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Crocin, the main biologically active carotenoid of saffron, generally is derived from the dried
trifid stigma of Crocus sativus L. Many studies have demonstrated that crocin has several
therapeutic effects on biological systems through its anti-oxidant and anti-inflammatory
properties. The wide range of crocin activities is believed to be because of its ability to
anchor tomany proteins, triggering some cellular pathways responsible for cell proliferation
and differentiation. It also has therapeutic potentials in arthritis, osteoarthritis, rheumatoid
arthritis, and articular pain probably due to its anti-inflammatory properties. Anti-apoptotic
effects, as well as osteoclast inhibition effects of crocin, have suggested it as a natural
substance to treat osteoporosis and degenerative disease of bone and cartilage. Different
mechanisms underlying crocin effects on bone and cartilage repair have been investigated,
but remain to be fully elucidated. The present review aims to undertake current knowledge
on the effects of crocin on bone and cartilage degenerative diseases with an emphasis on
its proliferative and differentiative properties in mesenchymal stem cells.
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INTRODUCTION

Crocus sativus L. (C. sativus L.) is one of about 88 species from the Crocus genus, which is part of the
Iridaceae family. It is well known in herbal medicine and has attracted the attention of researchers
because of its properties, especially its anti-inflammatory and proliferative capacities in bone and
cartilage destructive diseases (Ríos et al., 1996; Mollazadeh et al., 2015). This plant is mainly
cultivated in Iran, China, India, Azerbaijan, Turkey, Morocco, Greece, Spain, Italy, Mexico, and other
places (Xue, 1982; Alavizadeh and Hosseinzadeh, 2014). It is a perennial herb that grows up to about
20 cm and usually produces 2-3 blue-purple flowers (Melnyk et al., 2010). The dried stigma, called
saffron, is the most widely used part (Gismondi et al., 2012; Winterhalter and Straubinger, 2000).
Because of the distinguished color, odor, and flavor, it is used as a food coloring and flavoring
substances (Winterhalter and Straubinger, 2000; Caballero-Ortega et al., 2007; Mollazadeh et al.,
2015). Carotenoids, the main metabolites of saffron, are responsible for the red color, smell, and
bitterness (Srivastava et al., 2010; Gismondi et al., 2012). Water-soluble carotenoids can affect certain
cellular pathways and molecules because of their ability to bind to a wide range of proteins, including
membrane proteins, transcription factors, mitochondrial proteins, structural proteins, and enzymes
(Hosseinzadeh et al., 2014; Li S et al., 2017). Among these biologically active components, there are
four well-established ingredients that are likely responsible for the therapeutic potential of saffron,
including crocin, crocetin, safranal, and picrocrocin (Pfander and Schurtenberger, 1982; Tsimidou
and Tsatsaroni, 1993; Liakopoulou-Kyriakides and Kyriakides, 2002; Srivastava et al., 2010; Gohari
et al., 2013; Hosseinzadeh and Nassiri-Asl, 2013). Crocin has five proper subsets; the principal one in
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saffron is α-crocin (Alonso et al., 2001; Ordoudi et al., 2015).
Chemical studies have shown that crocin is a diester composed of
the disaccharide gentiobiose and the dicarboxylic acid crocetin
(Figure 1) (Alavizadeh and Hosseinzadeh, 2014). In the past,
saffron was used as a sexual stimulant, and as a treatment for
infertility and impotence (Asadi et al., 2014). Recent studies have
revealed other therapeutic and pharmacological activities of
saffron, such as neuroprotective (Baghishani et al., 2018; Haeri
et al., 2019), neurogenetic (Ebrahimi et al., 2021), antidepressant
(Shafiee et al., 2018), anti-apoptotic (Vafaei et al., 2020),
antioxidant (Altinoz et al., 2016; Hatziagapiou et al., 2019),
and anti-inflammatory (Nam et al., 2010; Lv et al., 2016)
effects. Crocin is one of essential ingredients that responsible
for the therapeutic effects of saffron. Specifically, the antioxidative
properties of crocin involve several signaling pathways and
molecules. For example, it modulates GPx, GST, CAT, and
SOD (Korani et al., 2019), inhibits reactive oxygen species
(ROS) and interacts with peroxidase (Mostafavinia et al.,
2016). Overall, it inhibits free radicals (Ebadi, 2006) and
affects certain pathways, such as CREB signaling (Zheng et al.,
2007). Crocin also has anti-inflammatory properties via the
downregulation of inflammatory marker levels such as
interleukin (IL)-1ß, IL-6, tumor necrosis factor (TNF)-α, and
insulin-like growth factor (IGF)-1, or through modulation of
signaling pathways such as PI3K/Akt and Nuclear factor-kappa B
(NF-κB) (Deng et al., 2018; Xie et al., 2019). It has been shown
that crocin can polarize macrophages to the M2 (anti-
inflammatory) phenotype by suppressing the p38 and JNK
pathways. Therefore, its anti-inflammatory effects are
associated with this pathway, in addition to other pathways
(Zhu et al., 2019). Furthermore, crocin is metabolized in the
liver and exerts protective effects on liver toxicity induced by
morphine (Salahshoor et al., 2016) and nicotine (Jalili et al.,
2015).

METHODS

Crocin exerts its effects under various conditions, and its
antioxidant and anti-inflammatory properties contribute to the
treatment of various diseases, including bone and cartilage

inflammation. In this review, we summarized studies
published through 2021 on the effect of crocin on bone and
cartilage diseases. We chose crocin, bone, cartilage, and
inflammation as keywords. The related articles were collected
from online literature resources such as Web of Knowledge,
PubMed, Scopus, and Google Scholar.

ROLE OF CROCIN IN BONE AND
CARTILAGE DISEASES

Crocin and Osteoarthritis
One of the most common joint diseases worldwide is
osteoarthritis (OA), which is considered the main cause of
disability in elderly people and often presents with pain and
limited movement (Krasnokutsky et al., 2007; Silverwood et al.,
2015; Dubin, 2016). OA severity varies from localized to chronic
inflammation (Feldmann, 2001) and leads to joint cartilage
degeneration, synovitis, and even bone remodeling (Benazzo
et al., 2016). OA is reinforced by several factors such as
obesity, age, trauma, mechanical stress, oxidative stress, and
inflammation (Chen D. et al., 2017; Lim et al., 2017; Min
et al., 2018; Yoo et al., 2018). In mild and severe OA,
symptoms of inflammation are pronounced (Sinkov and
Cymet, 2003), and inflammatory cytokines, including IL-2,
interferon (IFN)-γ, TNF-α, and IL-1ß, are thought to be
involved in the pathology (Goldring, 2000; Linton and Fazio,
2003; Chen D. et al., 2017). Overall, inflammatory cytokines lead
to NF-κB signaling pathway activation, which can induce
expression of matrix-degrading enzymes, such as matrix
metalloproteinase (MMP) and C-reactive protein (CRP) 5, and
increase erythrocyte sedimentation rate (ESR), which are
involved in cartilage degeneration and osteoarthritis (Pennock
et al., 2007; Sakkas and Platsoucas, 2007; Mohamadpour et al.,
2013; Chen D. et al., 2017). MMPs, especially MMP1 and MMP3,
destroy the extracellular matrix, thereby disrupting normal joint
performance and leading to OA progression (Largo et al., 2003;
Tardif et al., 2004; Burrage et al., 2006; Takaishi et al., 2008).
Researchers have shown that the anti-inflammatory properties of
crocin have a therapeutic effect on OA. In the study by Lei et al.,
OA rats were administered 30 mg/kg crocin daily for 10 days.

FIGURE 1 | The picture of C. Sativus L., saffron and crocin (molecular structure).
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After treatment, joint pain, IL-6 level, muscular lipid
peroxidation (LPO), and Nrf2 levels were decreased, while
citrate synthase (CS) activity, myosin heavy chain (MHC) IIα
expression, glutathione production, and glutathione peroxidase
activity were increased. They concluded that crocin could reduce
OA symptoms by alleviating oxidative stress and inflammation
and inhibiting JNK activity, which is an interesting property for
OA treatment (Lei et al., 2017). A study by Ding et al.
demonstrated the chondrogenic effects of crocin. In their
study, crocin repressed IL-1ß expression and reduced the
synthesis of MMP-1, -3, and -13 in chondrocytes, probably by
blocking the NF-κB pathway. In the in vivo phase of their study,
intra-articular injections of crocin were performed, and the
results showed that crocin can reduce cartilage degeneration in
OA-induced rabbit knees (Ding et al., 2013). In a study conducted
by Li et al. on the anti-inflammatory effects of crocin on rat
intervertebral discs, nucleus pulposus cells were isolated from rats
and treated with different doses of crocin. Crocin reduced MMP-
1, -3, and -13 overexpression, pro-inflammatory factors including
IL-1β, TNF-α, IL-6, and inducible nitric oxide synthase (iNOS),
and inhibited mitogen-activated protein kinase (MAPK) and JNK
pathways (K. Li et al., 2015). In a clinical trial conducted by
Poursamim et al., 40 patients with OA received Krocina (crocin
tablets, 15 mg/daily) or placebo for 4 months. The results
demonstrated that crocin reduced serum CRP and IL-17
levels. In addition, the number of regulatory T cells increased
while the number of T helper and CD8+ cells decreased in crocin-
and placebo-treated individuals, respectively. Finally, in the
crocin group, the Treg/Th17 ratio shifted towards regulatory
T cells (Poursamimi et al., 2020). The aforementioned reports
demonstrate the possible curative potential of crocin on OA,
which makes this herbal plant an appropriate candidate for OA
treatment. In Table 1, a summary of studies on crocin and OA is
presented.

Crocin and Rheumatoid Arthritis
Rheumatoid arthritis (RA) is a chronic autoimmune disease
characterized by synovitis and degeneration of the cartilage
and underlying bone, which can lead to lasting joint disorders
(Turco, 1963; Nakken et al., 2017; Dreher et al., 2019). In this
comprehensive disease, joint symptoms are most prevalent,
which develop and progress through inflammation
(Hamerman, 1966; CADTH Common Drug Reviews, 2015;
Borthwick, 2016; Szekanecz et al., 2016). Studies have

demonstrated a pivotal role for inflammatory cytokines,
including TNF-α, IL-1β, and IL-6, in RA initiation and
progression (Benucci et al., 2012; do Prado et al., 2016;
Duesterdieck-Zellmer et al., 2012; Furman et al., 2014;
Giacomelli et al., 2016; Hreggvidsdottir et al., 2014; G.; Li
et al., 2016). Similar to the above studies, there are some
reports demonstrating the probable roles of oxidative stress in
RA development (Kacsur et al., 2002; Meki et al., 2009; Filaire and
Toumi, 2012; Radhakrishnan et al., 2014). Studies have also
shown that some signaling pathways can affect the progression
and prognosis of RA, including Wnt/β-catenin signaling
pathways. The Wnt/β-catenin pathway can regulate
inflammatory cytokine secretion, which can affect fibroblast-
like synoviocyte (FLS) proliferation and give rise to bone
metabolism/destruction (Brunt et al., 2018; Liang et al., 2019;
Macedo et al., 2019; Wang et al., 2020; Miao et al., 2021). When
the Wnt signaling pathway is activated, pro-inflammatory
cytokines, including TNF-α and IL-1β, are produced (Wu
et al., 2017; Brunt and Scholpp, 2018; Yuan et al., 2018). NF-
κB, which acts as an RA initiator, is another important molecule
involved in RA pathogenesis (Gilston et al., 1997; Makarov,
2001). It has been suggested that NF-κB activation occurs
prior to type II collagen-induced arthritis (CIA), which is
associated with autoimmunity to type II collagen, B cells, and
T cells, especially Th17, macrophages, and cytokines (Mulherin
et al., 1996; Ehinger et al., 2001; Murphy et al., 2003; Roman-Blas
and Jimenez, 2006; Zhu et al., 2010; Hu et al., 2013; Al-Zifzaf et al.,
2015). Given the inflammatory nature of RA initiation, and the
anti-inflammatory effects of crocin, studies have been designed to
understand the possible effects of crocin on RA inhibition and
treatment. In a study by Hemshekhar et al., in 2012, 10–20 mg/kg
crocin was administered for 15 consecutive days in a rat model of
arthritis. They demonstrated that crocin modulates the serum
levels of enzymatic and non-enzymatic inflammatory cytokines,
including MMP-13, MMP-3, MMP-9, HAases, TNF-α, IL-1β,
NF-κB, IL-6, COX-2, and PGE2, as well as ROS mediators, which
were increased in the RA-induced rats. Furthermore, crocin also
increased the levels of GSH, SOD, CAT, and GST. In addition,
inhibiting the exoglycosidases cathepsin-D and tartrate-resistant
acid phosphatase in the bones adjacent to the joints by crocin
protected bone resorption (Hemshekhar et al., 2012). Rathore
et al. administered three doses of crocin (25, 50, and 100 mg/kg)
for 47 days in a mouse model of RA. They observed a reduction in
TNF-α and IL-1β levels and an increase in SOD and GR activity

TABLE 1 | Brief summary of studies on crocin and OA.

Reference Models/Crocin doses Main results Conclusion

Lei et al. (2017) Rats/30 mg/kg daily for 10 days Decrease in joint pain, IL-6 level, LPO, and Nrf2 expression;
increase in CS activity, MHC IIα expression, glutathione
production, and glutathione peroxidase activity

Crocin reduces OA symptoms by affecting
oxidative stress, inflammation, and JNK
activity

Ding et al. (2013) chondrocyte culture, and 5–100 µM
(50–1,000 mg/ml) intra-articular injection

Repression of IL-1ß, downregulation of mRNA and protein
expression of MMP-1, -3 and -13

Crocin reduces inflammation in-vitro and
regenerates rabbit knee cartilage

(K. Li et al., 2015) NP cells/10–100 µM (100–1,000 mg/ml) Decrease MMP-1, -3, and -13 overexpression, IL-1β, TNF-
α, IL-6, and iNOS, and inhibit MAPK and JNK pathways

Crocin reduces inflammation in-vitro and ex-
vivo

Poursamimi et al.
(2020)

OA patients/15 mg tabs/day for
4 months

Decrease CRP and IL-17, increase regulatory T cells,
shifted Treg/Th17 ratio towards regulatory T cells

Crocin decreases inflammation in OA patients
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when higher doses were administered (Rathore et al., 2015). Hu
et al. injected 160 mg/kg crocin for 14 days into RA-induced rats.
Paw swelling and ankle diameters in crocin-treated rats were
significantly decreased as compared to controls. Histological
analysis also showed that inflammation was reduced in the
joints and other organs, such as the spleen. In addition, TNF-
α and TGF-β1 levels decreased in synovial tissues (Hu et al.,
2019). In a similar study, Liu et al. showed that the anti-
inflammatory and anti-arthritic effects of 40 mg/kg crocin
lasted for 15 days. Their study showed that MMP-1, -3, and
-13 protein expression levels were decreased in RA-induced rats
(Liu et al., 2018). At the same time, Li et al. showed similar results,
in addition to a reduction in iNOS production. This study, along
with others, showed that crocin has positive effects on RA-
induced rats (Li X et al., 2017). In an in vitro study, Li et al.
demonstrated that 500 µM (5,000 mg/ml) of crocin reduced the
levels of TNF-α, IL-1β, and IL-6 in human FLS. In addition,
crocin caused lower levels of p-IκBα, p-IκB kinase α/β, and p65
expression, demonstrating its effect on the NF-κB pathway. The
in vivo phase of their study showed that crocin can decrease TNF-
α, IL-1β, and IL-6 serum levels, and that NF-κB signaling could
suppress inflammation in FLS in RA-induced mice (Li L et al.,
2018). Wang et al. showed that crocin inhibits Wnt/β-catenin and
the Wnt signaling pathway to reduce pain-related cytokines, and
glial activation may reduce neuropathic pain in RA-induced rats
(J. F. Wang et al., 2020). Collectively, crocin may be an efficient
treatment for RA and is effective for its associated secondary
complications. Table 2 summarizes these studies.

Crocin and Osteoporosis
Osteoporosis (OP) is a progressive systemic skeletal disorder
characterized by a reduction in bone mass and deterioration of
bone tissue, which occurs following an imbalance of bone
formation/absorption, leading to bone fragility. The risk of
bone fractures, morbidity, and mortality increases in OP,
which increases treatment expenses as well (NHI, 2001; Todd
and Robinson, 2003; Bliuc et al., 2009; Bawa, 2010). There are

numerous factors that contribute to OP pathogenesis, including
metabolic syndrome (MetS), which involves abnormal glucose
metabolism, dyslipidemia, hypertension, and abdominal obesity
(Zhou et al., 2013). In MetS, fat tissue secretes inflammatory
factors and hyperglycemia results in an increase in glycation end
products, which leads to a reduction in bone mineral density
(BMD) (Yamaguchi, 2014). Due to the positive effects of crocin
on hypertension, body fat balance, and MetS, along with its anti-
inflammatory properties, crocin as a potential treatment for
osteoporosis should receive more attention (Sheng et al., 2006;
Imenshahidi et al., 2015; Shafiee et al., 2017). In a study by
Algandaby, 5 and 10 mg/kg crocin was administered to a rat
model of metabolic syndrome-induced osteoporosis. In the
crocin treatment group, bone tissue was histologically
protected against OP effects, bone formation markers
including serum alkaline phosphatase and osteocalcin
increased, and bone resorption markers, including tartrate-
resistant acid phosphatase and collagen cross-linking
carboxyterminal telopeptide, were inhibited. In addition,
crocin reduced TNF-α and IL-6 serum levels and oxidative
stress in the epiphyseal tissue of rats. These results
demonstrated that crocin may protect against MetS-induced
osteoporosis (Algandaby, 2019). Another cause of OP is
hormone (including estrogen, testosterone, and parathyroid
hormone) deficiency, which usually effects cancerous bone and
can cause a reduction in BMD. OP is more common in women
than in men, and women over 50 years of age are more vulnerable
to causes of OP, likely because of estrogen deficiency in the
postmenopausal period (Hunter and Sambrook, 2000; Marcus,
2002; Johnell and Kanis, 2006; Sugerman, 2014; Noh et al., 2020).
Cao et al. studied the effects of 5–20 mg/kg/day of crocin for
12 weeks in ovariectomized rats. They demonstrated that crocin
protected rats from reduced BMD in L4 vertebrae and femurs,
and prevented deterioration of the trabecular microarchitecture
in rats caused by ovariectomy. A significant reduction in skeletal
remodeling, as evidenced by lower levels of bone turnover
markers, was also observed. Oxidative stress factors in the

TABLE 2 | Brief summary of studies on crocin and RA.

Reference Models/Crocin doses Main results Conclusion

Hemshekhar et al.
(2012)

Rats/10–20 mg/kg daily
for 15 days

Decreased MMP-13, MMP-3, MMP-9, HAases, TNF-a, IL-
1b, NF-κB, IL-6, COX-2, PGE2 and ROS.

Reduced RA symptoms by regulating oxidative stress,
inflammation, and the levels of exoglycosidases, cathepsin-
D and tartrate-resistant acid phosphataseImpression GSH, SOD, CAT, and GST. Inhibited levels of

the exoglycosidases cathepsin-D, and tartrate-resistant
acid phosphatase

Rathore et al.
(2015)

Mice/25, 50 and
100 mg/kg for 47 days

Reduction in TNF-α and IL-1β levels, increase in SOD and
GR activity in 50 and 100 mg/kg treatments

Reduced inflammation and oxidative stress in 50 and
100 mg/kg treatments

Hu et al. (2019) Rats/160 mg/kg for
14 days

Decreased paw swelling and ankle diameters, joint, spleen,
and thymus inflammation, and levels of TNF-α and TGF-β1

Reduced RA symptoms and complications by reducing
inflammation

Liu et al. (2018) Rats/40 mg/kg for
15 days

MMP-1, -3, and -13 protein expression levels were
decreased and decreasing inflammatory cytokines similar to
previous studies

Reduced RA by reducing inflammation

Li X et al. (2017) Rats/6.25–25 mg/kg Reduction in iNOS and decrease in inflammatory cytokines
similar to previous studies

Crocin has positive effects on RA-induced rats

Li L et al. (2018) Synoviocytes/500 µM
(5,000 mg/ml)

Reduced TNF-α, IL-1β, IL-6, p-IκBα, p-IκB kinase α/β, and
p65 expression

Crocin had anti-inflammatory and anti-arthritic effects in-
vitro and in-vivo through NF-κB signaling

(Wang et al., 2020) Rats/50 and 100 mg/kg Reduced pain-related cytokines and glial activation by
affecting Wnt/β-catenin and the Wnt signaling pathway

Reduced neuropathic pain in RA-induced rats
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serum or bone tissue returned to near-normal conditions.
Collectively, these results demonstrated that crocin
administration can prevent OP in rats (Cao et al., 2014). In an
in vitro study by Nie et al., crocin was used to protect against
glucocorticoid-induced osteoporosis and osteonecrosis by
inhibiting the ROS/Ca2+-mediated mitochondrial pathway.
They showed that crocin decreases mitochondrial
transmembrane potential and increases ROS and intracellular
Ca2+ levels following induction of OP by dexamethasone in
osteoblasts. In addition, the expression levels of B-cell
lymphoma-2(Bcl-2) and mitochondrial cytochrome c (Cyt-C)
were upregulated, and cleaved caspase-9, cleaved caspase-3, Bcl-
2-associated X protein, and cytoplasmic Cyt C were
downregulated by crocin (Nie et al., 2019). Taken together,
these studies demonstrated that crocin is a potential medicine
for OP treatment. Table 3 shows the relationship between crocin
and OP.

Effects of Crocin on Cell Differentiation
Bone regeneration is a complex procedure that occurs in
abnormal conditions, such as bone degenerative diseases and
fractures, but is insufficient and inefficient in some circumstances
(Marzona and Pavolini, 2009; Dimitriou et al., 2011). Following
the inflammatory phase of bone defects, there is a proliferative
phase called the mesenchymal activation phase. During this
phase, mesenchymal stem cells (MSCs) differentiate into
chondrocytes and osteoblasts, which facilitate bone
regeneration, either through endochondral ossification or
intramembranous ossification (Knight and Hankenson, 2013).
Bony tissue cells include osteoclasts, osteoblasts, and osteocytes,
which are involved in bone regeneration and remodeling. These
cells are derived from MSCs depending on the environmental
stimulants that coordinate bone formation and bone absorption
(Boyle et al., 2003; Zaminy et al., 2008; Knight and Hankenson,
2013; Noh et al., 2020). For example, studies have demonstrated
that bone marrow MSCs (BMSCs) as multipotent stem cells can
differentiate into bone and cartilage cells. This occurs through the
expression of different growth factors, including platelet-derived
growth factor (PDGF), bone morphogenetic proteins (BMPs),
and transforming growth factor-β(TGF-β), and likely via the ERK
and JNK MAPK signaling pathways. However, these growth
factors are highly limited in these cells owing to rapid

degradation and high cytotoxicity, as well as the high financial
cost of these factors; thus, it is desirable to investigate novel
osteoblastic inducers, especially natural products (Friedman et al.,
2006; Fan et al., 2011; Mostafa et al., 2012; Yu et al., 2012;
Udalamaththa et al., 2016; Li C et al., 2017). Baharara et al.
(2014) reported successful differentiation of BMSCs into
osteoblasts following treatment with crocin, which was
confirmed by an increase in alkaline phosphatase (ALP)
activity, cell mineralization, and osteocalcin gene expression
(Baharara et al., 2014). Kalalinia et al. (2018) demonstrated
that 12.5–50 µM (125–500 mg/ml) crocin is not cytotoxic
based on the MTT assay and IC50 calculation. Moreover, at
these concentrations, it may enhance osteogenesis in BMSCs,
as measured by ALZ intensity, ALP activity, and ALP mRNA
expression. Thus, crocin can be considered a safe substance to
promote the osteogenic differentiation of BMSCs (Kalalinia et al.,
2018). Li et al. (2017) also studied the osteogenic effect of crocin
both in vitro and in vivo. For the in vitro study, they treated
human BMSCs with crocin and demonstrated an increase in ALP
activity and calcium nodule formation (assayed by alizarin red S
staining). In addition, they treated male rats with femoral head
osteonecrosis with crocin and showed considerable
histopathological changes in the femoral head tissues with
H&E staining. Western blotting and q-PCR assays showed an
increase in the expression levels of RUNX2, COL1A1, and OCN,
and a decrease in GSK-3β phosphorylation in both bone tissue
and BMSCs after treatment with crocin, in a dose-dependent
manner. These researchers suggested that crocin has potential for
use in the treatment of osteogenic diseases in the future (B. Li
et al., 2020). Koski et al. administered crocin over 7 weeks to
human fetal osteoblasts and observed an increase in cell
proliferation. In addition, crocin decreased human
osteosarcoma (MG-63) cells viability in vitro. In contrast, the
in vivo application of crocin showed pro-apoptotic and anti-
inflammatory effects in a rat model of femoral inflammation.
These results suggest that crocin may have a therapeutic effect on
osteosarcoma regulation and potential for use in wound healing
during bone tissue regeneration (Koski et al., 2020). Studies have
shown that in some diseases involving bone degeneration and
dysregulation of bone homeostasis besides osteogenesis, the
influence of osteoclast formation and osteo-
immunomodulation is important (Chen et al., 2017b; Chen

TABLE 3 | Brief summary of studies on crocin and OP.

Reference Models/Crocin doses Main results Conclusion

Algandaby,
(2019)

Rats/5–10 mg/kg daily
for 12 weeks orally

Protected from histological changes in bone, increased serum
alkaline phosphatase and osteocalcin, decreased tartrate-
resistant acid phosphatase and collagen cross-linking
carboxyterminal telopeptide and TNF-α and IL-6 oxidative
stress

Crocin may be effective against MetS-induced osteoporosis

Cao et al.
(2014)

Rats/5–20 mg/kg daily
for 12 weeks

Reduction in skeletal remodeling and oxidative stress factors,
increase in BMD and trabecular microarchitecture

Administration of crocin for 14 weeks can prevent OP in rats

Nie et al.
(2019)

MC3T3-E1 cell line/
100 µM (1,000 mg/ml)

Upregulated expression levels of Bcl-2 and Cyt C, and
downregulated caspase-9, caspase-3, Bcl-2-associated X
protein, and cytoplasmic Cyt C, and increased levels of ROS
and intracellular Ca2+

Crocin may have a therapeutic effect on dexamethasone-
induced apoptosis of osteoblasts via inhibition of the ROS/
Ca2+-mediated mitochondrial pathway in-vitro
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et al., 2017c). On the other hand, M2 macrophages (anti-
inflammatory macrophages) secrete cytokines such as BMP-2
that contribute to osteogenesis (Yuan et al., 2017). Note that
crocin may be effective in macrophage polarization and
promotion of the M2 phenotype (Li J et al., 2018). Zhu et al.
showed that crocin promoted macrophage polarization toward
the M2 phenotype and reduced the expression of anti-
inflammatory cytokines in vitro and in vivo. In addition, pre-
treatment of macrophages with crocin induced the osteogenic
differentiation of BMSCs in co-culture media. This is probably
due to the inhibition of p38 and c-Jun N-terminal kinase
signaling. This study indicated that crocin has therapeutic
potential for bone degenerative disease by inducing M2
macrophage polarization, which results in inflammation
reduction and osteogenic differentiation of BMSCs (Zhu et al.,
2019). The above-mentioned studies have emphasized that crocin
may have a positive effect on osteogenesis by promoting
osteoblastic differentiation. A summary of these studies is
provided in Table 4.

In some pathological conditions related to bone loss-
associated diseases (osteoporosis, arthritis, osteomyelitis, etc.),
osteoclast cells are activated, leading to bone resorption. Under
similar conditions, an imbalance occurs between osteoblast
activities (leading to bone formation) and osteoclast activities

(leading to bone resorption) (Boyle et al., 2003; Walsh and
Gravallese, 2010; Redlich and Smolen, 2012). Stimulation of
hematopoietic stem cells (HSCs) by inflammatory cytokines,
such as IL-1, IL-6, and TNF-α (which are inhibited by crocin,
as mentioned above) or other factors such as monocyte/
macrophage colony-stimulating factor (M-CSF) and activation
of receptor activator of nuclear factor kappaB (RANK) with its
ligand (RANKL) can lead to osteoclast differentiation (Udagawa
et al., 1999; Azuma et al., 2000; Teitelbaum, 2000; Ross, 2006;
Walsh and Gravallese, 2010; Redlich and Smolen, 2012;
Yamashita et al., 2012; Xu and Teitelbaum, 2013; Yokota
et al., 2014). Studies have indicated that RANKL, a membrane
protein of the TNF family, plays a role in osteoclast differentiation
(Yasuda et al., 1998; Takayanagi et al., 2000; Roodman, 2006).
RANKL is expressed on osteoblast cell membranes in response to
stimulatory factors and then engages RANK on osteoclast cell
membranes, along with activation of the NF-κB and MAPK
signaling pathways. The final product of these cascades is the
expression of tartrate-resistant acid phosphatase (TRAP) and
other enzymes, which are involved in osteoclast-mediated bone
resorption (Asagiri and Takayanagi, 2007). Fu et al. demonstrated
that crocin suppresses osteoclast differentiation and function by
directly inhibiting RANKL in bonemarrow-derived macrophages
(BMM). Downregulation of the NF-κB pathway and reduction in

TABLE 4 | Studies on the effect of crocin on osteoblastic differentiation.

Reference Models/Crocin doses Main results Conclusion

Baharara et al.
(2014)

BMSCs/60–80 µM
(600–800 mg/ml)

Increased alkaline phosphatase (ALP) activity, cell
mineralization, and osteocalcin gene expression

crocin may have effect on osteoblastic differentiation of
BMSCs

Kalalinia et al.
(2018)

BMSCs/12.5–50 µM
(125–500 mg/ml)

Increased ALZ intensity, ALP activity, and ALP mRNA
expression, was not cytotoxic using MTT test and IC50

calculation

Crocin can be considered a safe substance to promote
osteogenic differentiation of BMSCs

(B. Li et al.,
2020)

hBMSCs/10–50 µM
(10–500 mg/ml)

Increased LAP activity, calcium nodules, and RUNX2,
COL1A1, and OCN expression, decreased GSK- 3β
phosphorylation

Crocin is effective in in-vitro and in-vivo osteogenic
models

Zhu et al.
(2019)

M2 macrophages and BMSCs/40
and 80 µM (400–800 mg/ml)

Promoted M2 phenotype that was decreased in anti-
inflammatory cytokine-induced osteogenic differentiation
of BMSCs in co-culture with pre-treated macrophages
through inhibition of p38 and c-Jun N-terminal kinase
signaling

Crocin has therapeutic potential for bone degenerative
diseases through induction of M2 macrophage
polarization, resulting in inflammation reduction and
osteogenic differentiation of BMSCs

Koski et al.
(2020)

hFOBs and MG-63 cell line, Rats/
45 µg (450 mg/ml)

Increased osteoblast proliferation and decreased
osteosarcoma viability and pro-apoptotic and anti-
inflammatory effects in-vivo

Crocin has a potential therapeutic effect on
osteosarcoma regulation and uses for wound healing
during bone tissue regeneration

TABLE 5 | Studies on the effect of crocin on osteoclastic inhibition.

Reference Models/Crocin doses Main results Conclusion

Fu et al.
(2017)

BMMs/100 µM
(1,000 mg/ml)

Inhibition of RANKL, downregulation of NF-κB pathway, and
reduction of NFATc1, c-Fos and cathepsin levels

Crocin suppresses osteoclast differentiation and function and
inhibits bone resorption activity

Shi et al.
(2018)

BMMs/10–40 µM
(100–400 mg/ml)

Downregulation of NFATc1, c-Fos and cathepsin K,
inhibition of κBα degradation, NF-κB p65 subunit nuclear
translocation suppression, and JNK activation resulted in
inhibition of RANKL

Crocin downregulates osteoclast differentiation via inhibition of
JNK and NF-κB signaling pathways and decreases
osteoclastogenesis in BMMs

Suh et al.
(2019)

RAW264.7 cell line/
2–10 µM (20–100 mg/ml)

Decreased gene expression levels of TRAF6, Akt2, ERK1,
OSTM1, and MMP-9

Crocin decreases osteoclast function and differentiation and
bone resorption in-vitro, as well reduction in bone resorption
activity of osteoclasts
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osteoclast-specific gene expression, including NFATc1, c-Fos,
and cathepsin, are involved, leading to inhibition of bone
resorption activity (Fu et al., 2017). A similar study by Shi
et al. demonstrated that crocin downregulates osteoclast
differentiation via inhibition of JNK and NF-κB signaling
pathways in BMM cells in vitro. In the crocin-treated group,
osteoclast markers including NFATc1, c-Fos, and cathepsin K,
were downregulated. An inhibitor of κBα degradation and NF-κB
p65 subunit nuclear translocation was suppressed, while c-Jun
N-terminal kinase (JNK) was activated, resulting in the inhibition
of RANKL in BMM. These results demonstrated that crocin
decreased osteoclastogenesis in BMM (Shi et al., 2018). Suh et al.
showed that crocin treatment decreased gene expression of
TRAF6, Akt2, ERK1, OSTM1, and MMP-9, which are related
to osteoclast differentiation and function and bone resorption
in vitro, as well as a reduction in bone resorption activity of
osteoclasts (Suh et al., 2019). These studies demonstrate the
potential therapeutic effect of crocin on osteoclast and bone
resorption dysfunction, as well as bone loss-associated
diseases. A summary of these studies is provided in Table 5.

CONCLUSION

Studies have shown that crocin, the main biologically active
component of saffron, has anti-inflammatory and antioxidant
effects. In addition, crocin has potential therapeutic effects on
bone and cartilage diseases that involve inflammation and
accumulation of free radicals, including OA, RA, and
osteoporosis. Crocin can reduce oxidative stress and
inflammatory cytokines via inhibiting molecular pathways
include Wnt, MAPK and JNK signaling pathway. It modulates
PI3K/Akt and NF-κB signaling pathways and polarizes

macrophages to the M2 (anti-inflammatory) phenotype by
suppressing the p38 and JNK pathways. Crocin also has
proliferative and anti-apoptotic effects, especially on
osteoblasts, and positive effects on osteoblastic differentiation
of MSCs, while it also inhibits osteoclast activity. These data
suggest promising potential therapeutic use of crocin in bone
degenerative and bone-loss diseases, which require more precise
laboratories and clinical trials. For example, crocin in high
doses exhibited a cytotoxic effect and acts as an apoptotic
promotor (Li et al., 2013), so it seems that further researches
are needed to the determination of proper crocin dosage for
both in-vitro and in-vivo studies. Also, the molecular
mechanisms of various crocin effects are not recognized
very well yet, so future studies may need to clarify the
molecular mechanisms that they are involved. Overall
regarding the beneficial effects of crocin in bone and
cartilage diseases and due to lack of human studies in
crocin effects in this field, the need for human trials is felt
and future studies can be done in this research area.
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