg in mice [97] and humans [98].

On the other hand, antigen presentation by DCs without inappropriate co-stimulatory
molecule expression (tolDC) leads to T cell anergy or induction of the T-regulatory phe-
notype [99]. Several stimulations of peripheral CD4+ T cells by tolDC can also drive Treg
generation, and T cells cultured under stimulation by tolDC selectively upregulate the
anti-inflammatory cytotoxic T-lymphocyte antigen 4 (CTLA4) and lose their ability to
produce IFN-γ and IL-2 and subsequently differentiate into Treg cells [100]. The secretion
of extracellular vesicles (EVs) emerged as another important mechanism used by DCs to
deliver complex messages in the microenvironment [101]. EVs are nanosized membranous
structures made of a lipid bilayer, virtually secreted by all cell types [102], playing sev-
eral roles in the biology of the cell: sometimes, they are used as a “waste system”, other
times they are exploited as “postmen” to deliver information toward target cells [103].
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In particular, DCs release EVs with different cargoes depending on their maturation or
activation [104]. EVs from mature DCs were shown to induce an immune response by
spreading MHC-antigen complexes to other DCs and also to both CD4+ and CD8+ T cells,
thus mediating their activation [65]. In other disease contexts, EVs secreted by tolDCs can
induce tolerance in different animal models of transplantation [105].

All the tolerogenic mechanisms in the DCs armamentarium result in the generation of
TH2 and Treg from naïve T-cells that represent the effector cells in limiting the extent and
magnitude of the encephalitogenic response in MS and EAE. TH2 and Treg generate mainly
immunomodulatory molecules, such as anti-inflammatory cytokines and surface receptors
commensurate with an anti-inflammatory phenotype [105–113]. Accordingly, it is fairish
to elaborate that DCs play a fundamental role in neuroprotection when their biological
asset is commensurate with tolerogenic phenotype. Indeed, Hongmei Li and co-workers
demonstrated that intravenous injection of MOG35-55 in EAE induces immune tolerance by
an increase in tolerogenic CD11c+CD11b+ DCs in CNS. The increased number of those DCs
results in antigen-specific TH2 and Treg, which are involved in the induction of systemic
tolerance and less demyelination in CNS [114]. Moreover, the tolDCs suppress the devel-
opment of EAE both directly in the host and therapeutically when infused into recipient
EAE-affected mice. Another study revealed that an agonist of aryl hydrocarbon receptor
loaded in nanoliposomes together with a T cell epitope from MOG35-55, induced tolDCs
and suppressed the disease course of chronic-progressive EAE, and this was associated with
the generation of MOG35-55-specific Treg, concomitant with less neurodegeneration [115].

Overexpression of the Hepatocyte Growth Factor in neurons of transgenic mice inhibits
the development of EAE. The mode of action is mediated by the inhibition of immunogenic
DCs that results in the generation of IL-10-producing Treg cells, and down-regulation of
surface markers of T-cell encephalitogenic activation. In this study, a histological evaluation
revealed that there was less inflammatory infiltrate and less demyelinated area indicating
that the reduced activation of DCs could drive neuroprotection [116]. Importantly, employ-
ing a transgenic mice model, Roy Y Kim and collaborators demonstrated that targeting
Estrogen receptor beta (ERβ) signaling pathways in DCs induces a tolerogenic and im-
munomodulatory phenotype. Of note, ligands of ERβ enhance remyelination through a
direct effect on oligodendrocytes, demonstrating that DCs could mediate the maturation of
oligodendrocytes [117].

In the context of MS, several disease-modifying drugs are now being used in therapy
but they are neither specific nor selective for MS, as they act as general immunomodulatory
agents. Moreover, treatment-related side effects or risks can be severe, leaving a significant
and unmet need for safer and more disease-selective treatments. To overcome these
problems, the use of tolDCs has been considered. In the following section, we will discuss
how the current drugs for MS may impact the immunogenic role of DCs and at the same
time, induce tolDCs with the final goal of inducing neuroprotection.

5. Disease-Modifying Drugs (DMDs) Targeting DCs in MS

It is now well-accepted that DCs, in their immunogenic activation, also contribute to
the pathogenesis of MS. In MS patients, DCs are present in brain lesions and meninges and
display an altered phenotype associated with pro-inflammatory function as compared with
DCs of healthy controls. However, none of the approved therapeutic drugs or monoclonal
antibodies for MS specifically target DCs. However, DMD therapies, at least in part, affect
innate immune functions, such as DC-mediated polarization of effector T cells or DC-
mediated expansion of regulatory cells, or cell infiltration into CNS inflammation sites of
effector cells.

The main therapies to treat MS include immunomodulators [47,118–129], anti-α4-
integrin (anti-VLA-4) [130–132], anti-CD20 antibodies [133], anti-CD52 monoclonal anti-
bodies [134], and selective sphingosine-1-phosphate receptors [135–137].

The first class of drugs approved for MS, Interferons, reduces monocytes activation
and prevents the pro-inflammatory profile of DCs through a decreased IL-12 secretion. The
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inhibition of IL-12 production by immunogenic DCs, mediated by type I interferons, results
in reduced polarization of T cells toward a pro-inflammatory TH1 profile [138].

Natalizumab is a humanized monoclonal antibody that selectively binds to very late
antigen-4 (VLA-4 or α4β1-integrin) and it is approved for use in relapsing-remitting MS
patients. Natalizumab reduces the encephalitogenic leukocyte homing into the CNS by
blocking the molecular interaction between α4β1 expressed by immune cells and Vascular
Cell Adhesion Molecule-1, expressed by vascular endothelial cells [139]. Regarding DCs,
natalizumab mediates the production of tolerogenic markers in DCs, such as HLA-G and
CD274, which may contribute to the reduction of neurodegeneration in MS patients [140].
In addition, the effect of natalizumab may drive the inhibition of DC infiltration in the
CNS, but may also impair the DC-mediated T cell activation [132]. Another study revealed
that prolonged therapy with natalizumab reduces the number of DCs and the expression
of MHCs in cerebral perivascular spaces, suggesting a new possible role for VLA-4 in the
infiltration of these cells into the CNS [131].

Fingolimod, a modulator of sphingosine-1-phosphate (S1P) receptors, controls lym-
phocyte trafficking [141]. Additionally, it acts as an immunomodulator by decreasing the
pro-inflammatory activation of DCs, dampening DC-dependent T cell encephalitogenic
activation [142–144].

Despite the increased efficacy of these treatments, a few pieces of evidence indicate
life-threatening side effects that may limit their use in the clinic, as a consequence of the
general immunosuppression of these drugs, which impairs the protective and physiological
immune system functions. For instance, natalizumab therapy was demonstrated to be
associated with an increased risk of progressive multifocal leukoencephalopathy, caused
by the JC virus [145].

Another therapeutical strategy, explored in several clinical trials, is the administration
of the antigenic peptide, or a mixture of different peptides, to trigger hypo-sensitization
and immunological alterations, such as a cytokine shift from the autoimmune TH1/TH17
profile to the induction of IL-10-secreting Treg [146–149].

6. Alternative Strategies to Target DCs in Autoimmune Disorders

There are several therapies used for autoimmune diseases, such as rheumatoid arthritis
(RA), that specifically target DCs. These therapies are not formally approved for MS, but
some of them proved to be promising in different clinical trials.

The therapies that target DCs could inhibit immunogenic DCs functions or promote
their tolerogenic generation.

Therapies that inhibit DCs maturation toward an immunogenic phenotype include those
targeting cytokines production, such as anakinra (recombinant IL-1Ra), tocilizumab [150],
MOR103 [151,152], KB003, and BVDU [153], and those targeting the co-stimulating molecules
that provide positive signals to T cell activation, such as CTLA 4-Ig. In addition, there
are several recombinant chimeric antibodies, such as anti-DEC205-MOG [154] and anti-
CD11c-MOG [155], targeting DCs’ receptors and delivering pro-tolerogenic antigens to
DCs. Since these recombinant chimeric antibodies are developed using various specific
DCs’ receptors as a target, each one can produce dissimilar reactions on different DCs
subtypes [156–161]. Another promising treatment for MS that directly involves DCs is the
ex vivo tolDC therapy [162]. Unfortunately, this approach remains challenging due to the
difficulties in the isolation, purification, and culture of autologous primary DCs (or more
commonly, their progenitor cells) that require extensive handling and can be prohibitively
expensive [163]. An emerging alternative that overcomes both of these limitations is the
administration of nanoparticles containing antigens and immunomodulators which can
induce tolDCs [164]. This approach benefits from antibodies covering the nanoparticle
to target specific DCs’ receptors, such as DEC205 or Clec9A, thus delivering specifically
to these cells the content the particles were loaded with, i.e., immunomodulators, such
as rapamycin [165], myelin antigen [166], IL-10, and combinations of autoantigen and
immunomodulator [167–170].
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Finally, preventing the migration of DCs may represent an alternative strategy. In-
deed, DCs transport antigens from sites of inflammation to the lymph organs for im-
mune activation. A neuronal plasticity molecule-activity-regulated cytoskeleton-associated
protein/activity-regulated gene 3.1 (Arc/Arg3.1), expressed in migratory dendritic cells
in the skin, was identified [171]. Arc/Arg3.1 regulates cytoskeletal changes in DCs, ac-
celerating migration in response to inflammation. Moreover, Arc/Arg3.1 is required for
inducing T cell responses in two different disease models—EAE and allergic contact der-
matitis. Targeting Arc/Arg3.1 may therefore be exploited to selectively modify immune
responses [171]. Inhibition of the NAD+-dependent deac(et)ylase sirtuin 6 was demon-
strated to delay the onset of Experimental Autoimmune Encephalomyelitis, by dampening
DC migration towards inflamed LNs (see below).

7. Role of Sirtuins in DCs

Given our recent evidence that inhibition of sirtuin 6 delays EAE onset by dampening
DC trafficking towards inflamed LNs, we will discuss in the following paragraphs the role
of sirtuins in DCs’ functions and in neuroinflammation.

Sirtuins are NAD+-dependent deac(et)ylases involved in the control of important path-
ways in different cell types and under different stimuli. The sirtuins’ family is composed
of seven members (named from SIRT1 to 7) which differ in cellular localization, substrate
specificity, and physio-pathological role inside the cells. SIRT1, 6, and 7 have a nuclear local-
ization and their role is to deac(et)ylate histones (with different lysine specificity on histone
3) and other proteins (such as p53, MYC, FOXO, NF-κB, HIF-1α, etc.) on lysine residues to
control gene expression. SIRT3, 4, and 5 are localized in the mitochondria. The major role of
SIRT3 is to control energy metabolism in the mitochondria, including fatty acid oxidation,
and maintain basal ATP levels regulating the electron transport chain through deacetylation
of several factors [172]. SIRT4 seems to exert the opposite effect in respect of SIRT3 and
SIRT5. Indeed, SIRT4 negatively regulates glutamine catabolism, fatty acid oxidation, and
amino acid catabolism [172]. SIRT5 has a predominant demalonylation, desuccinylation,
and deglutarylation activity controlling glycolysis and gluconeogenesis [172]. Finally, SIRT2
is predominantly localized in the cytosol and its primary activity is to control cell cycle,
genomic integrity, microtubule dynamics, cell differentiation, metabolic networks, and
autophagy through the deacetylation of several proteins among which α-tubulin, CDC20,
H4K16.

The sirtuins’ world is complex: the literature on sirtuins is exponentially growing and
the presented results are sometimes conflicting. Monocytes/macrophages and microglia,
together with DCs, form the system of mononuclear phagocytes. The role of sirtuins in
microglia and neuroinflammation is discussed in paragraph 8. In monocytes/macrophages,
the role of sirtuins has been investigated in many different contexts and diseases. The
complete discussion on the regulation of different processes in these cells by sirtuins is out
of the scope of this review, and we mention just a few reports: (a) SIRT1 inhibits monocyte
to macrophage differentiation [173] and, in the context of atherosclerosis, SIRT1 deficiency
in monocytes/macrophages contributes to increased oxidative stress, inflammation, foam
cell formation, senescence impaired nitric oxide production and autophagy, suggesting that
SIRT1 activation may be a new therapeutic strategy against atherosclerosis [174]; (b) SIRT3
protects against asbestos-induced pulmonary fibrosis by mitigating monocyte-derived
alveolar macrophages recruitment [175], suppresses renal calcium oxalate crystals by
promoting macrophages M2 polarization [176], and the absence of SIRT3 impairs autophagy
in macrophages [177]; (c) SIRT6 inhibition was reported to suppress macrophage migration,
phagocytosis, and M2 polarization [178], whereas in the context of diabetic nephropathy,
SIRT6 overexpression determined macrophage M2 polarization [179] and, in the context
of rheumatoid arthritis, SIRT6 deficiency increased macrophage-mediated inflammatory
processes [180].
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In this paragraph, we will focus on the role of sirtuins in DCs, in which the most
studied sirtuins are SIRT1 and SIRT6. The effects of sirtuins on DCs are summarized in
Table 2.

Table 2. Sirtuins effects on dendritic cells and derived effects on immune cells.

Sirtuin Effects on DCs Derived Effects on Immune Cells Ref

Sirtuin 1

↓IL-12; ↑TGF-β ↓TH1 and ↑Treg differentiation Liu G. et al. 2015 [181]
promotes maturation of

CD80+CD86+ in mice DCs TH1 and TH17 differentiation Woo S.J. et al. 2016 [182]
↑IL-12p70, IL-1β, and IL-6; ↓IL-10
↓PPARγ; ↑IL-4, IL-5, IL-13 in lung

DCs ↑TH2 maturation Legutko A. et al. 2011 [112]

Sirtuin 6

↑TNF-α, MHC-II, CD80, CD86,
CD40, IL-12; ↓IL-6 in CD11c+

BMDCs
- Lasigliè D. et al. 2016 [183]

promotes maturation of CD11c+

BMDCs
↑CXCR4 and CCR7 - Ferrara G. et al. 2020 [184]promotes migration of DCs to

lymph nodes

The effects of each sirtuin on DCs are described as a list of modulated markers and cytokines. The consequent
effects that activated DCs have on immune cells are also summarized.

7.1. Sirtuin 1

SIRT1 seems to have a role in the maturation of CD4+ Treg lineage and the repression
of TH1 [181]. Naïve CD4+ T cells, incubated with DCs expressing low levels of SIRT1, pre-
sented an increased expression of IFN-γ but not of IL-17A or IL-4. This observation reveals
a differentiation of naïve CD4+ cells in the TH1 lineage [181]. In addition, when SIRT1
expression is downregulated, DCs exhibit an increased level of phosphorylated STAT4 and
a decreased level of phosphorylated SMAD3, which bring about an enhanced expression
of IL-12 and a reduced expression of TGF-β [181]. These two cytokines are responsible
for the alteration of TH1 and Treg differentiation through the increased expression of IL-12
receptor and decreased expression of TFG-β receptor in naïve CD4+ T cells [181]. On the
contrary, Woo and colleagues showed, with a knockout mouse model for SIRT1, that SIRT1
is involved in the maturation of bone marrow CD80+ CD86+ DCs and, consequently, in the
maturation of TH1 and TH17 cells from naïve CD4+ [182]. In addition, DCs derived from
patients affected by rheumatoid arthritis (RA) possess an increased expression of SIRT1
which determines the increased inflammatory response of this autoimmune pathology [182].
Further evidence of the pro-inflammatory role of SIRT1 in DCs derives from another study
on airway allergy, Legutko and colleagues showed that SIRT1 is responsible for TH2 cells
activation by DCs via PPAR-γ repression [112]. From these data, the pharmacological
modulation of SIRT1 could be used to drive the immunity response in a DC-type-related
manner. In other words, the inhibition or activation of SIRT1 should be chosen related to
the specific condition to direct the maturation of the CD4+ lineage most suitable for facing
the specific inflammatory state.

7.2. Sirtuin 6

Among the different sirtuins, SIRT6 role in DCs differentiation and functions has been
deeply investigated, also in the context of EAE, an animal model to study MS (see below
for SIRT6 inhibition as an approach in EAE).

SIRT6 role in the regulation of processes is being increasingly recognized, and it is
covering many different functions, including energy metabolism (related to both glucose
and lipids), DNA repair, aging, inflammation, and immunity. In these latter respects, it can
be mentioned that SIRT6 regulates tumor necrosis factor α (TNF-α) release, through two
different mechanisms: at a post-translational level, SIRT6 deacylase activity removes fatty



Int. J. Mol. Sci. 2022, 23, 4352 11 of 22

acyl groups from target lysines in TNF-α [185]; at a transcriptional level, TNF-α release
is regulated by SIRT6, through a TRPM2-mediated Ca2+-dependent mechanism [186].
Nevertheless, regarding immune cells, we will specifically focus on the SIRT6 role in the
regulation of DC functions, extensively investigated by Dr. Lasigliè and colleagues [183].

SIRT6 promotes myeloid conventional DC (cDCs), but not plasmacytoid DC, differ-
entiation, and maturation (both spontaneous and induced by TLR ligand) and function.
This conclusion was obtained with different approaches, also using SIRT6 KO mice, and
pointing to a specific role for SIRT6 in certain DCs lineages. Bone marrow (BM)-derived
cDCs (BMDCs) were not properly generated in the absence of SIRT6, and this result may be
ascribed to the impaired generation of TNF-α, essential for BMDC differentiation and mat-
uration [187–189]. The expression of maturation markers (MHC-II, CD80, CD86, and CD40)
was strongly reduced in BMDCs from SIRT6 KO compared to those from wild-type mice.
SIRT6 is also important in the regulation of cytokine release from DCs: in basal conditions,
SIRT6 depletion determined the reduced expression of TNF-α (as already demonstrated
in other immune cells, see above), and IL-12; conversely, IL-6 release was increased in the
absence of SIRT6. In stimulated conditions, TNF-α was increased in SIRT6 KO DCs.

Overall, this study revealed that SIRT6 is crucial in DC biology.

8. Role of Sirtuins in Neuroinflammation

The role of sirtuins in neuroinflammation is controversial. Some studies documented a
protective role of sirtuins, whereas other studies reported that sirtuins have pro-inflammatory
effects. In particular, the most studied sirtuin in neuroinflammation seems to be SIRT1. In
addition, also the role of SIRT6 and SIRT7 has been explored.

8.1. Sirtuin 1

SIRT1 has been shown to have a protective effect on neuroinflammation by the deacety-
lation, and consequent inactivation, of NF-κB p65 [190]. The inactivation of NF-κB brings
about the suppression of microglial activation and neuroinflammation, as reported in
several studies [191–194]. In addition, Chen and colleagues showed that the activation of
SIRT1 is a neuroinflammation protective factor in spinal cord injury, reducing the number
of macrophages/microglia in the area of damage and promoting locomotor recovery [195].
In support of the role of SIRT1 as a modulator of inflammation, another report demon-
strated that SIRT1 downregulation, controlled by miR-132, increases the production of
pro-inflammatory cytokines such as TNF-α and lymphotoxin in B cells [196].

Several studies investigated the role of SIRT1 in the inflammatory demyelinating
disease MS. EAE is the most commonly used experimental model for human MS. In vivo
experiments using this animal model showed that the conditional overexpression of SIRT1
in the brain decreases the clinical severity of EAE by reducing T cell infiltration within
the spinal cord parenchyma, decreasing pro-inflammatory cytokines (IFN-γ and IL-17),
but increasing the anti-inflammatory cytokine IL-10 [197]. In addition, the expression of
SIRT1 is decreased in PBMCs of relapsing patients [198]. On the contrary, SIRT1 expression
is elevated in oligodendrocytes and GFAP-positive astrocytes in acute and chronic MS
lesions [199], and SIRT1 acts as a cell cycle arresting factor in differentiating oligoden-
drocyte progenitor cells [200–202]. Further in vivo experiments demonstrated that SIRT1
can stimulate autoimmune responses by activating TH17 cells, and the pharmacological
treatment with SIRT1 inhibitors ameliorated the phenotype of EAE mice, whereas treat-
ment with resveratrol (a SIRT1 activator) significantly exacerbated demyelination and
inflammation [203,204].

There are several pieces of evidence that SIRT1 signaling activation could ameliorate
EAE mouse model phenotype attenuating demyelination, axonal loss, oligodendrocyte
apoptosis, oligodendrocyte progenitor cell recruitment, decreasing pro-inflammatory cy-
tokine expression, and enhancing anti-inflammatory cytokine expression [106,190,205,206].
In addition, several studies demonstrated that ketogenic diet, polyphenols, and SIRT1
activators have a neuroprotective role by increasing the expression of SIRT1 in astrocytes,
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microglia, and mature oligodendrocytes, reducing oxidative stress and modulating the
SIRT1/PPAR-γ and SIRT1/P-AKT/mTOR pathways [207–212].

Altogether these data show a cell lineage-dependent role of SIRT1 in neuroinflam-
mation, suggesting that the possibility of pharmacologically targeting SIRT1 to decrease
myelin degeneration in MS patients should be developed by a cell-specific delivery of
SIRT1 modulating drugs.

8.2. Sirtuin 2

Regarding SIRT2, in line with the general trend of contrasting results in the sirtuins’
world, even regarding its role in microglia and neuroinflammation studies are reporting
conflicting results. On one hand, Pais and colleagues showed a decrease in microglia
activation and neuroinflammation in a process dependent on serine 331 (S331) phosphory-
lation [213]. When SIRT2 is phosphorylated in serine 331 its deacetylase activity is inhibited,
thus it can not deacetylate NF-κB to block the expression of inflammatory cytokines [213].
In contrast, Wang and colleagues showed that the inhibition of SIRT2 by its inhibitor AGK2
brings about a significant decrease in LPS-induced expression of neuroinflammation genes
in microglia in vivo by blocking the nuclear translocation of NF-κB [214].

8.3. Sirtuin 3

The role of SIRT3 in neuroinflammation was investigated only in recent years. Zhou
and colleagues showed that SIRT3 has a role in controlling LPS-mediated mitochondrial
damage by suppressing mitochondrial fission and blocking mitochondria-mediated apop-
tosis in microglia cells [215]. Thus the pharmacological activation of SIRT3 was proposed
as an effective treatment to prevent neuroinflammation.

8.4. Sirtuin 6

Along with the possibility of inhibiting SIRT1, also the pharmacological inhibition
of SIRT6 has been proposed as a strategy in EAE. Few commercially available SIRT6
modulators are available, and this hampered the possibility of performing in vivo studies
on the pharmacological modulation of SIRT6. A few small molecules inhibiting SIRT6
have been identified through in silico screens [216–218]: one compound (named 1), with
quinazolinedione structure, was the first (and only, so far) SIRT6 inhibitor used in in vivo
pre-clinical trials. At first, it was used in a model of Type 2 diabetes, and 1 ameliorated
different parameters [219]. Next, 1 was used in mice with EAE. The rationale for exploring
the possible effect of SIRT6 inhibitors in EAE was based on some premises: (a) SIRT6
promotes the release of TNF-α from different cells (including DC) through different mecha-
nisms [183,185,220,221]; (b) SIRT6 promotes the secretion of IFN-γ and IL-8 [186,221,222];
(c) SIRT6 enhances DC differentiation and maturation [183].

The SIRT6 inhibitor, 1, was administered following both a “preventive” and a “thera-
peutic” protocol. The therapeutic effect in EAE was rather disappointing. Instead, SIRT6
inhibition strikingly delayed EAE onset, i.e., it had a great impact on the disease onset
if administered well before the appearance of clinical symptoms. Figure 1 summarizes
the effect of the SIRT6 inhibitor when administrated in the “preventive” protocol. This
protocol was aimed at investigating the effect of 1 during the early phase of the disease, at
the beginning of the inflammation (triggered with the antigen administration) that then
leads to the disease. In line with SIRT6 role in pro-inflammatory responses, SIRT6 inhibition
delayed the inflammatory events that follow mice immunization and precede EAE onset.
Of relevance for this review, among the other anti-inflammatory effects, SIRT6 inhibition
reduced the percentage of CXCR4-positive and CXCR4/CCR7 double-positive DCs in
lymph nodes [184], with CXCR4 and CCR7 two pro-migratory surface markers. Therefore,
possibly, the delay in the onset of EAE, obtained upon 1 administration, may reflect the
reduced DC migration. Indeed, in vitro experiments also confirmed that DC migration
was impaired by SIRT6 inhibition [184]. The delayed migration may be a result of the
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reduced TNF-α production by different cell types [184], which is crucial for DC activation
and migration [223,224].
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Figure 1. Sirt6 inhibition delays EAE onset by reducing DC migration. In a “preventive” treatment, a
SIRT6 inhibitor, named 1, was administered intraperitoneally (30 mg/kg, once/day) at 3 days post-
immunization: the clinical score reveals that disease onset was greatly delayed. The representation of
CXCR4+ and CXCR4+/CCR7+ DCs in lymph nodes was greatly reduced [184].

Overall, this study suggests that SIRT6 inhibition may be exploited for the treatment
of MS or other autoimmune disorders for its effects on the DCs. Likely, SIRT6 inhibition
will not be considered as a possible strategy for overt MS, as it failed to have an impact on
the “therapeutic” protocol. Instead, SIRT6 inhibition may deserve further studies for the
treatment of patients at early stages, and/or in the “clinically isolated syndrome” (CIS):
few options are available to stop progression to MS [225]. Notably, patients with CIS have
a high frequency of DCs in their peripheral blood, and SIRT6 inhibition may at least delay
the progression to MS by interfering with DC migration.
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8.5. Sirtuin 7

Regarding SIRT7, Burg and colleagues have demonstrated that the epigenetic factor
SIRT7 influences the immune and nervous system, but its role is too weak to be of modulat-
ing relevance in the clinical score in experimental autoimmune neuroinflammation [226].
In particular, SIRT7 KO mice did not show differences in disease onset, disease severity, or
remission when compared to wild-type mice. However, SIRT7 KO mice showed a slight
decrease in the number of Treg cells in the CNS during the chronic phase of EAE [226].

9. Conclusions

DCs play a major role in immune system activation and are considered a key factor of
MS etiopathogenesis. Accordingly, manipulation of their phenotype could be attractive for
treating autoimmune disorders. Indeed, DCs have shown their immense therapeutic poten-
tial for treating a variety of immune disorders when they are educated to be tolerogenic.
In this context, SIRT6 inhibition may deserve further investigation as a strategy to affect
immunogenic DCs.
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