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Endogenous retroviruses (ERVs) are becoming more and more relevant in cancer research
and might be potential targets. The oncogenic potential of human ERVs (HERVs) has been
recognized and includes immunosuppression, cell fusion, antigenicity of viral proteins, and
regulation of neighboring genes. To decipher the role of HERVs in human cancers, we used a
bioinformatics approach and analyzed RNA sequencing data from the LL-100 panel,
covering 22 entities of hematopoietic neoplasias including T cell, B cell and myeloid
malignancies. We compared HERV expression in this panel with hematopoietic stem cells
(HSCs), embryonic stem cells (ESCs) and normal blood cells. RNA sequencing data were
mapped against a comprehensive synthetic viral metagenome with 116 HERV sequences
from 14 different HERV families. Of these, 13 HERV families and elements were differently
expressed in malignant hematopoietic cells and stem cells. We found transcriptional
upregulation of HERVE family in acute megakaryocytic and erythroid leukemia and of
HERVFc family in multiple myeloma/plasma cell leukemia (PCL). The HERVFc member
HERVFc-1 was found transcriptionally active in the multiple myeloma cell line OPM-2 and
also in the Hodgkin lymphoma cell line L-428. The expression of HERVFc-1 in L-428 cells
was validated by qRT-PCR.We also confirm transcriptional downregulation of ERV3 in acute
megakaryocytic and erythroid leukemia, and HERVK in acute monocytic and myelocytic
leukemia and a depression of HERVF in all malignant entities. Most of the higher expressed
HERV families could be detected in stem cells including HERVK (HML-2), HERV-like, HERVV,
HERVT, ERV9, HERVW, HERVF, HERVMER, ERV3, HERVH and HERVPABLB.
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INTRODUCTION

Retroviruses (Retroviridae family) are characterized by a
replication cycle in which the viral RNA genome is reverse-
transcribed and integrated into a host cell’s nuclear genome to
form the provirus. The integration of retroviruses into germline
DNA can lead to the formation of vertically transmittable
proviral sequences known as endogenous retroviruses (ERVs).
Such proviruses maintain the potential to generate multiple germ
line copies, either by infectious cycles or retrotransposition
(1, 2). Vertebrate genomes typically contain thousands of ERV
loci. As a result, the human genome contains approximately
8% HERV sequences (3). In comparison, only 1-2% of the
genome codes for essential proteins (4). Based on sequence
similarities ERVs have been classified into three major groups.
Class I ERVs are related to gammaretroviruses (homology with
the Moloney murine leukemia virus MoMuLV) and include
the human ERV families HERVE, HERVF, HERVT, HERVV,
ERV3 (HERVR), ERV9, HERVW, HERVFRD, HERVH,
HERVFc, HERVMER and HERVPABLB. Class II ERVs are
related to betaretroviruses and include the human HERVK
family and the mouse mammary tumor virus, Class III ERVs
are related to spumaretroviruses and include the HERVL family
(5–10). In total, ERVs contain more than 200 different groups
and subgroups, and so far no uniform classification and
nomenclature of ERVs has been used (11).

Retroviral proviruses typically have the three main coding
regions gag (group-specific antigen), pol (transcriptase/
polymerase) and env (envelope), which are flanked by long
terminal repeat sequences (LTRs). Most of this viral DNA is
inactivated by deletions or by mutations that have led to
the disruption of open reading frames (ORF). Nevertheless,
there are a few HERVs with complete and intact open reading
frames for the generation of viral proteins (1). Among the
HERV families, the HERVK group includes the highest
number of members that still have complete sequences for
viral genes (12, 13).

The presence of gag, pol and env proteins in the human
organism, especially under pathological conditions, has been
demonstrated in several studies (14–18). The envelope protein
of HERVK inhibits the proliferation of human immune cells,
regulates the expression of numerous cytokines and is an
example of the control of gene expression by an HERV protein
(19). Besides the induction of immunosuppression, HERV
Abbreviations: ALCL, anaplastic large cell lymphoma; ALL, acute lymphoblastic
leukemia; AML, acute myeloid leukemia; BC, blast crisis; BL, Burkitt lymphoma;
CLL, chronic lymphocytic leukemia; CML, chronic myeloid leukemia; DLBCL
ABC, diffuse large B cell lymphoma, activated B cell subtype; DLBCL GC, diffuse
large B cell lymphoma, germinal center subtype; ery, erythroid; ESCs, embryonic
stem cells; HCL, hairy cell leukemia; HL, Hodgkin lymphoma; HSCs,
hematopoietic stem cells; LL: lymphoblastic lymphoma; mega, megakaryocytic;
lympho, lymphocytic; MCL, mantle cell lymphoma; MM: multiple myeloma;
mono: monocytic; MPN, myeloproliferative neoplasm; myelo, myelocytic; NK,
natural killer; PBMCs, peripheral blood mononuclear cells; PCL, plasma cell
leukemia; PEL, primary effusion lymphoma; PLL, prolymphocytic leukemia;
PMBL, primary mediastinal B cell lymphoma.
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proteins can cause cell fusion (20, 21) and might act as
superantigens for T cell stimulation (22, 23).

In addition to direct effects of HERV products, HERV-related
sequences in the genome can have the ability to control genes in
coordinated networks of transcriptional regulation. HERV can
act as cis-regulatory elements (24, 25), produce non-coding
RNAs that influence nearby genes and/or the global
transcriptome in trans (26, 27), and alternate the epigenetic
landscape in cancer cells (28, 29). For example, HERVK and
HERVH have been shown to influence the transcription of genes
involved in pluripotency (30, 31).

The HERV expression is upregulated in various types
of cancer like germ cell tumors (32), teratocarcinoma (33),
breast cancer (34), prostate cancer (17), Hodgkin lymphoma
(35), sarcoma (36) and melanomas (37). Systematic
investigations of gene expression data for expressed HERVs
and other repetitive elements in cancer revealed a strong
impact of these elements on anti-cancer immunity and
immunotherapy (38–42).

In summary, the disease causing potential of HERVs is widely
accepted. This underlines the importance of HERVs for disease
and health and the growing interest in their biology and role in the
oncogenesis in different entities. Several studies showed the
expression of HERVs in individual cell lines of leukemia and
lymphoma and discussed a possible role of endogenous retroviral
elements in the development of these cancers. Recently, RNA
sequencing (RNA-seq) based gene expression data from the LL-
100 panel of leukemia and lymphoma cell lines were made
available, which covers 22 different entities including T cell, B
cell and myeloid malignancies and thus the entire spectrum of
these diseases. This dataset includes cell lines from the following
entities: acute myeloid leukemia (AML) with myelocytic,
monocytic, erythroid, and megakaryocytic differentiation;
chronic myeloid leukemia (CML) with myeloid or lymphoid
blast crises; multiple myeloma/plasma cell leukemia (PCL); T
cell and pre B cell acute lymphoblastic leukemia (ALL);
Hodgkin lymphoma; Burkitt lymophoma/B cell ALL; chronic
lymphocytic leukemia/prolymphocytic leukemia (CLL/PLL);
activated B cell (ABC) and germinal center (GC) subtypes of
diffuse large B cell lymphoma (DLBCL); hairy cell leukemia
(HCL); mantle cell lymphoma (MCL); primary effusion
lymphoma (PEL); primary mediastinal B cell lymphoma
(PMBL); anaplastic large cell lymphoma (ALCL). The panel is
completed by cell lines from myeloproliferative neoplasm (MPN),
NK cell andmature T cell malignancies. The LL-100 panel consists
of well-characterized and authenticated cell lines that are publicly
available (www.dsmz.de) and widely used in many laboratories
(43). In the present investigation, we used this comprehensive
RNA-seq data collection in order to identify differentially
expressed HERV families in hematopoietic cancer cells in
comparison with hematopoietic stem cells (HSCs) and
embryonic stem cells (ESCs). The aim of this investigation was
to characterize HERV expression in this widely used cell lines
panel and to identify HERVs that are expressed in individual
entities. These HERVs might represent candidates for future
investigations using larger numbers of patient samples.
April 2021 | Volume 11 | Article 637981
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MATERIAL AND METHODS

Construction of a Synthetic Virus
Metagenome
To quantify HERV expression, a synthetic virus metagenome
was assembled to be used for mapping analysis. Because
endogenous viral sequences can influence the development of
cancer and immune diseases by transcription of gag, pol and env
genes as well as by synthesis of viral proteins, publications and
databases were searched for HERVs with full-length sequences
and/or open reading frames. A total of 116 individual human
endogenous viral genomic sequences and 3 sequences of
endogenous bornavirus-like nucleoprotein (EBLN) elements
were collected from the nucleotide database from the National
Center for Biotechnology Information (NCBI). The
corresponding reference publications and accession numbers
are listed in the Supplementary Table 1. These HERV
sequences belong to 14 HERV families and were assembled to
a synthetic virus metagenome. Additionally, 124 sequences of
exogenous viruses and non-human endogenous viruses and 4
sequences of housekeeping genes were integrated as spacers. To
assemble the synthetic virus metagenome, the sequences of all
endogenous retroviruses and exogenous viruses were copied one
after the other in a text file. The sequence order corresponds to
the order in Supplementary Table 1. Using the biological
sequence alignment editor BioEdit 7.2 (https://bioedit.software.
informer.com), the created sequence was saved as a fasta file,
which was then used as the HERV reference genome for
mapping. We have added this fasta file named Viruses21.fasta
in the supplement.

RNA-Sequencing Data Analysis of the
LL-100 Panel Dataset and Calculation
of the HERV Family Specific FPKMs
The cell lines of the LL-100 panel are authenticated and free of
contamination by mycoplasma or non-inherent viruses.
Furthermore, the method of RNA isolation and sequencing are
identical in all cell lines. Therefore, this dataset allows
comparative studies without methodical impact. The RNA-seq
data were downloaded from the NCBI Short Read Archive (SRA)
under BioProject PRJEB30312 (43).

To analyze the sequencing data they were uploaded to the
Galaxy platform (44). With FastQC (Galaxy Version 0.72
+galaxy1) we checked the quality of raw sequence data. The
paired-end reads were mapped to the synthetic virus
metagenome using Bowtie2 (Galaxy Version 2.3.4.3+galaxy0)
with default settings (45). The overall alignment rate of the LL-
100 cell lines varied between 0.44 and 1.14%. For quantification
of gene expression from the BAM files, the mapped reads were
counted using FeatureCounts [Galaxy Version 1.6.4+galaxy2
(46)]. The GTF file used for quantification (Viruses21.gtf) is
provided in the supplement. Only reads that mapped uniquely to
the virus metagenome were counted using the following settings:
counted fragments (-p), only allow fragments with both reads
aligned (-B), disabled multi-mapping. The multi-mapping
option in featureCounts (-M) was not used because this might
Frontiers in Oncology | www.frontiersin.org 3
lead to overestimations (47). However, this is only relevant if the
–a/-k option is used for mapping. We used Bowtie2 with the
default values from the Galaxy server. Therefore, single reads are
mapped only to single positions. This has the advantage that
family specific FPKM can be calculated without bias from the
family size. For the quantification of the counted fragments with
FeatureCounts the Fragments Per Kilo Base per Million (FPKM)
values were calculated to account for variation in provirus
lengths and total number of reads. To calculate the HERV
family specific FPKMs, the mapped fragments for each HERV
family member and the length of each HERV family member
were summed up and calculated using the following formula:
family FPKM = sum of family fragments/sum of gene lengths of
all family members *1,000/total number of reads*1,000,000. For
differential expression analysis the HERV family specific FPKMs
were compared with the FPKMs in PBMCs as a universal
control. Calculation of FPKM and family specific FPKM was
performed in Micosoft Excel 2016 (see Supplement). In addition,
HERV family specific expression normalized to reference genes
was calculated. The three housekeeping genes hypoxanthine
phosphoribosyltransferase 1 (HPRT1), glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) and ubiquitin B (UBB)
were used. Analogous to the HERV family specific FPKM, the
housekeeping gene specific FPKM was calculated and HERV
family specific FPKM were normalized to this value
(see Supplement).

RNA-Sequencing Data Analysis of
Datasets From Stem Cells and Normal
Blood Cells
Three paired-end RNA-seq datasets (SRR2453342, SRR2453343,
SRR2453346) from human pluripotent embryonic stem cells
(ESCs) from the BioProject PRJNA296379 were analyzed (48).
The reads were mapped against the virus metagenome analogous
to the LL-100 RNA-seq data. From the BioProject PRJNA437152
(49) three paired-end RNA-seq datasets (SRR6811702,
SRR6811703, SRR6811704) of fetal liver hematopoietic stem
and progenitor cells (HSCs) were used. In addition, two RNA-
seq datasets (SRR6298381, SRR6298352) from normal peripheral
blood mononuclear cells (PBMCs) from the BioProject
PRJNA418779 (50) were used. These RNA-seq data from stem
cells and normal blood cells were mapped against the virus
metagenome analogous to the LL-100 RNA-seq data. The overall
alignment rate was as follows: for ESCs 1.78 - 2.50%, for HSCs
0.13 - 0.16% and for PBMCs 0.68 - 0.75%.

Cell Lines and Culture Conditions
The five Hodgkin lymphoma cell lines L-1236, L-428, L-540,
KM-H2 and HDLM-2 were obtained from the German
Collection of Microorganisms and Cell Cultures GmbH
(Braunschweig, Germany). Cell lines were grown in 5% CO2

atmosphere in a humidified 37°C incubator and cultured in
RPMI (Pasching, Germany), supplemented with 10% (v/v) fetal
calf serum (FCS), 100 U/mL penicillin and 100 mg/mL
streptomycin (Life Technologies, Carlsbad, CA, USA). The
cells were passaged in 75cm2

flask twice a week.
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Preparation of RNA Samples
Total RNA was extracted using the NucleoSpin RNAMini kit for
RNA purification (Macherey-Nagel GmbH & Co. KG, Düren,
Germany) according to manufacturer’s instructions. Quality and
concentration of RNA were determined by visualization of rRNA
bands in agarose gel electrophoresis and with a NanoDrop 2000
spectrophotometer (Thermo Fisher Scientific, Waltham,
MA, USA).

Quantitative Reverse Transcription-
Polymerase Chain Reaction (qRT-PCR)
To quantify HERVFc-1 transcripts, 2 mg of total RNA and
100 mM Oligo-dT primer were used for cDNA synthesis
(M-MLV Reverse Transcriptase, RNase H Minus-Kit; Promega
GmbH, Walldorf, Germany) following the manufacturer’s
instructions. A sample without reverse transcription was
also prepared to check for genomic DNA contamination
(noRT control).

For the qRT-PCR 5 mL 5xGreen GoTaq buffer, 0.2 ml GoTaq
polymerase (both Promega GmbH, Mannheim, Germany),
16.8 ml nuclease-free water, 0.5 ml of 10 mM dNTPs (Thermo
Fisher Scientific, Waltham, MA, USA), 0.25 ml forward primer
(25 mM), 0.25 ml reverse primer (25 mM) and 2 ml cDNA were
prepared. The amplification was performed under the following
conditions: 94°C for 30 s, 60°C for 30 s, 72°C for 45 s (40 cycles).
The experiment was repeated four times for the gene
expression analysis.

Relative gene expression was calculated with the 2-DDCt

method (51) using hypoxanthine phosphoribosyltransferase 1
(HPRT1) as reference gene for normalization. noRT controls
were used for exclusion of genomic DNA amplifications. The
following primers from Eurofins Genomics GmbH (Ebersberg/
Germany) were used: HERVFc-1_forward: 5’-CTC CCC ATC
TCT CTG GTG C-3’ and HERVFc-1_reverse: 5’-TGA GGA
GGC TGG TTT CTC TAA G-3’; HPRT1 _forward: 5’-ACC AGT
CAA CAG GGG ACA TAA-3’ and HPRT1_reverse: 5’-CTT
CGT GGG GTC CTT TTC ACC-3’.

Data Visualization and
Statistical Analysis
Data visualization and One-way ANOVA followed by Dunnett’s
multiple comparisons test for statistical analysis was performed
using GraphPad Prism version 8.0.0 for Windows, GraphPad
Software, San Diego, CA, USA. Statistical significances are
symbolized as asterisks: * = p < 0.05, ** = p < 0.01, *** = p <
0.001, **** = p < 0.0001).
RESULTS

We analyzed the RNA-seq data of 100 cell lines from the LL-100
panel covering 22 entities of human leukemia and lymphoma
(43). Eight RNA-seq data from PBMCs and HSCs and ESCs were
also examined for comparison. Our investigation included 116
sequences of 14 HERV families and 3 sequences of the
EBLN family.
Frontiers in Oncology | www.frontiersin.org 4
Detection of EBV, HHV8 and XMRV in Cell
Lines of LL-100 Panel
Some cell lines of the LL-100 panel are known to contain
Epstein-Barr virus (EBV), Human herpes virus 8 (HHV8) or
xenotropic MuLV-related virus (XMRV). To demonstrate the
functionality of our method we first analyzed all cell lines for the
presence of these exogenous viruses. As expected, we could
detect reads mapping against the EBV gene EBNA-1 in the
EBV-positive cell lines DAUDI, RAJI, VAL, YT, HG-3, JVM-3,
JVM-13, MEC-1, PGA-1, BONNA-12, HAIR-M, HC-1,
GRANTA-519 and JVM-2 (Figure 1, Supplementary Table 2).
EBNA-1 is the only latent protein-encoding gene identified that
is expressed consistently in Burkitt’s lymphoma cells with EBV
latency type I. It is believed to contribute to EBVmalignancies by
B cell-directed expression (52). In the HHV8-positive primary
effusion lymphoma (PEL) cell lines BC-3, BCBL-1, CRO-AP2,
CRO-AP5 we also verified the presence of this virus by detection
of ORF57 specific reads. The ORF57 gene product is essential for
lytic HHV8 replication and virion production (53). PEL cases are
universally associated with Kaposi sarcoma herpesvirus/HHV8
(54). XMRV was detectable only in the single XMRV-positive
cell line DEL (Figure 1, Supplementary Table 2).

Differential Expression of HERVE, ERV3
and HERVK in Leukemia Cell Lines
For our mapping analysis we have added only almost complete
HERV sequences including gag, pol and env genes to our
virus metagenome. We found only one known full-length
HERVE sequence known as ERVE-1 in the human NCBI
nucleotide database. Within the human genome there is a
large number of HERVE related sequences that are 90-93%
identical to the known full-length ERVE-1 sequence (55).
Although only the ERVE-1 sequence is present in the virus
metagenome, the short length of the 100-150 bp reads and
the high homology of the HERVE sequences should also
allow the filtering and quantification of HERVE related reads if
they are transcriptionally active in human cells. A significant
transcriptional upregulation for HERVE (p < 0.05) was
identified in megakaryocytic AML cell lines (CMK, ELF-153,
M-07e, MEGAL, MKPL-1, UT-7) and in erythroid AML cell
lines (F-36P, HEL, OCI-M2, TF-1), but not in myelocytic AML
and monocytic AML cell lines or in HSCs and lymphoma cells
(Figure 2).

The human genome contains about 40 ERV3-like elements
(56–58). However, only the ERV3-1 copy has a complete ORF
for an env protein (56) and is included in our virus metagenome.
No significant transcriptional overexpression of ERV3 was found
in the analyzed leukemia and lymphoma entities. However,
compared to PBMCs, significantly less ERV3 specific reads
were detected in cell lines for the two AML entities
megakaryocytic AML and erythroid AML (p < 0.05, Figure 2).

The human genome contains around 100 integrated copies of
the HERVK (HML-2) virus (47), of which we have included 92
different full-length HERVK sequences for analysis to cover a
complete spectrum of the HERVK (HML-2) family (11,
Supplementary Table 1). Significantly reduced transcripts
April 2021 | Volume 11 | Article 637981
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(p < 0.05) were identified for HERVK in the two AML entities
myelocytic AML (cell lines EOL-1, HL-60, KASUMI-1, KG-1,
NB-4, OCI-AML3, SKNO-1) and monocytic AML (cell lines
ME-1, MOLM-13, MONO-MAC-6, MUTZ-3, THP-1, U-937)
(Figure 2 and Supplementary Table 3). For the HERVFRD and
EBLN families no significant differential expression was obtained
in malignant cells (Supplementary Figure 1).

Transcriptional Downregulation of HERVF
in Leukemia, Lymphoma and Malignant
Diseases
The endogenous retrovirus group 48 member 1 (ERVH48-1/
ERV-Fb) is part of the HERVF family, whose family members
are preferentially expressed in the human placenta (59). Our data
show that, compared to PBMCs, the transcription of this HERVF
element is even downregulated in all of the leukemia and
lymphoma cell lines (p < 0.0001, Figure 2).
Frontiers in Oncology | www.frontiersin.org 5
Transcriptional Upregulation of HERV
Families in HSCs and ESCs
The activation of endogenous retroviral LTRs plays a
fundamental role in the maintenance of pluripotency and
induction of an antiviral state in stem cells (60). Therefore, we
have compared the differential expression of the 14 HERV
families and elements in PBMCs and leukemia and lymphoma
cell lines with human pluripotent ESCs cells (n=3) and human
HSCs (n=3).

In both stem cell types, nine HERV families and elements are
each significantly upregulated compared to PBMCs. The
HERVK family, HERV-like family, HERVV family, HERVT
family were all highly significantly upregulated (all p < 0.0001)
in both stem cell types (Figures 2 and 3). The higher expression
of ERV9 was more significant in ESCs (p < 0.0001) compared to
HSCs (p < 0.01, Figure 4), whereas the upregulation of HERVW
and HERVF was more pronounced in HSCs (both p < 0.0001)
FIGURE 1 | Detection of EBV, HHV8 and XMRV in leukemia and lymphoma cell lines and stem cells. Mapped reads against the EBV gene EBNA-1, the HHV8 gene
ORF57 and against the XMRV genome were counted and FPKMs calculated. Raw data are available in Supplementary Table 2.
April 2021 | Volume 11 | Article 637981
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than in ESCs (HERVW: p < 0.05, HERVF: p < 0.01; Figures 2
and 3). HERVMER and ERV3 were only significantly
differentially expressed (p < 0.0001) in HSCs, while HERVH
and HERVPABLB were significantly upregulated (p < 0.0001)
only in ESCs (Figures 2 and 4). No significant differential
expression in HSCs or ESCs was observed for the HERVFRD
family and the EBLN family (Supplementary Figure 1).

Transcriptional Upregulation of HERVFc
Family in Multiple Myeloma/PCL Cell Lines
The HERVFc subfamily is part of the larger HERVF family (61).
The human genome comprises only six known HERVFc family
members, among which two possess full-length coding envelope
genes (62). Therefore HERVFc-1 (Fc1env, Xq21.33) and
HERVFc-2 (envF(c)2, 7q36.2) were added to the virus
metagenome. A significantly increased transcription of
HERVFc family specific transcripts (p < 0.05) was only
detected in cell lines from multiple myeloma/plasma cell
leukemia (PCL) (cell lines KMS-12-BM, L-363, LP-1, OPM-2,
Frontiers in Oncology | www.frontiersin.org 6
RPMI-8226 and U-266; Figure 5A; Supplementary Table 3).
The cell lines from Hodgkin lymphoma and from primary
effusion lymphoma (PEL) show at least a tendency for higher
expression of HERVFc. Transcriptional upregulation is mainly
limited to HERVFc-2, which is poorly expressed in other
lymphoma and leukemia cell lines and stem cells (Figure 5A
and Supplementary Table 3). HERVFc-1 -specific reads could
only be detected in two cell lines from different diseases including
Hodgkin lymphoma cell line L-428 (23 fragments = 0.08 FPKM)
and multiple myeloma/PCL cell line OPM-2 (51 fragments = 0.2
FPKM); see Supplementary Table 3.

Transcriptional Expression of HERVFc-1 in
the Hodgkin Lymphoma Cell Line L-428
To confirm the results obtained in the mapping analyses and to
further verify the functionality of our mapping approach, the
expression of HERVFc-1 in the Hodgkin lymphoma cell lines
L-428, L-540, L-1236, KM-H2 and HDLM-2 was analyzed by
RT-PCR. According to the mapping results for HERVFc-1
FIGURE 2 | Differential expression of HERV families HERVE, ERV3, HERVK and HERVF in leukemia and lymphoma cell lines and stem cells. For each cancer entity and stem
cell type, family specific FPKMs were calculated. Black dots marked RNA-seq data from individual cell lines or stem cell samples. The bar graphs represent means and error
bars indicate standard deviations. For statistical analysis, the mean values of the individual entities and stem cells were used for multiple comparisons. The dotted line
represents expression in PBMCs. Raw data are available in Supplementary Table 3. p-value: * = p < 0.05, ** = p < 0.01, **** = p < 0.0001.
April 2021 | Volume 11 | Article 637981

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Engel et al. HERVs in Hematopoietic Cancer Cells
(Supplementary Table 3) high expression of this HERV element
was only detectable by RT-PCR in the Hodgkin lymphoma cell
line L-428 (p < 0.0001), but not in the cell lines L-540, L-1236,
KM-H2 and HDLM-2 (Figure 5B). These data confirm the
functionality of our mapping approach to identify differentially
expressed HERV sequences in RNA-seq data. Normalization of
HERV family specific FPKM to housekeeping genes had no
major effect on the detectability of entity specific HERV
expression (see Supplementary Table 3).
DISCUSSION

Several studies showed the expression of HERVs in individual
leukemia and lymphoma cell lines and discussed a possible role
Frontiers in Oncology | www.frontiersin.org 7
of endogenous retroviral elements in the development of these
cancers. In this study, we analyzed differentially expressed HERV
families in a collection of cell lines from a broad spectrum of
hematopoietic entities to demonstrate the association of these
transcriptionally regulated HERVs with leukemia and
lymphoma. 13 HERV families and elements were found to be
expressed differentially in malignant cells and stem cells. While
only some HERV families were upregulated or downregulated in
certain cancers, most of the higher expressed HERV families
could be detected in stem cells (Figures 2–5).

Our virus metagenome analyses confirm the activation of
HERVE in two AML entities: megakaryocytic AML and
erythroid AML (Figure 2). Expression of ERVE-1 env gene,
the only full-length HERVE member, was observed in ovarian
cancer (63) and prostate cancer (64). The env gene is also
expressed in many normal human tissues (e.g. brain, kidney,
FIGURE 3 | Differential expression of HERV families HERVT, HERVV, HERV-like and HERVW in leukemia and lymphoma cell lines and stem cells. For each cancer
entity and stem cell type, family specific FPKMs were calculated. Black dots marked RNA-seq data from individual cell lines or stem cell samples. The bar graphs
represent means and error bars indicate standard deviations. For statistical analysis, the mean values of the individual entities and stem cells were used for multiple
comparisons. The dotted line represents expression in PBMCs. Raw data are available in Supplementary Table 3. p-value: * = p < 0.05, **** = p < 0.0001.
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testes, placenta, thymus, uterus), suggesting that the HERVE
family is expressed according to the transcriptional program of
human tissues and human cancer cells (65). For example, the
HERVE family is involved in the transcriptional regulation of the
genes for apolipoprotein C-I and endothelin B receptors (66) and
the human growth factor pleiotrophin in the placenta by
contributing alternative promoters (67). Transcripts of HERVE
were obtained from cells of the chronic myeloid leukemia cell
line K562 and from the T cell leukemia cell line HSB-2 (55).
Differences in the transcriptional pattern of HERVE between
malignant and non-malignant hematopoietic cells (55) raise
questions about the role of these elements in the development
of leukemia. HERVE transcription could be activated by
inhibit ion of LTR methylat ion as shown in lupus
erythematosus (68). The relationship between transcriptionally
active HERVE elements and adjacent genes in AML needs to be
analyzed in further studies. Although the exact function of
HERVs in cancer is unclear, the evidence for the involvement
of HERVE in megakaryocytic AML and erythroid AML is
considerable and further analysis is needed.
Frontiers in Oncology | www.frontiersin.org 8
In cell lines for the two AML entities, megakaryocytic AML
and erythroid AML, significantly less ERV3 specific transcripts
are detectable compared to PBMCs (Figure 2). From the 40
ERV3-like elements in humans only the ERV3-1 copy on
chromosome 7q11.21 has a complete open reading frame for a
viral envelope protein (56). ERV3-1 is closely linked to the
neighboring ZNF117 locus, but for both genes the
physiological functions are not yet understood (69). The role
of ERV3-1 in cancer appears to be different in several tumor
entities. The overexpression of ERV3-1 is associated with several
tumor entities like prostate, lung, liver and colorectal cancer (8,
64, 70). However, in the myelogenous leukemia cell line U-937
ERV3 was found to be upregulated during monocyte
differentiation (71) because of demethylation of the ERV3
locus (72). On the other hand, ERV3 was classified as a tumor
suppressor, as downregulation of ERV3 has been reported in
choriocarcinoma (73, 74). Suppression of ERV3 transcription
was also observed in Hodgkin lymphoma cells compared to
normal blood cells and growth inhibited Hodgkin lymphoma
cells expressed higher levels of ERV3 RNA than proliferating
FIGURE 4 | Differential expression of HERV families ERV9, HERVMER, HERVH and HERVPABLB in in leukemia and lymphoma cell lines and stem cells. For each cancer
entity and stem cell type, family specific FPKMs were calculated. Black dots marked RNA-seq data from individual cell lines or stem cell samples. The bar graphs represent
means and error bars indicate standard deviations. For statistical analysis, the mean values of the individual entities and stem cells were used for multiple comparisons. The
dotted line represents expression in PBMCs. Raw data are available in Supplementary Table 3. p-value: ** = p < 0.01, **** = p < 0.0001.
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cells (75). Our data also suggest a downregulation of ERV3 in the
five HL cell lines analyzed (Figure 2). The same was observed for
the other lymphoma entities being studied (Figure 2). Only in
HSCs ERV3 was significantly upregulated. Whether the
maintenance of methylation at the ERV3 locus is responsible
for downregulation and what is the cause during disease
development needs to be investigated in further analyses.

Reduced transcripts were identified also for HERVK in cell
lines for the two AML entities myelocytic AML and monocytic
AML (Figure 2). The HERVK group is the most biologically
active class of HERVs (13). The reactivation of HERVK may
contribute to the pathogenesis of various diseases, such as
Frontiers in Oncology | www.frontiersin.org 9
ovarian cancer (63), prostate cancer (64), melanoma (76) or
multiple sclerosis (77). HERVK has also been found in the
plasma of patients with lymphoma (78) and a significantly
higher expression of HERVK in acute lymphoblastic leukemia
(79), acute myeloid leukemia (80), and chronic lymphocytic
leukemia (81), strongly suggests a possible contribution of this
HERVs in the pathogenesis of these diseases. We could not
confirm an upregulation of HERVK in lymphoma or leukemia
cell lines in our analysis. Whether this reflects differences
between established cell lines and the situation in vivo requires
further investigation. In our evaluation we analyzed the
summarized expression data of 92 different full-length HERVK
sequences. It seems that cancer and immune diseases are not
accompanied by transcriptional activation of all HERVs, but
rather the upregulation of specific HERV loci in different diseases
was observed. Other studies described a more global activation of
HERV especially in solid tumor samples (25). Nevertheless,
different tumor entities could be classified according to their
HERV expression (25) suggesting entity specific expression
pattern. Due to the large group of HERVK it cannot be
excluded that the differential expression of single loci is not
detected by our evaluation. Focusing on single HERVK loci is
necessary in a further analysis, also to detect possible deregulated
HERVK loci in myelocytic AML, monocytic AML and
lymphoma. It can be speculated that specific deregulated
HERVK loci are characteristic for these entities.

HERVFc transcription is upregulated in multiple myeloma/
PCL (Figure 5A). The human genome comprises only six
HERVFc family members, among which two possess full-length
coding env genes. This limited expansion is considered to be
evidence for recent integrations in the course of primate evolution.
The env gene of the HERVFc-1 provirus still codes a full-length
protein (62). Upregulation of HERVFc might suggest an
involvement in the pathogenesis of multiple myeloma.
Differential expression is mainly restricted to HERVFc-2, which
is poorly expressed in other lymphoma and leukemia cell lines and
stem cells (Figure 5A and Supplementary Table 3). HERVFc-1 is
transcriptionally active only in one multiple myeloma/PCL
(OPM-2) cell line and also in the Hodgkin lymphoma cell line
L-428 (Figure 5B and Supplementary Table 3). The HERVFc
subfamily is part of the enlarged HERVF family (61). Our data
show that expression of HERVF (ERVH48-1) is not associated
with multiple myeloma/PCL (Figure 2). HERVF is even
significantly downregulated in all analyzed leukemia or
lymphoma cell lines. This suggests that HERVF might be
function as a tumor suppressor.

In human HSCs and ESCs we found several HERV families
transcriptionally upregulated. Overexpression of HERVK,
HERV-like, HERVV, HERVT, ERV9, HERVW and HERVF
family members and elements were found in both. HERVMER
and ERV3 are only significant differentially expressed in HSCs,
while HERVH and HERVPABLB are significant upregulated
only in ESCs (Figures 2–4). The relevant function of these
HERVs appears to be their involvement in the maintenance of
cell pluripotency. In further studies, also high levels of HERVK
transcripts and proteins are found in undifferentiated ESCs and
A

B

FIGURE 5 | Expression analysis of the HERVFc family. (A) Differential
expression of HERV family HERVFc in leukemia and lymphoma cell lines and
stem cells. For each cancer entity and stem cell type, family specific FPKMs
were calculated. Black dots marked RNA-seq data from individual cell lines or
stem cell samples. The bar graphs represent means and error bars indicate
standard deviations. For statistical analysis, the mean values of the individual
entities and stem cells were used for multiple comparisons. p-value: * = p <
0.05. Raw data are available in Supplementary Table 3. (B) qRT-PCR
analysis of HERVFc-1 expression in Hodgkin lymphoma cell lines. For the
comparative analysis, HPRT1 was used as reference. The bar charts
correspond to the mean of four independent experiments. The error bars
indicate the standard deviation. p-value: *** = p < 0.001, **** = p < 0.0001.
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induced pluripotent stem cells. The expression was inhibited by
induction of differentiation (31). The role of HERV LTRs in
maintenance of the undifferentiated phenotype and cell
proliferation is supported by providing transcription factor-
binding platforms for master regulators of pluripotency, such as
OCT4, SOX2, and NANOG, which wire the expression of these
genes to pluripotency (82). An HERVH driven lncRNAs also
influence the transcriptome of the genes involved in pluripotency
(30, 83). Also for HERVW an overexpression in pluripotent stem
cells was verified (84). Expression of TP63 and TNFRSF10B genes,
encoding the p63 homologue of the tumor suppressor p53 and
death receptor 5 (DR5), respectively, is regulated by upstream
LTRs belonging to the ERV9 group of HERVs, which have an
anti-oncogenic effect (85, 86). The importance of ERV9 and the
other HERVs like HERVV, HERVT, HERVF, HERVMER, ERV3
and HERVPABLB for the pluripotency of stem cells must be
considered in further analyses.

Many studies have shown HERV expression in single cell lines
or samples from leukemia and lymphoma patients. One possible
reason for our finding of relatively low expression of HERVs in
these different tumor cell types can be explained by our approach.
We identified HERVs that are specifically transcribed in
individual entities and included several entity-specific cell lines.
This does not exclude the existence of single cell lines with higher
expression. Furthermore, it is necessary to analyze whether there
are differences between patient samples and cell lines.

In summary, we provide new insights into the landscape of
differentially expressed HERV families in a widely used spectrum
of hematopoietic tumor cells and in stem cells. We show that the
expression of HERV families is specific for specific entities. The
next challenges are related to the characterization of specific HERV
elements with respect to their function in gene expression
regulation or by expression of viral proteins. Overall, a better
understanding of these elements and their role in the development
of cancer will provide new applications for the development of new
biomarkers for prevention, diagnosis, prognosis and therapy.
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