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Differential scanning fluorimetry (DSF) is a widely used biophysical technique with appli-
cations to drug discovery and protein biochemistry. DSF experiments are commonly per-
formed in commercial real-time polymerase chain reaction (qPCR) thermal cyclers or
nanoDSF instruments. Here, we report the construction, validation, and example applica-
tions of an open-source DSF system for 176 €, which, in addition to protein-DSF experi-
ments, also proved to be a versatile biophysical instrument for less conventional RNA-
DSF experiments. Using 3D-printed parts made of polyoxymethylene, we were able to fab-
ricate a thermostable machine chassis for protein-melting experiments. The combination
of blue high-power LEDs as the light source and stage light foil as filter components was
proven to be a reliable and affordable alternative to conventional optics equipment for
the detection of SYPRO Orange or Sybr Gold fluorescence. The ESP32 microcontroller is
the core piece of this openDSF instrument, while the in-built I2S interface was found to
be a powerful analog-to-digital converter for fast acquisition of fluorescence and temper-
ature data. Airflow heating and inline temperature control by thermistors enabled high-
accuracy temperature management in PCR tubes (±0.1 �C) allowing us to perform high-
resolution thermal shift assays (TSA) from exemplary biological applications.
� 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Specifications table
Hardware name
 openDSF
Subject area
 Chemistry and biochemistry

Hardware type
 Measuring physical properties and in-lab sensors

Closest commercial analog
 Real-time PCR thermocycler: e.g., Qiagen Rotor-Gene Q

Open source license
 GNU General Public License (GPL) 3.0

Cost of hardware
 176 €

Source file repository
 openDSF (Mendeley data): https://doi.org/10.17632/73rt8s7pwd.2
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Hardware in context

Differential scanning fluorimetry (DSF) is a method of biophysical protein analysis, which is utilized for the investigation
of thermal protein unfolding [1–3]. In this context, protein-binding ligands may increase the protein stability and result in
the protein unfolding being shifted to a higher melting temperature. The difference between the melting temperature of a
protein in the presence or absence of a ligand is termed ‘‘thermal shift”. Thermal shift assays (TSA) are among the most com-
mon ligand characterization techniques with numerous applications for drug discovery and structural biology [4,5]. TSAs are
easy to establish and are typically performed in commercial real-time polymerase chain reaction thermal cycler (qPCR)
instruments [6,7]. To perform a typical DSF experiment, a sample containing a protein or protein complex is added with
the SYPRO Orange dye. SYPRO Orange has a low intrinsic fluorescence with the natively folded protein present. Only upon
heating, when hydrophobic patches of the protein are exposed, the merocyanine-type dye binds to them, resulting in a sig-
nificant increase in fluorescence [3]. The apparent melting point (Tm) is usually determined as the inflection point of the flu-
orescence versus temperature curve and is considered a measure of protein stabilization [8]. Widely used qPCR machines
used for this purpose utilize halogen lamps, laser diodes, or LEDs to monitor the fluorescence changes allowing the measure-
ment of the SYPRO Orange fluorescence. Besides the high cost of commercial qPCR instruments, the factory filter sets fre-
quently do not optimally fit the large Stokes shift of the SYPRO Orange dye (kex = 490 nm/kem = 624 nm) and cause
reduced quantum yield and signal-to-noise (S/N)-ratios [9]. This might lead to the absence of a measurable melting curve
for small and less hydrophobic proteins [3]. In contrast, fluorescence spectrometers with variable settings of wavelengths
are limited in their temperature management, making them mostly impractical for DSF experiments.

To address this issue, Hoeser et al. developed a cheap and easy-to-build heating device for a 96-well plate reader that is
coupled with a fluorescence spectrometer [10]. However, this requires the availability of a likewise expensive plate reader.
Recently, open-source qPCR machines have been presented and described for DIY reproduction [11,12]. However, some of
these open-source qPCR devices (including some commercial instruments) were designed and proven for nucleic acid quan-
tification and will likely be impractical for performing high-resolution DSF experiments because they show temperature
homogeneity ranging up to ± 0.5 �C so that thermal shifts smaller than the temperature resolution limit might not be accu-
rately detected [11,13].

In addition to proteins, numerous RNA molecules also possess a native tertiary structure that can be characterized in the
course of a thermal unfolding process. Similar to protein–ligand binding, small-molecule modulators of RNA often lead to
stabilization and increased melting points [14,15]. This can be obtained in the course of melting experiments from the intrin-
sic fluorescence properties of the nucleic bases or with an intercalating dye. For this purpose, Silvers et al. developed a DSF
protocol using dyes from the Sybr series, which allow quantification with the same fluorescence setup as for SYPRO Orange
when using the Sybr Gold dye (kex = 495 nm/kem = 537 nm) [16].

In this work, we describe the construction and performance of an optics-free 3D-printable low-cost differential scanning
fluorometer (openDSF) with high sensitivity for SYPRO Orange (protein-DSF) or Sybr Gold (RNA-DSF) fluorescence detection
and a melting temperature resolution of < 0.1 �C.
Hardware description

We designed an open-source differential scanning fluorometer as a low-cost alternative to existing qPCR thermal cyclers
and commercial nanoDSF devices for biophysical characterization of protein–ligand complexes (Fig. 1). To support low-
budget academic research campaigns, only inexpensive and easily available components (e.g., 3D-printed pieces, basic elec-
tronics) were used, so that the costs (176 €) are several magnitudes lower than those of a commercial counterpart
(�20,000 €) [17]. The fundamental principle of the system is that four DSF reaction mixtures, prepared in PCR tubes, are flo-
wed with heated air, while both the temperature and the SYPRO Orange fluorescence of each PCR tube are measured and
recorded. To achieve this functionality, the design of the device combines five modules to form the whole open-source dif-
ferential scanning fluorometer: 1) the 3D-printed chassis, 2) the ESP32 microcontroller, 3) the air heating system, 4) the tem-
perature probes, and 5) the fluorescence measurement path (Fig. 2B).
3D-printed device chassis

Structural parts forming the chassis of the device were fabricated by fused deposition modeling with an Anycubic 4Max
3D-printer either from polyethylene terephthalate (PETG, diameter: 1.75 mm) or from polyoxymethylene (POM, diameter:
1.75 mm) filament. Functional tasks of the chassis are the assembly of the measuring, lighting, and heating modules as well
as the directional flow control of the air heating system. DSF experiments are performed in the temperature range of 20–
95 �C, which sets special requirements for the temperature stability of the 3D-printed parts. Hence, POM filament was used
for parts with increased temperature demands (POM is dimensionally stable up to at least 130 �C [18]). To meet the known
constructional limitations of POM 3D-printing, sharp corners and edges were avoided in the design of the POM parts, because
these are particularly prone to warping [19]. The openDSF chassis consisted of 14 different 3D-printed parts (Fig. 2A). POM
parts were designed double-walled and printed with an infill of 20% so that the high air content inside these parts makes
2



Fig. 1. Device overview. Photograph of the openDSF instrument with opened sample holders and labeling of important features.
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them good thermal insulators. The low thermal losses allow for reproducible heating ramps and eliminate hot zones on the
device surface so that it can be safely touched by the user at any time.

ESP32 microcontroller

The Espressif ESP32 wrover microcontroller (dual-core CPU, 8 MB PSRAM, 240 MHz clock) was chosen as the central con-
trol unit of the fluorometer. The ESP32 is a low-cost and relatively recent microcontroller family (released in 2016) [20]. The
digital outputs of the chip were used to control the excitation LEDs, the air-supplying fan, and the heating wire. The periph-
eral I2S interface of the chip, which has been designed for transmitting audio data, has proven suitable for recording ther-
mistor and photodiode analog input signals in the microsecond range (Fig. 2B). In this regard, two onboard multi-channel
successive-approximation analog-to-digital converters (SAR-ADCs) were polled with a sampling rate of 60 kHz and the tem-
perature resp. fluorescence values were recorded via direct memory access (DMA) protocol. Online data processing was han-
dled by one of the two CPU cores, while the other core was tasked with general control and communication via the PC’s serial
interface. The firmware for the ESP32 was developed on the Espressif ESP-IDF 4.2 platform, while the serial interface was
implemented with Python, Matplotlib, NumPy, SciPy, and Tkinter. A serial/USB driver must be installed on the connected PC.

Air heating system

Temperature control of the sample PCR tubes was performed by airflow heating, in which the air was tempered with a
heating wire and conveyed by a radial fan (Fig. 3A). The heating power (heating wire current) was controlled by a 13-bit
PWM MOSFET circuit, while the air volume (fan speed) was controlled by an 11-bit circuit. A Sunon Blower (MF50151V2-
3



Fig. 2. (A) Explosion drawing of the openDSF chassis. 3D-printed parts made of PETG are shown in blue. POM parts are shown in gray. A detailed explosion
drawing and a cross-section of the fluorescence cell are shown in the figures below. (B) Schematic overview of all modules included in the system with
information on characteristic specifications of the components. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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B00U-A99) was used as a radial fan, which was designed to convey approx. 5 m3/h of air along an SS430 awg30 heating wire
(stainless steel 430, l = 70 cm, d = 0.25 mm, R = 12.2 X/m, X6Cr17). The power consumption of the heating module was
designed to be max. 150 W to be able to run both slow and fast (0.1–9 �C/min) heating ramps for up to 4 PCR tube samples.
A homogeneous temperature cross-section was ensured by turbulent airflow within the device’s mixing cell. The dimensions
of the air-flowed round parts of the chassis were designed based on a calculated Reynolds number (Re � 10,000). Addition-
ally, to increase the velocity of the airflow and thus the heat transfer in the proximity of the sample vessels, the sample hold-
ers were shaped as Laval nozzles. The resulting pressure loss promotes uniform distribution of the airflow to the 4 individual
sample holders.

Temperature probes

The temperature of each sample can be determined separately using negative temperature coefficient (NTC) thermistors
(NTC3950, 100 kX) within the airspace of the individual PCR tube. The temperature probes were dimensioned in a manner
that they can be inserted into the PCR tube and thereby seal the upper opening. A thermistor circuit was designed in such a
way that a voltage divider (Vref = 5.02 V) enabled the recording of relevant measurement temperatures (20–95 �C) within the
4



Fig. 3. (A) Photograph and cross-section of the heating module. The air heating system works according to the principle that the fan conveys ambient air
through the heating tube, in which the air is heated and turbulated on the coiled heating wire. The heating coil is self-supporting and is connected to the
power supply at the ends on cut-to-size drilled board parts. (B) Bottom: The air heating system was calibrated using the thermistors of the sample holders.
The resistance of the thermistors follows the logarithmic Steinhart-Hart relationship to the actual temperature. Top: Determination of the coefficients of the
Steinhart-Hart equation (1T ¼ 0:0009614þ 0:0002096 � ln Rð Þ þ 0 � ln3ðRÞ) allows temperature adjustment in the PCR tubes with an absolute accuracy of
0.1 �C.
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ADC’s 12-bit resolution. The measured temperature-dependent voltages were recorded every second by the ESP32 chip and
stabilized by oversampling (SAR-ADC at 60 kHz sampling rate). The conversion of voltages to sample temperatures was per-

formed using the modified Steinhart-Hart equation (1T ¼ a0 þ a1 ln Rð Þ þ a2ln
3ðRÞ) [21]. The apparent resistance was calcu-

lated from the measured voltages and the dimensions of our design: Rthermistor ¼ 12kXð 5;02V
0:0008�Uþ0:0624 � 1Þ . The thermistors

were calibrated by determining the coefficients (ai) using a precision contact thermometer (Pt100). With this setup, we were
able to achieve linear heating ramps over the entire temperature range, with an absolute temperature inaccuracy of ± 0.1 �C
(Fig. 3B).
Fluorescence measurement path

The conventional DSF dye SYPRO Orange is a merocyanine-type fluorescent dye with absorption and emission maxima of
kex = 490 nm and kem = 624 nm (Fig. 4A). Commercial qPCR instruments often use costly lamps, optics, or filter equipment,
which we have circumvented by using cheap high-power OSRAM Oslon SSL 80 royal-blue LEDs as the light source (on 20 mm
stars, LD CQ7P). The fluorescent dye in the samples was excited with a 50 ms pulse of the high-power blue LED (k = 450 nm,
Fig. 4. (A) Normalized spectra of the SYPRO Orange fluorescence, LED emission, and filter foil transmission (all measured on a Tecan Spark 10 M
spectrometer). The LED emission showed good spectral overlap with the excitation characteristics of SYPRO Orange, whereas the orange filter foil efficiently
filtered out excitation light but allowed the SYPRO Orange emission to pass with a transmission rate of > 80%. (B) Exploded view drawing and cross-section
of the fluorescence cell with labeling of the most important components. The blue arrows show the path of the excitation light while the orange arrows
illustrate the emitted radiation path. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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Wmax = 1400 mW, /E = 630 mW). Longer pulse widths resulted in significant photobleaching of the dye during long-term
experiments, but since the fluorescence signal is recorded at a sampling rate of 60 kHz, a 50 ms pulse width was found
to be sufficient to achieve low-noise recordings. Since the output fluorescence depends on the protein, the buffer, and the
sample volume, the irradiation intensity can be modulated with the 11-bit PWM controller of a constant current source
(LED BUCK V2, 1000 mA, 42 V, PWM < 5 kHz). Excitation of the sample solution was performed through the lateral outer
wall of the PCR tube, with the emitted fluorescence captured at a 90� angle by OSRAM SFH 203 photodiodes (Fig. 4B).
The SFH 203 photodiode was selected because of its exceptionally fast switching operational performance (rise/fall time:
5 ns). However, this photodiode exhibits sensitivity throughout the entire visible spectrum, so that the scattered and
reflected excitation light must be eliminated with a filter. We have found that filter foils for stage spotlights are an excellent
alternative to expensive optical filters. In this regard, the receiver photodiode was shielded with a piece of the LEE 158 Deep
Orange filter foil, which efficiently prevented the passage of light with a wavelength of < 500 nm. The current of the receiver
photodiode was evaluated with a transimpedance amplifier (Texas Instruments OPA380, RF = 12 MX) and the resulting out-
put voltage was measured by the ESP32 SAR-ADC (sampling rate of 60 kHz, bit depth of 12-bit).

Data acquisition and processing

During a DSF run, both fluorescence and temperature data are acquired for each of the four holders individually (ADC
serial inputs: 8 channels = 4 each for photodiodes and thermistors). In this regard, two values per data point, i. e. tempera-
ture and fluorescence, are recorded for regular intervals. The interval between two measurement points has been established
with 1000 ms by default but can also be modified (def TEMP_SAMPLE_PERIOD). At the beginning of each interval, a sampling
phase is performed in which the PCR tube is irradiated, and fluorescence resp. temperature values are recorded. The default
duration for the sampling phase is determined by the LED pulse width (int led_on; default: 50 ms). The sampling frequency
is 60 kHz on 8 channels (4 temperature, 4 fluorescence), hence, for each data point 375 raw values per channel
(¼ 60kHz

4þ4channels � 50ms
1000ms) are recorded. Subsequently, these raw values are combined by arithmetic averaging and the mean fluo-

rescence values are written to a log file for online plot and CSV export at specified temperatures (0.1–1 �C/datapoint). For
post-acquisition processing, a smoothing function according to the Savitzky-Golay filtering algorithm was implemented
(scipy.signal.savgol_filter). The signal acquisition and processing pipeline of the openDSF system is shown in SI Fig. 1.

� The open-source differential scanning fluorometer (openDSF) allows fast, accurate, and reliable protein and RNA-DSF
measurements.

� The combination of high-power LEDs as the light source and stage light foil as filter components is a cost-effective alter-
native to laser lamps and optics equipment for fluorometric measuring cells.

� Airflow heating and temperature control by thermistors allow high accuracy temperature management in PCR tubes
(±0.1 �C).

� The ESP32 microcontroller with the I2S interface is a powerful system for fast acquisition of analog measurement data
(sampling rate 60 kHz).

� A 3D-printable polyoxymethylene (POM) chassis allows biological experiments at up to 130 �C.

Design files summary

The repository containing the design data for reproduction and modification of an openDSF instrument can be found at
https://doi.org/10.17632/73rt8s7pwd.2
Design file name
 File type
 Open source license
6

Location of the file
AirDiffuser
 FreeCAD
0.18/.stl
GNU General Public
License(GPL) 3.0
https://data.mendeley.com/public-files/datasets/

73rt8s7pwd/files/379d19e4-fff5-46a2-91db-

4fb37df472aa/file_downloaded

DiodeShield
 FreeCAD

0.18/.stl

GNU General Public
License(GPL) 3.0
https://data.mendeley.com/public-files/datasets/

73rt8s7pwd/files/9aad5e3f-d962-4a97-987c-

37b4ce739f63/file_downloaded

FanAdapter
 FreeCAD

0.18/.stl

GNU General Public
License(GPL) 3.0
https://data.mendeley.com/public-files/datasets/

73rt8s7pwd/files/dbea3546-4454–4188-a598-

3fc66c4576a4/file_downloaded

FluorescenceCell
 FreeCAD

0.18/.stl

GNU General Public
License(GPL) 3.0
https://data.mendeley.com/public-files/datasets/

73rt8s7pwd/files/39770286-5fe0-428f-8ff6-

876545f331f1/file_downloaded

https://doi.org/10.17632/73rt8s7pwd.2
https://data.mendeley.com/public-files/datasets/73rt8s7pwd/files/379d19e4-fff5-46a2-91db-4fb37df472aa/file_downloaded
https://data.mendeley.com/public-files/datasets/73rt8s7pwd/files/379d19e4-fff5-46a2-91db-4fb37df472aa/file_downloaded
https://data.mendeley.com/public-files/datasets/73rt8s7pwd/files/379d19e4-fff5-46a2-91db-4fb37df472aa/file_downloaded
https://data.mendeley.com/public-files/datasets/73rt8s7pwd/files/9aad5e3f-d962-4a97-987c-37b4ce739f63/file_downloaded
https://data.mendeley.com/public-files/datasets/73rt8s7pwd/files/9aad5e3f-d962-4a97-987c-37b4ce739f63/file_downloaded
https://data.mendeley.com/public-files/datasets/73rt8s7pwd/files/9aad5e3f-d962-4a97-987c-37b4ce739f63/file_downloaded
https://data.mendeley.com/public-files/datasets/73rt8s7pwd/files/dbea3546-4454%e2%80%934188-a598-3fc66c4576a4/file_downloaded
https://data.mendeley.com/public-files/datasets/73rt8s7pwd/files/dbea3546-4454%e2%80%934188-a598-3fc66c4576a4/file_downloaded
https://data.mendeley.com/public-files/datasets/73rt8s7pwd/files/dbea3546-4454%e2%80%934188-a598-3fc66c4576a4/file_downloaded
https://data.mendeley.com/public-files/datasets/73rt8s7pwd/files/39770286-5fe0-428f-8ff6-876545f331f1/file_downloaded
https://data.mendeley.com/public-files/datasets/73rt8s7pwd/files/39770286-5fe0-428f-8ff6-876545f331f1/file_downloaded
https://data.mendeley.com/public-files/datasets/73rt8s7pwd/files/39770286-5fe0-428f-8ff6-876545f331f1/file_downloaded
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⇑ (continued)
Design file name
 File type
 Open source license
7

Location of the file
HeatingTube
 FreeCAD
0.18/.stl
GNU General Public
License(GPL) 3.0
https://data.mendeley.com/public-files/datasets/

73rt8s7pwd/files/ff45fdf5-d84d-4854-b236-

5c6c7ad228d0/file_downloaded

Housing
 FreeCAD

0.18/.stl

GNU General Public
License(GPL) 3.0
https://data.mendeley.com/public-files/datasets/

73rt8s7pwd/files/81528873–8264-4cd5-867f-
d2622c1baa20/file_downloaded
LEDHolder
 FreeCAD
0.18/.stl
GNU General Public
License(GPL) 3.0
https://data.mendeley.com/public-files/datasets/

73rt8s7pwd/files/be717870-22ea-4ec6-99fb-

e4f30555df45/file_downloaded

openDSF
 Python

3.9.2/.zip

GNU General Public
License(GPL) 3.0
https://data.mendeley.com/public-files/datasets/

73rt8s7pwd/files/93d80e7b-d63a-40f8-94b5-

1498d167c9f0/file_downloaded

PhotoDiodePCB
 .zip
 GNU General Public

License(GPL) 3.0

https://data.mendeley.com/public-files/datasets/

73rt8s7pwd/files/81dcaa9e-9a6d-44c0-a272-

a710958638ab/file_downloaded

SampleCover
 FreeCAD

0.18/.stl

GNU General Public
License(GPL) 3.0
https://data.mendeley.com/public-files/datasets/

73rt8s7pwd/files/1be70242-af16-4df3-83d9-

10014a03d285/file_downloaded

SampleHolder
 FreeCAD

0.18/.stl

GNU General Public
License(GPL) 3.0
https://data.mendeley.com/public-files/datasets/

73rt8s7pwd/files/34ad26df-501d-41e0-9515-

676d01cdf948/file_downloaded

TemperatureSensor
 FreeCAD

0.18/.stl

GNU General Public
License(GPL) 3.0
https://data.mendeley.com/public-files/datasets/

73rt8s7pwd/files/f215b2f0-f524-43d0-aced-

cbc2421c98db/file_downloaded

WiringDiagram
 KiCad

Eeschema/.
zip
GNU General Public
License(GPL) 3.0
https://data.mendeley.com/public-files/datasets/

73rt8s7pwd/files/2dbbf304-9985-4c7c-988e-

8e972766ae3e/file_downloaded

3D-printing

profiles

Cura
profile/.ini
GNU General Public
License(GPL) 3.0
https://data.mendeley.com/public-files/datasets/

73rt8s7pwd/files/99881b79-0276–4043-9df3-

e98d1b81148e/file_downloaded
AirDiffuser: The air diffuser (POM) divides the heated airflow among the four individual measuring cells and leads to turbu-
lent air mixing and thus to a homogeneous temperature profile.

DiodeShield: The diode shield (PETG) is designed to shield the photodiodes from external light or daylight to reduce the
noise of the recorded fluorescence signal.

FanAdapter: The fan adapter (PETG) converts the rectangular outlet of the Sunon radial fan to a circular fitting of the heat-
ing tube.

FluorescenceCell: The fluorescence cell (PETG) creates a framework into which the sample holders are mounted.

HeatingTube: The heating tube (POM) incorporates the coiled heating wire.

Housing: The housing of the circuit boards protects the electronic components during use.

LEDHolder: High-power LEDs are glued onto the LED holders and serve to stabilize them.

openDSF: Project folder (openDSF.zip) for insertion into an ESP_IDF development environment. Python GUI (openDSF.py)
to control the device from the user’s PC.

PhotoDiodePCB: Material for the fabrication of printed circuit boards of the photodiode modules.

SampleCover: A light and temperature shielding cover (PETG + POM) is placed over the measuring cell, through which the
temperature sensors are inserted into the PCR tubes. The heated airflow of the instrument exits through this cover, which is
why the contact points to the hot air were protected with thermally robust POM inserts.

https://data.mendeley.com/public-files/datasets/73rt8s7pwd/files/ff45fdf5-d84d-4854-b236-5c6c7ad228d0/file_downloaded
https://data.mendeley.com/public-files/datasets/73rt8s7pwd/files/ff45fdf5-d84d-4854-b236-5c6c7ad228d0/file_downloaded
https://data.mendeley.com/public-files/datasets/73rt8s7pwd/files/ff45fdf5-d84d-4854-b236-5c6c7ad228d0/file_downloaded
https://data.mendeley.com/public-files/datasets/73rt8s7pwd/files/81528873%e2%80%938264-4cd5-867f-d2622c1baa20/file_downloaded
https://data.mendeley.com/public-files/datasets/73rt8s7pwd/files/81528873%e2%80%938264-4cd5-867f-d2622c1baa20/file_downloaded
https://data.mendeley.com/public-files/datasets/73rt8s7pwd/files/81528873%e2%80%938264-4cd5-867f-d2622c1baa20/file_downloaded
https://data.mendeley.com/public-files/datasets/73rt8s7pwd/files/be717870-22ea-4ec6-99fb-e4f30555df45/file_downloaded
https://data.mendeley.com/public-files/datasets/73rt8s7pwd/files/be717870-22ea-4ec6-99fb-e4f30555df45/file_downloaded
https://data.mendeley.com/public-files/datasets/73rt8s7pwd/files/be717870-22ea-4ec6-99fb-e4f30555df45/file_downloaded
https://data.mendeley.com/public-files/datasets/73rt8s7pwd/files/93d80e7b-d63a-40f8-94b5-1498d167c9f0/file_downloaded
https://data.mendeley.com/public-files/datasets/73rt8s7pwd/files/93d80e7b-d63a-40f8-94b5-1498d167c9f0/file_downloaded
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SampleHolder: The sample holders (POM) are shaped as Laval nozzles to ensure optimal airflow and heat transfer. Due to
the pressure loss of the nozzle, homogeneous air distribution is achieved. The sample holders provide holes for the LEDs and
photodiodes.

TemperatureSensor: The temperature sensors (PETG) hold the individual thermistors and shield the sensitive electrical
contacts from moisture and physical contact.

WiringDiagram: Circuit diagram overview of the electronic components of the openDSF system created with KiCad
Eeschema.

3D-printing profiles: List of 3D-printer settings (.ini) for the different filaments used (PETG and POM).

Bill of materials summary
Designator
 Component
 Number
 Cost per
unit -
currency
8

Total
cost -
currency
Source of materials
 Material
type
Constant current
power supply
LED BUCK V2 constant
current power supply
(1000 mA, 42 V), PWM
2.5 V, < 5 kHz
1
 12.90 €
 12.90 €
 https://bit.ly/31gELmI
 Semi-
conductor
ESP32 board
 ESP32 wrover 8 MB
Psram, development
board
1
 7.21 €
 7.21 €
 https://bit.ly/3l1rbda
 Semi-
conductor
Fan
 Sunon Blower
MF50151V2-B00U-A99
1
 6.93 €
 6.93 €
 https://bit.ly/3yV6btO
 Composite
Heating wire
 SS430 awg30 stainless
steel wire 430, 0.25 mm,
resistance 12.2 O/m,
1
 3.95 €
 3.95 €
 https://bit.ly/3EbirKD
 Metal
High-Power LED
 OSRAM Oslon SSL 80
royal-blue on 20 mm star
4
 2.99 €
 11.96 €
 https://bit.ly/38XAg0Y
 Semi-
conductor
PETG filament
 Maertz 1.75 mm
PETG,1.0 kg spool
1
 14.31 €
 14.31 €
 https://bit.ly/2VqAYkk
 Polymer
Photodiodes
 OSRAM SFH 203
 4
 0.67 €
 2.56 €
 https://bit.ly/2X7wqQc
 Semi-
conductor
Polyurethane
varnish
OBI PU color varnish deep
black semi-gloss, 125 mL
1
 6.99 €
 6.99 €
 https://bit.ly/3Eh1luS
 Organic
POM filament
 Hobbyking 1.75 mm POM,
1.0 kg spool
1
 22.70 €
 22.70 €
 https://bit.ly/3ngNkad
 Polymer
Power supply
 36 V / 10 A
 1
 18.15 €
 18.15 €
 https://bit.ly/3jZoZDP
 Composite
Power supply
 12 V / 3 A
 1
 12.99 €
 12.99 €
 Local electronics store
 Composite

Power supply
 5 V / 3 A
 1
 10.50 €
 10.50 €
 Local electronics store
 Composite

Stage light filter

foil

LEE Filters: 158 Deep
Orange
1
 5.50 €
 5.50 €
 https://bit.ly/3yZGmbX
 Other
Superglue
 UHU Superflex Gel 3.0 g
 1
 2.70 €
 2.70 €
 Local store
 Other

Thermistors
 NTC3950, 100 kO
 4
 0.95 €
 3.80 €
 https://bit.ly/2X4BPrg
 Semi-

conductor

Transimpedance

amplifier

TI OPA380AIDGKR
 4
 4.49 €
 17.96 €
 https://bit.ly/3l5jiUl
 Semi-

conductor

Accessories and

electronic
consumables
Resistors, capacitors,
MOSFETs, diodes, . . .
var.
 15.00 €
 15.00 €
 Local electronics store
 Other
Sum
 176.11 €

https://bit.ly/31gELmI
https://bit.ly/3l1rbda
https://bit.ly/3yV6btO
https://bit.ly/3EbirKD
https://bit.ly/38XAg0Y
https://bit.ly/2VqAYkk
https://bit.ly/2X7wqQc
https://bit.ly/3Eh1luS
https://bit.ly/3ngNkad
https://bit.ly/3jZoZDP
https://bit.ly/3yZGmbX
https://bit.ly/2X4BPrg
https://bit.ly/3l5jiUl
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Build instructions

Safety hazards

Never heat or turn on the LED lights while the openDSF instrument is disassembled. Although the device uses low volt-
ages (36 V), hot parts are inside the apparatus (heating wire). When assembled correctly, the high-power LEDs are directed
into the interior of the apparatus, so they emit very little stray light to the environment. However, looking directly into the
disassembled LEDs can irritate the user’s eyes. The SYPRO Orange resp. Sybr Gold DSF dye does not have a hazardous mate-
rial classification, however, the biological samples and chemicals used in individual DSF experiments may harbor specific
hazards. We recommend that the openDSF instrument, like all heating laboratory equipment, should not be left running
unattended for several hours as they pose a potential fire risk in the event of a malfunction.

3D-printing:

We fabricated the 3D-printed parts with an Anycubic 4Max printer. Utilizing the open-source software FreeCAD 0.18 and
Ultimaker Cura 15.04.6 39, we designed, meshed, and sliced individual components. We performed printing through a
0.4 mm nozzle with 1.75 ± 0.02 mm PETG filament at 225 �C. The layer thickness was set to 0.2 mm. POM was printed at
240–250 �C and a bed temperature of 70 �C. The infill percentage and infill style were 20% resp. the zig-zag pattern for both
filaments. The complete printer settings were added as Cura profiles (.ini) to the repository of design files. An overview of all
3D-printed components can be seen in Fig. 2. For better adhesion to the printing table, POMwas printed on a three-layer bed
of PETG filament. A layer printing time of 6–8 s/layer was found to be most effective against warping effects for the POM
filament.

Winding of the heating tube:

In the POM heating tube, a coil of the heating wire (8 mm diameter with 28 windings corresponding to a total length of
approx. 0.7 m; pitch approx. 1.8 mm) was inserted (Fig. 3A). The ends of the coil were screwed onto cut-to-size drilled board
parts (24 � 5 mm). To fix the coil vertically, the drilled board parts were clamped in the inlet and outlet of the heating tube,
respectively. The power connections were soldered on the drilled boards and the connections were led out through 3 mm
drilled holes in the heating tube.

Mounting of 3D-printed parts:

Before the 3D-printed parts, the heating tube, and the fan were assembled by their plug-in joints, the inner surfaces of the
colorless POM parts (diffuser, sample holder, and LED holder) were coated with a black polyurethane varnish layer to absorb
stray light. Alternatively, the corresponding parts might be printed with a non-transparent material, e.g., black filament. Pre-
viously, we also found that the mechanical durability of varnished 3D-printed parts is increased compared to the raw form
[22]. Subsequently, a rolled piece of orange filter foil was inserted into the four individual sample holders and the foil was
fixed with superglue (Fig. 5A). Caution: The filter foil is attacked by the contained solvents.

The individual parts of the openDSF instrument were assembled according to the exploded view drawings (Fig. 2A and
4B). Note: Make sure that the joints are well sealed! Any printing imperfections must be corrected by filing. The critical plug
connections (fan – fan connector – heating tube – diffuser) can optionally be sealed with Teflon insulating tape. To facilitate
rebuilding, we have added a 3D model of the exploded view drawing from Fig. 2A to the repository of design files

(https://data.mendeley.com/public-files/datasets/73rt8s7pwd/files/90f0a996-645d-4283-8ca8-ae1a65b3404b/file_down-

loaded), so that a rebuilder can examine the topology of the design while zooming in or moving parts around.

Assembly of the fluorescence cell:

For assembly of the fluorescence cell, two LED modules and two photodiode modules were fabricated, so that a sample
holder is equipped with one LED and one photodiode each (Fig. 4B). For a single LED module, two high-power LEDs were
soldered together with proper polarity and provided with connecting cables so that they could be glued onto their LED
holder with hot glue and inserted into the cut-outs at the fluorescence cell. To assemble the photodiode module, two pho-
todiodes were mounted (20 mm apart from each other) on a PCB board according to the PCB layout specifications

(https://data.mendeley.com/public-files/datasets/73rt8s7pwd/files/81dcaa9e-9a6d-44c0-a272-

a710958638ab/file_downloaded).
We manufactured the PCBs ourselves using the toner transfer method [23]. The electronic components were soldered

onto the circuit board using a standard soldering iron. For the operational amplifier, assembly instructions from the manu-
facturer’s datasheet are to be followed. The photodiodes were inserted into the holes provided in the fluorescence cell and
later covered by the two PETG diode shields (Fig. 4B).
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Fig. 5. (A) Example of black painted POM parts: The four sample holders were varnished black because the colorless filament, in its untreated form, acts as
an effective optical fiber to disperse stray light and causes significant tube-to-tube bleeding. Next to them, the rolled filter foil inserts, which shield the
photodiodes from the blue excitation light. (B) Housing of the electronic components (ESP32 development board, MOSFET circuits, and constant current
power supply). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Wiring of electronic components:

The thermistors were inserted into the 3D-printed temperature sensors and fixed so that the glass sphere of the thermis-
tor just peeks out of the bottom hole (Fig. 6B). The MOSFET circuits (fan and heater) were assembled on drilled boards. A
flyback diode was provided for the fan. The resistance values from the PWM supply were 15 X and 10 kX to the ground.
Subsequently, the ESP32 development board, the constant current power supply, and the MOSFET circuits were placed in
the housing (Fig. 5B). Finally, the individual electronic components were cabled according to the circuit diagram

(https://data.mendeley.com/public-files/datasets/73rt8s7pwd/files/2dbbf304-9985-4c7c-988e-8e972766ae3e/file_down-

loaded). We noticed that using a USB cable without supplying voltage between the ESP32 and the computer leads to more
stable ADC characteristics. The possible interference between simultaneous supply via the USB voltage common collector
(VCC) and the 5 V pin of the ESP32 board has already been described for Vext < 5.2 V [24]. Therefore, we prepared a data-
only USB cable from a standard micro-USB cable for data transfer to the computer according to literature instructions [25].
Fig. 6. (A) Overview of sample preparation instructions (mix, centrifuge, and load) based on a commercially available SYPRO Orange solution (5000 � ) and
a protein stock solution. (B) Close-up of the openDSF instrument with the sample holders closed by the sample cover highlighting the thermistors in the 3D-
printed temperature sensors. Three temperature sensors are inserted ready-for-use in their respective sample holders, while one PCR tube equipped with a
temperature sensor hangs in front of the instrument for illustration purposes. The thermistor can only be seen by its glass sphere, which extends a few
millimeters from the temperature sensor. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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Firmware compilation & openDSF GUI:

The firmware was built in the ESP-IDF development environment (v4.2.2). The steps for installing the development envi-

ronment have been described in detail by the manufacturer: https://docs.espressif.com/projects/esp-idf/en/v4.2.2/esp32/

get-started/index.html. After the development environment has been installed, proceed as follows (here for Windows users):

The archive ‘‘openDSF.zip” (https://data.mendeley.com/public-files/datasets/73rt8s7pwd/files/ba2f88ef-547c-4ca7-8ef7-

ed597cbf53b8/file_downloaded) has been unpacked. The unpacked openDSF folder was copied into the root directory of
the development environment. Before the firmware can be compiled, the development environment was slightly modified.
The file ‘‘. . .\components\driver\esp32\adc.c” was replaced by the custom file ‘‘. . .\openDSF\adc.c”. Subsequently, the firm-
ware was compiled and transferred to the ESP32 board via USB cable.

During experimental usage, the ESP32 board is controlled by a GUI programmed in Python (version 3.9.2). Installation

instructions for Python can be found here: https://docs.python.org/3/using/windows.html. The following libraries and mod-
ules must be installed in the Python environment: signal, time, datetime, serial, threading, queue, serial.tools.list_ports,
scipy.optimize, numpy, tkinter, matplotlib, pyplot, backend_bases, backends.backend_tkagg, scipy.signal.savgol_filter.
Operation instructions

Sample preparation:

The following instructions are described as examples for the preparation of a single DSF reaction mixture but can be
scaled up as desired. Prepare 30 mL of a protein solution (10 mM) in an appropriate buffer (e.g., 50 mM HEPES pH 7.5,
150 mM NaCl). In parallel, prepare 30 mL of a 10 � SYPRO Orange dilution (1:500 dilution of the commercial 5000 � stock
solution) in the same buffer as used for the protein solution but supplemented with 10% DMSO. Mix 20 mL of the protein
solution with 20 mL of the 10 � SYPRO Orange dilution to yield the DSF reaction mixture (final concentration: 5 mM protein
and 5 � SYPRO Orange). Note: Other concentrations may also be possible, which could be determined for each protein in the
course of an assay optimization. For the study of protein–ligand interactions, compounds or mock treatment additives can be
added from DMSO or buffered solutions. Centrifuge (1 min at 300 rcf) and transfer 30 mL of the particle-free solution into a
PCR tube (Fig. 6A). Insert 1–4 PCR tubes into the sample holders of the openDSF instrument, seal the reaction tubes with the
thermistor caps, and close the instrument with the sample cover (Fig. 6B).
Run a DSF experiment:

0.) Switch on the openDSF instrument by connecting the power supply. 1.) To establish proper communication between
the computer and instrument, start the Python script (‘‘openDSF.py”) from a console and press the ‘‘Ports”-button to select
the serial port to the openDSF instrument (Fig. 7). Then click ‘‘Connect” to establish the connection. 2.) Initialize the heating
module by entering the default parameter ‘‘1000” in the ‘‘Fan” input box. Other fan speeds can be selected (300–2047) and
varied for assay optimization. 3.) Click on ‘‘Start” to initiate the acquisition of temperature data to check the function of the
thermistors and to verify the temperature homogeneity between the different holders. 4.) Subsequently, the physical param-
eters of fluorescence detection and heating ramp are defined: Start the LED illumination by entering the default parameter
‘‘1000” in the ‘‘LED” input field. Check if the initial protein-dependent fluorescence value is between 20 and 300 mV and, if
necessary, adjust the value to this range by varying the LED strength (0–2047). If a starting temperature above the prevailing
room temperature is desired, a heating intensity parameter (0–4096) can be chosen in the ‘‘Heating” input field. The terminal
temperature of the melting experiment is entered in the ‘‘MaxT” input field. The DSF experiment is started by launching the
heating ramp, which can be run in varying gradients (0.1–20.0) via the ‘‘Step” input field. 5.) Once the melting process is
completed and the specified maximum temperature has been reached, the data acquisition can be terminated by clicking
the ‘‘Stop” button. The device cools back to room temperature automatically.

6.) For post-run processing of the melting curve data, the resolution of the temperature steps (typically: 0.1–1 �C) in the
output file is defined. 7.) Since the acquired raw data is subject to ADC-related noise, it may be reasonable to smooth the raw
data. A Savitzky-Golay filter function can be applied to the raw data by clicking on ‘‘Filter” and specifying the window size
(x0. . .xn) and polynomial order (xn) of the smoothing function. The smoothing can be reversed by clicking on ‘‘Raw”. 8.) Both
raw or filtered melting curves can be exported (‘‘Save” button) as a CSV file for analysis with an external program. In this
regard, various mathematical evaluation procedures for analyzing DSF datasets have already been described in the literature
[3,6,8,26]. The data sets of the following model applications were analyzed with the open-source DSF analysis software

DSFworld (https://github.com/gestwicki-lab/dsfworld) and simpleDSFviewer (https://github.com/hscsun/Sim-

pleDSFviewer-5.0) which were downloaded from their GitHub repositories for desktop usage [3,8]. An example openDSF

CSV data set can be found in the repository (https://data.mendeley.com/public-files/datasets/73rt8s7pwd/files/60ecd57d-

24a1-4234-b7a9-4cbdbefd6794/file_downloaded).
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Fig. 7. Graphical user interface of the openDSF.py control program. In the left control bar, the elementary functions of the openDSF instrument can be
controlled (e.g., fan rpm, heating power, and LED power). The display panel on the right shows the raw and filtered data of the fluorescence vs. temperature
plot (melting curves). The functionalities in the GUI are labeled according to the operating instructions (1–8) in the section ‘‘Run a DSF experiment”.
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Validation and characterization

Characterization of the instrument

To assess the capabilities of the openDSF system, various relevant benchmarks (absolute temperature accuracy, cross-
holder temperature homogeneity, maximum heating/cooling rates, linear dynamic range, detector saturation, S/N-ratios,
and tube-to-tube bleeding) were examined.

By online temperature control of each sample holder, we were able to obtain linear temperature ramps (R2 = 0.997) over
the entire heating range we investigated (25–80 �C) (Fig. 3B). Calibration of the thermistors as temperature sensors resulted
in an absolute temperature error of < 0.1 �C. This error was below the fluctuations caused by sample preparation (e.g., pipet-
ting errors and material variations of the PCR tubes), which is why we qualified the temperature control by air heating and
thermistor measurement as valid. However, due to the differential nature of DSF experiments, the reproducibility of the
same temperature has to be evaluated prior to the absolute temperature accuracy. We did this by the reproduction of protein
melting points in different holders during one experiment or during separate experiments (see below). The absolute devia-
tion of protein melting points was in the range of 0.1–0.2 �C (Table 1). This error includes the statistical and systematic inac-
curacy due to temperature inhomogeneities between different holders but also the variations caused during sample
preparation. The standard error of the determined protein melting points is thus in the same range as commercial qPCR solu-
tions [3,10,27,28].

Typical heating rates for DSF experiments are in the range of 0.5–4 �C/min [3]. For the openDSF system, these depend on
both the power of the heating tube and the flow rate of the fan. We have performed the following example DSF experiments
at a heating rate of 2 �C/min (GUI: Fan speed = 1000 and step = 2.0). However, even at very high heating rates of 9 �C/min
(step = 9.0), we were still able to achieve good temperature homogeneity and melting point reproducibility (SI Fig. 3C). When
operating the fan without heating, the openDSF system is also able to cool the sample holders uniformly with air. The cooling
curve (with fan speed = 1000) follows an exponential relationship between the temperature reached (Tmax) and the ambient
temperature (TR): T tð Þ ¼ Tmax � TRð Þe�0:0122�t þ TR . This feature can be utilized for a sequence of oscillating heating and cool-
ing events, for example, to study protein unfolding and subsequent refolding (SI Fig. 3D) [29].

Using blue high-power LEDs and orange filter foil, we were able to remodel the fluorescence characteristics of the DSF
reaction mixture (fluorescence transmission rate > 80%), while avoiding the need for expensive optics, lamps, or filter units
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Table 1
Overview of various protein melting points and S/N-ratios as recorded with the openDSF instrument in comparison to respective literature values. DSF reaction
mixtures contained 5 mM protein and 5 � SYPRO Orange in 50 mM HEPES buffer at pH 7.5.

Protein Melting point [�C] N (replicates) Lit. melting point [�C] S/N [dB]

Mpro 57.09 ± 0.08 12 55.74[31] 27.1 ± 0.32
SrtA 49.84 ± 0.13 16 50.50[32] 31.1 ± 0.32
Cruzain 64.90 ± 0.14 8 66.40[33] 30.5 ± 0.29
Thrombin 52.10 ± 0.08 4 58.30[30] 28.8 ± 0.29
Lysozyme 67.58 ± 0.10 4 71.90[29] 27.3 ± 0.27
BSA 58.72 ± 0.13 4 56.00[3] 21.6 ± 0.53
Calpain I 44.60 ± 0.11 4 47.00[34] 20.5 ± 0.16
NS2B/NS3 50.01 ± 0.07 4 49.00[35] 27.9 ± 0.26
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(Fig. 4A). The practical fluorescence measurement range of the fluorometer is characterized by its linear dynamic range,
which was determined by a series of different SYPRO Orange dilutions (SI Fig. 2A). The linear dynamic range of the openDSF
was found to be between 0 and 3000 mV, which should be aimed at during DSF measurements. Above 3000 mV, the detector
saturates and finally reaches its upper maximum at 3500 mV. Besides detector linear responsivity, S/N-ratios were deter-
mined as quality parameters for the fluorescence measurements and can be used as benchmarks for reproducing the system.
The S/N-ratio was calculated as the absolute fluorescence increase during unfolding divided by the dark noise:
S=N ¼ FLunfolded�FLfolded

darknoise . Where the dark noise corresponds to the standard deviation of 100 fluorescence data points before
the actual heating ramp was started. In addition to the intrinsic protein properties, the S/N-ratio of the fluorescence mea-
surement depends on the intensity of the LED illumination which was therefore optimized at the beginning of each run.
An initial fluorescence value of 20–300 mV has been empirically found to be optimal for obtaining low-noise traces. The
protein-specific S/N-ratios are shown in Table 1.

As described during the build instructions, it is necessary to varnish or print the POM parts black, otherwise, they will act
as an effective optical fiber and transport stray light from one sample to the neighboring PCR tube thereby falsifying the mea-
surements. This so-called tube-to-tube bleeding has been quantified and must be requalified when building a comparable
design. Using our setup, within the linear dynamic range, no tube-to-tube bleeding could be detected with varnished
POM parts (SI Fig. 2B). In order to detect tube-to-tube bleeding, an overload of the detector far beyond the saturation limits
(>3500 mV) was required, which in our case was correlated with optically perceptible fluorescence despite a closed device
(250 � SYPRO Orange in 9:1 glycerol/water).

DSF experiments in the openDSF system were established for a sample volume of 30 mL in PCR tubes with the thermistor
measuring temperature just above the liquid level (Fig. 6). The minimum sample volume was tested with additional sample
sizes using 20, 10, and 5 mL of a DSF reaction mixture. The signal intensity decreased with lower sample volumes, leading to
worse S/N ratios (SI Fig. 3A). The lowest practical volume that could be measured was 10 mL. On the other hand, when loading
sample volumes>40 mL, these resulted in increased noise from the temperature sensors, as the thermistors were too close to
the liquid level with these volumes.

To test the gas tightness of the openDSF system, the evaporation loss of the samples during the heating phases was inves-
tigated gravimetrically. A temperature ramp of 25–70 �C resulted in a loss of about 0.3 mL for a 30 mL sample (SI Fig. 3B).
However, at higher temperatures (25–95 �C), the evaporation loss was increased to approx. 2 mL. Prolonged heating
(10 min) at 95 �C also resulted in a similar loss of approx. 2 mL, leading to the hypothesis that the gas space in the temper-
ature sensor becomes saturated with humidity and the liquid does not continuously evaporate at a leaky point. This hypoth-
esis could be confirmed by repeated temperature ramps or heating intervals at 95 �C, as the evaporation loss was much lower
in the following heating cycles (SI Fig. 3B).

We cannot yet conclusively judge the longevity of our design, but after about 100 heating ramps (25–80 �C), we did not
notice any signs of wear or benchmark drops. Since the system is modular and open-source, broken parts can be replaced
easily.

Exemplary DSF applications

To challenge the capabilities of the openDSF system eight different proteins were analyzed by their melting profiles:
SARS-CoV2 main protease (Mpro), S. aureus sortase A (srtA), T. cruzi cathepsin L (cruzain), bovine thrombin, hen egg-white
lysozyme, bovine serum albumin (BSA), human calpain I, and Zika virus (ZIKV) NS2B/NS3 protease. DSF reaction mixtures
(5 mM protein, 5 � SYPRO Orange, 50 mM HEPES pH 7.5, 150 mM NaCl, 5% DMSO) were heated at temperature ramps of
2 �C/min from 25 to 80 �C, and subsequently, the melting points (Tm) were determined with the open-source analysis tool
of DSFworld from the sigmoid RFU vs. temperature curves [3]. The melting curves of a representative replicate and the cor-
responding melting points are shown in Fig. 8.

A comprehensive overview of melting points and S/N-ratios is given in Table 1. Protein melting points determined by the
openDSF instrument showed good agreement with the melting points determined by DSF or differential scanning calorime-
try (DSC) as reported in the literature (Table 1). Only for thrombin (Fig. 8D), our measured Tm value deviates significantly
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Fig. 8. Representative melting curve examples of various proteins (5 mM) and 5 � SYPRO Orange in 50 mM HEPES buffer at pH 7.5. (A) SARS-CoV2 main
protease (Mpro), (B) S. aureus sortase A (srtA), (C) T. cruzi cathepsin L (cruzain), (D) bovine thrombin, (E) hen egg-white lysozyme, (F) bovine serum albumin
(BSA), (G) human calpain I, (H) Zika virus (ZIKV) NS2B/NS3 protease.
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from the literature melting point (52.10 �C vs. 58.30 �C), but this might be attributed to a different buffer composition in the
literature experiment [30]. For BSA, we obtained a negative DSF curve (Fig. 8F). This is also in agreement with the literature
since BSA binds SYPRO Orange already at room temperature due to numerous hydrophobic cavities and at higher temper-
atures, this binding is entropically reduced [3]. The melting point variance between different holders (intra-assay variation)
and between different DSF runs (inter-assay variation) was 0.1–0.2 �C for all protein samples studied, which is low enough to
investigate the influence of ligands on the thermal shift of the apparent melting point [2,6,7].

To demonstrate the practical applicability of the openDSF system to biological problems, selected protein–ligand inter-
actions were investigated by DSF. The bacterial transpeptidase srtA utilizes calcium as a stabilizing cofactor. The protein
melting point of srtA in the absence and presence of calcium has already been determined by DSC and differs by DTm = 3.4 �-
C [36]. Using ITC, the dissociation constant of this

srtA-Ca2+ complex was determined to be KD = 55 mM [37]. By studying a solution of 5 mM srtA supplemented with differ-
ent concentrations of calcium chloride, we were able to reproduce the thermodynamic parameters determined with the
other two biophysical methods using the openDSF instrument (Fig. 9A). In detail, we titrated 0, 10, 50, 100, and 500 mM cal-
cium chloride to the DSF reaction mixtures and determined the dissociation constant KD(srtA-Ca2+) = 42.5 mM from the bind-
ing isotherm of the melting points versus the calcium concentration (Fig. 9B) [6].

DSF is also useful for the identification and study of small-molecule drug substances on their protein targets. If a ligand
binds to a protein, the free energy of ligand binding mostly results in protein stabilization and increased Tm-values [7]. Here,
we studied the cysteine protease calpain I with or without treatment of the protease inhibitors leupeptin and E64 (structures
in SI Fig. 4). The melting point of the untreated protease (5 mM) was determined with Tm = 44.60 �C (Fig. 10A). After treat-
ment with 100 mM of the inhibitors leupeptin or E64, the melting point increased to 51.10 �C and 53.47 �C, respectively
(Fig. 10B,C). The molecular background of this stabilization becomes evident from the crystal structures of the apo structure
and the inhibitor-bound complexes [38,39]. The structural rigidity of a protein can be determined by B’-factor analysis of the
corresponding crystallographic dataset [40]. In the regions of the crystal structure where the inhibitor binds, a significant
stabilization of the protein backbone takes place, which explains the increase in melting points (Fig. 10D,E). Here, it is shown
that the combination of thermodynamic parameters from openDSF experiments with spatially resolved methods such as
XRAY or NMR complement each other well.

Furthermore, to compare a melting curve example with a commercial qPCR system, DSF reaction mixtures of the ZIKV
NS2B/NS3 protease were analyzed using both the Bio-Rad C1000/CFX384 (Fig. 11C) and our openDSF instrument
(Fig. 11A). The protein melting point was 49.60 �C and 50.01 �C, respectively, for both instruments, very close to the literature
value (Table 1) [35]. The ZIKV protease is known to adopt multiple conformations due to the dynamic interaction of both
NS2B and NS3 proteins. A catalytically active (mostly substrate-bound) form is referred to as the ‘‘closed” conformation,
whereas the ‘‘open” conformation describes the predominate species of the protein resting state [41]. However, the addition
of substrate mimetic inhibitors was reported to cause to the stabilization of the closed conformation and an increased melt-
ing point [42,43]. In a DSF experiment, the presence of a cyclic peptide inhibitor (10 mM, structure in SI Fig. 4 [42]) led to an
increase of the melting point by DTm = 2.46 �C (Fig. 11B).

To investigate the ability of our instrument to perform DSF analysis of RNA molecules, we examined two examples of
literature-known tertiary-structured RNA aptamers. For this purpose, RNA (500 nM) was mixed with a suitable intercalating
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Fig. 9. (A) Representative srtA melting curves in the presence of different CaCl2 concentrations. At higher calcium concentrations, the srtA protein is
stabilized towards higher melting points. (B) Determination of the thermodynamic dissociation constant KD for the srtA-Ca2+ complex from the melting
point vs. CaCl2-concentration relationship by regression with a binding isotherm Tm cð Þ ¼ Tm minð Þ þ ðTm maxð Þ � Tm minð ÞÞ � ð1� e�k�cÞ with KD ¼ lnð2Þ

k .
Shown are means ± standard deviation (n = 3).

Fig. 10. DSF experiments on calpain I ligand complexes. (A) Melting curve of native calpain I (5 mM) in absence of a ligand, (B) Melting curve of calpain I
(5 mM) in presence of the inhibitor leupeptin (100 mM), (C) Melting curve of calpain I (5 mM) in presence of the inhibitor E64 (100 mM), (D) B’-factor analysis
with the open-source BANDIT-web server [40]: The calpain-leupeptin complex (pdb: 1TL9) reveals rigidization (negative DB’) of the ligand-binding site
(Asp259–Leu268) compared to the corresponding apo structure (pdb: 1KXR), (E) The calpain-E64 complex (pdb: 1TLO) reveals rigidization (negativeDB’) of
the ligand-binding site (Ile252–Lys266) compared to the corresponding apo structure (pdb: 1KXR).
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dye (1 � Sybr Gold) in a reaction buffer and, analogously to the protein DSF experiments, heated at a temperature ramp of
2 �C/min (25–70 �C). Melting points (Tm) were calculated using the differentiation methodology of Silvers et al. and the sim-
pleDSFviewer software [8,16].

The aptamer domain of the preQ1 riboswitch from B. subtilis folds into a pseudoknot structure upon binding of its natural
ligand preQ1. When preQ1 (10 mM, structure in SI Fig. 4) was added to the riboswitch (500 nM in 1 � phosphate-buffered
saline, pH 7.5), the unliganded melting curve changed significantly (Fig. 12A). Examination of the ligand-free reaction mix-
ture by the derivative analysis method yielded twomelting points in agreement with the literature (Tm,1 = 27.30 �C, Tm,2 = 54.
16 �C, Fig. 12B) [44]. In summary, the addition of the ligand preQ1 (10 mM) resulted in a shift of the second melting point
towards higher temperatures (Tm,2 = 56.12 �C, Fig. 12C).
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Fig. 11. DSF experiments on the ZIKV NS2B/NS3 protease. (A) ZIKV NS2B/NS3 fluorescence vs. temperature curve recorded with the openDSF instrument.
(B) Fluorescence vs. temperature curve of ZIKV NS2B/NS3 in presence of the cyclic peptide ligand (10 mM, pdb: 6Y3B). (C) NS2B/NS3 fluorescence vs.
temperature curve recorded with the C1000/CFX384.

Fig. 12. RNA-aptamer DSF experiments. (A) RNA-DSF trace for the preQ1 riboswitch aptamer domain (500 nM) with and without its natural ligand preQ1

(10 mM). (B) Derivative plot of the preQ1 aptamer in absence of a ligand. (C) Derivative plot of the preQ1 aptamer supplemented with 10 mM of preQ1. (D)
RNA-DSF trace for a trypanosome-specific RNA aptamer. (E) Derivative plot of the trypanosome-specific RNA aptamer (temperature range: 40–75 �C).

F. Barthels, S.J. Hammerschmidt, T.R. Fischer et al. HardwareX 11 (2022) e00256
Secondly, a trypanosome-specific RNA aptamer was investigated by DSF in 50 mM cacodylate buffer (pH 6.5) supple-
mented with 0.5 mM MgCl2 [45]. This parasite-specific aptamer was previously characterized with a melting point of
58 �C. Here, we could confirm the identity of our RNA construct by recording a DSF trace matching the melting point
(Tm,2 = 60.10 �C, Fig. 12E). In contrast, the strong decrease in fluorescence at temperatures between 30 and 40 �C has not
been observed in the literature, suggesting that some of the aptamer molecules are not in their native fold. In this respect,
RNA-DSF is also suitable for an assessment of sample quality [16].
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